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Riemann theta functions are used to construct one-periodic and two-periodic wave so-
lutions to a class of (2 4+ 1)-dimensional Hirota bilinear equations. The basis for the
involved solution analysis is the Hirota bilinear formulation, and the particular depen-
dence of the equations on independent variables guarantees the existence of one-periodic
and two-periodic wave solutions involving an arbitrary purely imaginary Riemann ma-
trix. The resulting theory is applied to two nonlinear equations possessing Hirota bilinear
forms: ut 4+ Ugzy — 3uuy — 3ugv = 0 and ut + Uzerey — (PUzzv + 10uzyu — 15u21))x =0
where vy = uy, thereby yielding their one-periodic and two-periodic wave solutions
describing one-dimensional propagation of waves.

Keywords: Hirota bilinear equations; Riemann theta functions; one-periodic and two-
periodic wave solutions.

PACS Nos.: 02.30.Gp, 02.30.1k, 02.30.Jr

1. Introduction

It is always important to search for exact solutions to nonlinear differential equa-
tions. Different approaches, particularly in soliton theory, provide many tools for
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constructing explicit and exact solutions. Various kinds of exact solutions such as
solitons, positons, complexitons, solitonoffs and dromions have been presented for
nonlinear integrable equations.™® Successful methods include the inverse scatter-
ing transform,' the Darboux transformation,? Hirota direct method,® and algebro-
geometrical approach.*

The algebro-geometrical approach presents quasi-periodic or algebro-geometric
solutions to many soliton equations, which contain the KdV equation, the sine-
Gordon equation and the nonlinear Schrodinger equation. In recent years, such
an approach have been applied to many (2 + 1)-dimensional nonlinear integrable

14-17 plays a crucial role in connect-

equations.'® 3 Nonlinearization of Lax pairs
ing the resulting algebro-geometric solutions with Liouville integrable Hamiltonian
systems. The approach, however, needs Lax pair representations and involves com-
plicated calculus on Riemann surfaces.

On the other hand, the Hirota direct method provides a powerful way to derive
soliton solutions to nonlinear integrable equations and its basis is the Hirota bilinear
formulation.? Once the corresponding bilinear forms are obtained, multi-soliton so-
lutions and rational solutions to nonlinear differential equations can be computed
in quite a systematic way,?> even through Wronskian, Casoratian or Pfaffian de-
terminants.'® 24 It is based on Hirota bilinear forms that Nakamura presented an
approach to multi-periodic wave solutions of nonlinear integrable equations,2%:26
using directly Riemann theta functions. Such a method of solution does not need
any Lax pairs and their induced Riemann surfaces for the considered equations.
The presented multi-periodic solutions can be reduced to soliton solutions under
asymptotic limits.2”2® The advantage of the method is that it only relies on the
existence of Hirota bilinear forms. Moreover, all parameters appearing in Riemann
matrices are completely arbitrary, whereas algebro-geometric solutions involve spe-
cific Riemann constants, which are usually difficult to compute.

In this paper, motivated by Nakamura’s idea,2%2% we would like to use Riemann
theta functions to generate one-periodic and two-periodic wave solutions to a par-
ticular class of (2+ 1)-dimensional Hirota bilinear equations, and the corresponding
solution analysis will be made to guarantee the existence of one-periodic and two-
periodic wave solutions to the selected class of (2 + 1)-dimensional nonlinear equa-
tions. As illustrative examples of the resulting theory, we will discuss two nonlinear
equations in (2 + 1) dimensions possessing Hirota bilinear forms:

Up + Uggy — ULy — 3Uzv =0
and Ut + Uzzzey — (DUzz¥ + 10ugyu — 15uzv)z =0,
where v; = uy, and their one-periodic and two-periodic wave solutions involving
an arbitrary purely imaginary Riemann matrix will be explicitly presented.
2. Existence of One-Periodic and Two-Periodic Wave Solutions

Let us consider an evolution equation in (2 + 1) dimensions:

up = K(u, ug, ty, .. .), (2.1)
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where ¢ € R is the time variable and =,y € R are the space variables. We assume
that under a transformation

u=wuog—2(In f(x,y,t)) sz, (2.2)

where wug is a special solution to (2.1), the evolution equation (2.1) can be trans-
formed into a Hirota bilinear equation

F(DacyDZﬂDt)f'f =0, (23)

where F' is a polynomial in the three variables. Here and below, the Hirota bilinear
differential operators® are defined by

= (890 - 8x’)p(8y - 8y’)q(at - 8t’)rf(957 Y, t)g(az’, y/7 t/)|x’=x,y’=y7t’=t ) (2~4)

where p, ¢, r are non-negative integers. We will focus on a particular class of Hirota
bilinear equations in (2 + 1) dimensions:

F(Dz, Dy, Di)f - f = (DiP(D) + DyQ(Dy) + R(D2)) f - f =0, (2.5)

where P and @ are nonzero odd polynomials and R is a nonzero even polynomial,
namely, P, Q and R are nonzero polynomials and satisfy

P(=z)=-P(z), Q(-2)=-Q(2), R(=2)=R(2). (2.6)

When the Hirota operators act on exponential functions, the following derivative
formula holds:

DngDtTe’“ e = (kl - kz)p(ll - lg)q(wl - LL)Q)Teernz 5 (27)

where n; = kjz + Ly + w;t +nj0, 7 = 1,2, with k;, 15, w;,n;0 being constants. More
generally, we have

G(Dm, Dy, Dt)e’“ . 6"2 = G(k)l — k27 l1 — 127(4)1 — w2)€n1+n2 5 (28)

where G is a polynomial in the three variables. This derivative formula will be a
crucial key to our success in generating one-periodic and two-periodic wave solu-
tions.

We would like to consider the multi-dimensional special Riemann theta function

solution??:

f=flayt)= Y emitmmeninn (29)
nezZN

where (-,-) is the standard inner product of RN, n = (ni,...,ny)T, n =

(n1,...,nn)T with n; = kjx + Ly + wit + njo, and 7 = (Tpg) nxn 1S a symmet-
ric matrix whose imaginary part is positive definite (i.e. Im 7 > 0). Based on (2.8),
we can compute in general G(D,, Dy,...)f - f for such a Riemann theta function
£,3% but we will make direct computations to provide a complete solution process
and capture more of special solution structures.
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2.1. One-periodic wave solutions

Let us first consider the case of N = 1. Then the Riemann theta function in (2.9)
becomes

f 1’ R Z 627rm77+7rm 7—7 (210)

n=—oo

where Im7 > 0 and n = kx + ly + wt + no with k, [, w, 1o being real constants.
Based on the derivative formula (2.8), we can compute that

F(Dz, Dy, Do) f - f

o0 oo
_ 2minn+min’T 2mimn+mim?T
= F(Dy, Dy, Dy) E e<mmi . E e=memn
n=—oo m=—0oQ
o0 o0

Z Z F(D$7 Dy7 Dt)BZTrinn—&-TrinzT . eZTrimn+7rim27'

n=—o0 m=—0o0

Z Z (2mi(n —m)k, 2wi(n — m)l, 2mwi(n — m)w)e%i("er)"er(”z+m2)T

n=—o0 m=—0o0

Z { Z F(2ri(2n —m/)k,2mi(2n — m')l, 2mi(2n — m")w)

m/=—o00 n=-—oo

2 N2 L
~ em,[(n +(n—m') ]T}eZTrzm n

Z F 27r7,m 7]

m/=—o0

where the new summation m’ = m + n has been introduced and F(m/) is defined

F(m') = Z F(2mi(2n —m/)k, 2mi(2n — m/)l, 2mi(2n — m’)w)e”i[”2+(”_"Ll)2]T .
n=—o0 (2.11)
Shifting index n by introducing n’ =n — 1, we have
oo
F(m') = Z F(2mi(2n — m')k, 2mi(2n — m')1, 2mi(2n — m/)w)e™ 0"+ (n=m")?Ir
o
= Z F2mi)2n’ — (m' = 2)]k,2mi[2n" — (m/ — 2)]1,27i[2n" — (m/ — 2)]w)

n’'=—oo

« eﬂ'i{nlz-l—[n'—(m'—2)]2}7627ri(m'—1)7—
= F(m' — 2)e2milm’ =17 m' €Z.

It then follows that if F(0) = F(1) =0, then F(m’) = 0 for all m’ € Z.
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Noticing the specific form of Eq. (2.5), one-periodic wave solutions can be ob-
tained, if we require

F(0) = i [4nmiw P(4nmik) + dnmilQ(dnwik) + R(4nwik)]e?™ ™ =0,
. S ‘ ‘ , L (2.12)
F(1) = Z [2(2n — 1)miwP(2(2n — 1)wik) + 2(2n — )7l Q(2(2n — 1)wik)

+ R(2(2n — 1)mik)]e@n’ —2n+D)mir —

Upon introducing

oo
an(k) = Y AnmiP(dnmik)e? ™
arz(k) = Z 4n7TiQ(4n7Tik)eQ”2”T’
n=—00
ad (2.13)
azn (k) = Y 2(2n— D)miP(2(2n - 1)mik)e2n’ —2ntlmir
S 2 .
axn (k) = Z 2(2n — DHmiQ(2(2n — 1)7Tik‘)e(2” —2n_~.1)m77
and
bi(k) =~ > R(dnmik)e ™"
n=—00
o0 (2.14)
bz(k) = - Z R(Z(ZTL — ]_)7r7:k)6(2n2*2n+1)77i7-’

the linear system (2.12) of w and [ can be compactly written as
an(k‘)w + alg(k‘)l = bl(k‘) R agl(k‘)w + agg(k))l = bg(k‘) . (2.15)

We will see that there are a lot of choices for the angular wave number k. In
order to generate real solutions (w,!) to the system (2.15), we assume that

ReT=0. (2.16)

The determinant of the coefficient matrix A(k) = (ars(k))2x2 is a polynomial in k,
and so, if det(A(k)) # 0 (this condition will be satisfied in our concrete examples),
then

Ag = {k € R|det(A(k)) = 0} (2.17)

is either an empty set or a finite set. This guarantees the existence of real solutions
(w,1) to the system (2.15) at least for k ¢ Ap. About nonzero solutions, we can
have the following analysis.
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If deg(R) = 0, i.e. R = ¢, where ¢ is a nonzero real constant, then it follows
from (2.14) that b(k) does not depend on k and

b(k) = (b1 (k), ba(k))T #0,

and so, there is the unique nonzero solution of (w, I) to the system (2.15) for k & Aj.
If deg(R) > 2, then

By :={k € R| (b1(k))? + b2(k))? = 0} (2.18)

is either an empty set or a finite set, since each of b1 (k) and ba(k) is a polynomial
in k of degree deg(R). Therefore, there is the unique nonzero solution of (w,l) to
the system (2.15) for k ¢ Ao U By.

2.2. Two-periodic wave solutions

Let us now consider the case of N = 2 and the corresponding two-periodic wave
solutions. Similarly, based on the derivative formula (2.8) and introducing m’ =
n + m, we can have

F(D17Dy7Dt)f . f _ Z F(Dz’Dy’Dt)e27ri<n,n>+7ri<'rn,n) . 627Ti<n,m>+7ri(7m,m>

m,nez?

> F@riln —m, k), 2mi(n —m, 1), 2mi{n — m,w))

m,neZ?

x eZwi(n,n+m)+7ri((rm,m)+(7n,n))

>N Fri@n—m' k), 2mi(2n — m', 1), 2mi(2n — m', w))
m' €72 neZ?

> e7ri((‘r(nfm'),nfm'>+<‘rn,n>)627ri<n,m')

= > Blmh mp)eritnm),
m/ €Z?
where F(m/,, m}) = F(m/) is defined by
F(my,mb)
= 3" F@ri2n —m', k), 2mi(2n —m' 1), 2mi(2n —m’,w))e™ (T nmm)mmm b))
nez? (2.19)

Shifting index n as n’ = n — e, with 7 = 1 or r = 2, where ¢; = (1,0)T and
ez = (0,1)T, we can compute that

Fm),mb) = F(m') = F(m/ — 2e,)e2mi(m(m'=2en).en)(rerer))

~ oy .
{ F(mll -2, m/2)627m(m1—1)7—11+27rzm27—12 , r=1,

F(m/l’ mIQ _ 2)627Ti(m'271)722+277im'17'12 , r=2,
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where 7 = (7pq)2x2. It now follows that if
F(0,0) = F(0,1) = F(1,0) = F(1,1) =0, (2.20)

then F(m/},mj) = 0 for all m},m}, € Z.
For our selected equation (2.5), we have

F(my,ms) = Z [27i(2n — m,w)P(2mi(2n — m, k))
nez?

+27mi(2n — m, ) Q(2mi(2n — m, k))

+ R(2mi(2n — m, k))]e™ (T (n=m)n—m)d(rn.n) (2.21)
where we set
m = (m17m2)T7 n= (nlanQ)Ta k= (klakQ)T7
(2.22)
l= (l17 l2)T7 w = (w17w2)T
For simplicity, define
er(n) — em’((T(n—m<7'))7n—m("'>>+(7—n,n>) , 1<r<4, (2.23)

where m(") = (mgr), m(;))T, 1 <r <4, are given by
m = (0,0)T, m® = (0,1)T, m® = (1,0,  m®=@a,17T

Then, upon introducing

(o}

ars(k) = Z 2mi(2n, — m{")P(27mi(2n — m™) k)6, (n),
e (2.24)
Qp 542 (k) = Z 27TZ(27’L5 - mgr))Q(27m<2n - m(r)7 k>)97“ (TL) )
where 1 <r <4and 1<s <2, and
be(k)=— > R@mi@2n—m) k)o.(n), 1<r<A4, (2.25)
the linear system (2.20) of (w,[) can be compactly written as
w1 bl(k)
w ba (K
A | = oy = | 2*) (2.26)
Iy bs(k)
lo ba(k)

where A(k) = (ars(k))axa. If 7 is purely imaginary, i.e. it satisfies (2.16), then A(k)
and b(k) are real, due to our assumption on the polynomials P, @, R. Note that if
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det(A(k)) # 0 (this condition will be satisfied in our concrete examples), then
Ag = {k € R?|det(A(k)) = 0} (2.27)

is either an empty set or a finite set.

Now if deg(R) = 0, i.e. R = ¢, where ¢ is a nonzero real constant, then it follows
from (2.25) that b(k) does not depend on k and b(k) # 0, and so, there is the unique
nonzero solution of (w1, ws,l1,l2) to the system (2.26) for k & Ay.

If deg(R) > 2, then

By := {keR2

4
> (be(k))* = 0} (2.28)
r=0

is either an empty set or a finite set, since each of b,.(k), 1 < r <4, is a polynomial
in k1 and ko of degree deg R. Therefore, there is the unique nonzero solution of
(w1,wa,l1,12) to the system (2.26) for k & Ay U By.

3. Two Illustrative Examples

Let us illustrate our idea of generating one-periodic and two-periodic wave solutions
through two particular Hirota bilinear equations. The first example is

Ut + Ugzy — SUUy — U0 =0, Vg = Uy, (3.1)

in the physical field. This nonlinear equation is related to the breaking soliton
equation®!:

Up + Uggy — 4Uly — 2um8;1uy =0,

and it can be transformed into

(D¢Dy +DyD3 +¢)f - f =0, (3.2)
where ¢ can be an arbitrary function of y and ¢, under the transformation
u=—-2(In )z, v=—2(Inf)zy. (3.3)

Actually, we have

Ut + Uggy — ULy — 3ULV = —((Dth +ngD§,)f i f) .
The second example is
Ut + Uzgzoy — (DUzz¥ + 10ugyu — 15u2v)m =0, Vg = Uy, (3.4)
in the physical field. This nonlinear equation can be transformed into
(D¢Dy + DyD2 +c)f - f=0, (3.5)

where ¢ can be an arbitrary function of y and ¢, under the same transformation
(3.3). Similarly, we have

D.D, +D,D3)f -
Ut + Ugzzay — DUz + 10Uz u — 15u2v)m = - <( Do+ DyD;) f) .
x

f2
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The involved arbitrary function ¢ of y and ¢ shows the diversity of solutions to
(2 + 1)-dimensional differential equations.

To generate one-periodic and two-periodic wave solutions by the solution
method in the last section, we need to assume that the above function c is constant,
based on which the angular wave number [ (or the angular wave numbers [y and
l2) and the frequency w (or the frequencies wy and wq) are constant and thus the
derivative formula (2.8) will hold. Obviously, we have

for Eq. (3.1) and
P(z) =z, Qz) = 257 R(z) =c, (3.7)

for Eq. (3.4). The polynomials P and @ defined above are odd and the polynomials
R defined above are even, and so, the property (2.6) is satisfied. The determinants
of the corresponding coefficient matrices of the linear systems (2.15) and (2.26) are
not identically equal to zero, namely,

det(A(k)) #0 and det(A(k1, k2)) #0

in the two examples. For instance, in the case of one-periodic wave solutions, we
have

det(A(k)) = ak* or det(A(k)) = bk®, (3.8)
where
oo e}
a=-256r" Y nP*TT N7 (20 — 1)t T
+ 102476 Z nle2nimir Z (Qn_1)26(2n2—2n+1)m‘r7
n=-—oc n=-—oo
b=1024n" 3 n%eTT 3 (20— 1)felmimemy
n=-—oc n=-—oo
. 21 = 2 .
—1638471'8 Z nSe2n miT Z (2n_1)2€(2n f2n+1)7m'r'

A direct computation by Maple 11 with Digits = 30 shows that
Cl|7—=0.1i ~ 4563212514, a|7=0.2,- ~ 1403967042, a|7=0.5,- ~ 25831.08621 s

b|7’=0.1i ~ 1101259924, b|7’=0.2i ~ 2854439995, b|7’=0.5i ~ —48846578707

which are all nonzero. Generally, our general analysis made before is valid for the
two equations (3.2) and (3.5), and so, one-periodic and two-periodic wave solutions
to the two (2 + 1)-dimensional Hirota bilinear equations (3.1) and (3.4) can be
computed explicitly.
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4. Conclusion and Remarks

The Riemann theta functions have been used to generate one-periodic and two-
periodic wave solutions of a particular class of (2 + 1)-dimensional Hirota bilinear
equations, and the corresponding solution analysis has been made to guarantee the
existence of such multi-periodic wave solutions. Two illustrative examples:

Up + Uggy — ULy — 3Uzv = 0
and Ut —+ u:z::r:r:ry — (5’LLII’U —+ 10’I,Lzy7.t — 15U2U)z = 0,

where v; = uy, have been discussed in details, along with their one-periodic and
two-periodic wave solutions involving an arbitrary purely imaginary Riemann ma-
trix.

Our solution analysis provides a way to construct one-periodic and two-periodic
wave solutions to (2 + 1)-dimensional nonlinear differential equations. It allows
different angular wave numbers k (or k1 and ko), but the angular wave number [
(or the angular wave numbers /3 and l3) and the frequency w (or the frequencies
w1 and ws) are determined in terms of the angular wave number k (or the angular
wave numbers k1 and k2) and hence the obtained solutions describe one-dimensional
propagation of waves.

We also remark that the proposed approach can be applied to other nonlin-
ear differential equations. For example, the following combined equation with the
Sawada—Kotera vector field:

3y _ _
Ut + Ugazy — 3UUy — 3Uz¥ + Ugzgzs — 15(UUze — u”)z =0, Vg = Uy,

can be analyzed similarly. Under the transformation (3.3), this equation can be put
into the following bilinear equation:

(DD, + D,D3+ DS +¢)f - f =0,

where ¢ is an arbitrary function of y and t. The corresponding polynomials P, @,
R read

P(z)==z, Qz) = 2*, R(z)=2%+c¢, (4.1)

where c is assumed to be constant. Therefore, the same analysis on one-periodic and
two-periodic wave solutions will work for this equation as well. On the other hand,
soliton solutions to Egs. (3.1) and (3.4) can be computed by using Hirota’s direct
method. For example, one soliton solutions to Eqgs. (3.1) and (3.4) are determined
by

3 5 .
f =14tk tthaFhy and f =14 TFtHreThy L arbitrary const.,

respectively. This can also be verified by using (2.8). It should be, however, inter-
esting to establish any relations between soliton solutions and multi-periodic wave
solutions.
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It is our hope that our analysis on one-periodic and two-periodic wave solutions
made for the particularly selected class of Hirota bilinear equations could help to
better understand the diversity and integrability of nonlinear differential equations.
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