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Riemann theta functions are used to construct one-periodic and two-periodic wave so-
lutions to a class of (2 + 1)-dimensional Hirota bilinear equations. The basis for the
involved solution analysis is the Hirota bilinear formulation, and the particular depen-
dence of the equations on independent variables guarantees the existence of one-periodic
and two-periodic wave solutions involving an arbitrary purely imaginary Riemann ma-
trix. The resulting theory is applied to two nonlinear equations possessing Hirota bilinear
forms: ut + uxxy − 3uuy − 3uxv = 0 and ut + uxxxxy − (5uxxv + 10uxyu− 15u

2
v)x = 0

where vx = uy , thereby yielding their one-periodic and two-periodic wave solutions
describing one-dimensional propagation of waves.

Keywords: Hirota bilinear equations; Riemann theta functions; one-periodic and two-
periodic wave solutions.
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1. Introduction

It is always important to search for exact solutions to nonlinear differential equa-

tions. Different approaches, particularly in soliton theory, provide many tools for
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constructing explicit and exact solutions. Various kinds of exact solutions such as

solitons, positons, complexitons, solitonoffs and dromions have been presented for

nonlinear integrable equations.1–9 Successful methods include the inverse scatter-

ing transform,1 the Darboux transformation,2 Hirota direct method,3 and algebro-

geometrical approach.4

The algebro-geometrical approach presents quasi-periodic or algebro-geometric

solutions to many soliton equations, which contain the KdV equation, the sine-

Gordon equation and the nonlinear Schrödinger equation. In recent years, such

an approach have been applied to many (2 + 1)-dimensional nonlinear integrable

equations.10–13 Nonlinearization of Lax pairs14–17 plays a crucial role in connect-

ing the resulting algebro-geometric solutions with Liouville integrable Hamiltonian

systems. The approach, however, needs Lax pair representations and involves com-

plicated calculus on Riemann surfaces.

On the other hand, the Hirota direct method provides a powerful way to derive

soliton solutions to nonlinear integrable equations and its basis is the Hirota bilinear

formulation.3 Once the corresponding bilinear forms are obtained, multi-soliton so-

lutions and rational solutions to nonlinear differential equations can be computed

in quite a systematic way,3 even through Wronskian, Casoratian or Pfaffian de-

terminants.18–24 It is based on Hirota bilinear forms that Nakamura presented an

approach to multi-periodic wave solutions of nonlinear integrable equations,25,26

using directly Riemann theta functions. Such a method of solution does not need

any Lax pairs and their induced Riemann surfaces for the considered equations.

The presented multi-periodic solutions can be reduced to soliton solutions under

asymptotic limits.27,28 The advantage of the method is that it only relies on the

existence of Hirota bilinear forms. Moreover, all parameters appearing in Riemann

matrices are completely arbitrary, whereas algebro-geometric solutions involve spe-

cific Riemann constants, which are usually difficult to compute.

In this paper, motivated by Nakamura’s idea,25,26 we would like to use Riemann

theta functions to generate one-periodic and two-periodic wave solutions to a par-

ticular class of (2+1)-dimensional Hirota bilinear equations, and the corresponding

solution analysis will be made to guarantee the existence of one-periodic and two-

periodic wave solutions to the selected class of (2 + 1)-dimensional nonlinear equa-

tions. As illustrative examples of the resulting theory, we will discuss two nonlinear

equations in (2 + 1) dimensions possessing Hirota bilinear forms:

ut + uxxy − 3uuy − 3uxv = 0

and ut + uxxxxy − (5uxxv + 10uxyu − 15u2v)x = 0 ,

where vx = uy, and their one-periodic and two-periodic wave solutions involving

an arbitrary purely imaginary Riemann matrix will be explicitly presented.

2. Existence of One-Periodic and Two-Periodic Wave Solutions

Let us consider an evolution equation in (2 + 1) dimensions:

ut = K(u, ux, uy, . . .) , (2.1)
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where t ∈ R is the time variable and x, y ∈ R are the space variables. We assume

that under a transformation

u = u0 − 2(ln f(x, y, t))xx , (2.2)

where u0 is a special solution to (2.1), the evolution equation (2.1) can be trans-

formed into a Hirota bilinear equation

F (Dx, Dy, Dt)f · f = 0 , (2.3)

where F is a polynomial in the three variables. Here and below, the Hirota bilinear

differential operators3 are defined by

Dp
xDq

yDr
t f(x, y, t) · g(x, y, t)

= (∂x − ∂x′)p(∂y − ∂y′)q(∂t − ∂t′)
rf(x, y, t)g(x′, y′, t′)|x′=x,y′=y,t′=t , (2.4)

where p, q, r are non-negative integers. We will focus on a particular class of Hirota

bilinear equations in (2 + 1) dimensions:

F (Dx, Dy, Dt)f · f = (DtP (Dx) + DyQ(Dx) + R(Dx))f · f = 0 , (2.5)

where P and Q are nonzero odd polynomials and R is a nonzero even polynomial,

namely, P , Q and R are nonzero polynomials and satisfy

P (−z) = −P (z) , Q(−z) = −Q(z) , R(−z) = R(z) . (2.6)

When the Hirota operators act on exponential functions, the following derivative

formula holds:

Dp
xDq

yDr
t e

η1 · eη2 = (k1 − k2)
p(l1 − l2)

q(ω1 − ω2)
reη1+η2 , (2.7)

where ηj = kjx + ljy + ωjt + ηj0, j = 1, 2, with kj , lj , ωj , ηj0 being constants. More

generally, we have

G(Dx, Dy, Dt)e
η1 · eη2 = G(k1 − k2, l1 − l2, ω1 − ω2)e

η1+η2 , (2.8)

where G is a polynomial in the three variables. This derivative formula will be a

crucial key to our success in generating one-periodic and two-periodic wave solu-

tions.

We would like to consider the multi-dimensional special Riemann theta function

solution29:

f = f(x, y, t) =
∑

n∈ZN

e2πi〈η,n〉+πi〈τn,n〉 , (2.9)

where 〈· , ·〉 is the standard inner product of R
N , n = (n1, . . . , nN )T, η =

(η1, . . . , ηN )T with ηj = kjx + ljy + ωjt + ηj0, and τ = (τpq)N×N is a symmet-

ric matrix whose imaginary part is positive definite (i.e. Im τ > 0). Based on (2.8),

we can compute in general G(Dx, Dt, . . .)f · f for such a Riemann theta function

f ,30 but we will make direct computations to provide a complete solution process

and capture more of special solution structures.
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2.1. One-periodic wave solutions

Let us first consider the case of N = 1. Then the Riemann theta function in (2.9)

becomes

f = f(x, y, t) =

∞
∑

n=−∞

e2πinη+πin2τ , (2.10)

where Im τ > 0 and η = kx + ly + ωt + η0 with k, l, ω, η0 being real constants.

Based on the derivative formula (2.8), we can compute that

F (Dx, Dy, Dt)f · f

= F (Dx, Dy, Dt)

∞
∑

n=−∞

e2πinη+πin2τ ·

∞
∑

m=−∞

e2πimη+πim2τ

=
∞
∑

n=−∞

∞
∑

m=−∞

F (Dx, Dy, Dt)e
2πinη+πin2τ · e2πimη+πim2τ

=
∞
∑

n=−∞

∞
∑

m=−∞

F (2πi(n − m)k, 2πi(n − m)l, 2πi(n− m)ω)e2πi(n+m)η+πi(n2+m2)τ

=
∞
∑

m′=−∞

{

∞
∑

n=−∞

F (2πi(2n − m′)k, 2πi(2n− m′)l, 2πi(2n − m′)ω)

× eπi[(n2+(n−m′)2]τ

}

e2πim′η

=

∞
∑

m′=−∞

F̃ (m′)e2πim′η ,

where the new summation m′ = m + n has been introduced and F̃ (m′) is defined

by

F̃ (m′) =
∞
∑

n=−∞

F (2πi(2n− m′)k, 2πi(2n− m′)l, 2πi(2n− m′)ω)eπi[n2+(n−m′)2]τ .

(2.11)

Shifting index n by introducing n′ = n − 1, we have

F̃ (m′) =

∞
∑

n=−∞

F (2πi(2n − m′)k, 2πi(2n− m′)l, 2πi(2n− m′)ω)eπi[n2+(n−m′)2]τ

=

∞
∑

n′=−∞

F (2πi[2n′ − (m′ − 2)]k, 2πi[2n′ − (m′ − 2)]l, 2πi[2n′ − (m′ − 2)]ω)

× eπi{n′2+[n′−(m′−2)]2}τe2πi(m′−1)τ

= F̃ (m′ − 2)e2πi(m′−1)τ , m′ ∈ Z .

It then follows that if F̃ (0) = F̃ (1) = 0, then F̃ (m′) = 0 for all m′ ∈ Z.
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Noticing the specific form of Eq. (2.5), one-periodic wave solutions can be ob-

tained, if we require










































F̃ (0) =

∞
∑

n=−∞

[4nπiωP (4nπik) + 4nπilQ(4nπik) + R(4nπik)]e2n2πiτ = 0 ,

F̃ (1) =
∞
∑

n=−∞

[2(2n− 1)πiωP (2(2n− 1)πik) + 2(2n− 1)πilQ(2(2n− 1)πik)

+ R(2(2n− 1)πik)]e(2n2−2n+1)πiτ = 0 .

(2.12)

Upon introducing










































































a11(k) =

∞
∑

n=−∞

4nπiP (4nπik)e2n2πiτ ,

a12(k) =

∞
∑

n=−∞

4nπiQ(4nπik)e2n2πiτ ,

a21(k) =

∞
∑

n=−∞

2(2n − 1)πiP (2(2n− 1)πik)e(2n2−2n+1)πiτ ,

a22(k) =

∞
∑

n=−∞

2(2n − 1)πiQ(2(2n− 1)πik)e(2n2−2n+1)πiτ ,

(2.13)

and


























b1(k) = −

∞
∑

n=−∞

R(4nπik)e2n2πiτ ,

b2(k) = −
∞
∑

n=−∞

R(2(2n− 1)πik)e(2n2−2n+1)πiτ ,

(2.14)

the linear system (2.12) of ω and l can be compactly written as

a11(k)ω + a12(k)l = b1(k) , a21(k)ω + a22(k)l = b2(k) . (2.15)

We will see that there are a lot of choices for the angular wave number k. In

order to generate real solutions (ω, l) to the system (2.15), we assume that

Re τ = 0 . (2.16)

The determinant of the coefficient matrix A(k) = (ars(k))2×2 is a polynomial in k,

and so, if det(A(k)) 6≡ 0 (this condition will be satisfied in our concrete examples),

then

A0 := {k ∈ R | det(A(k)) = 0} (2.17)

is either an empty set or a finite set. This guarantees the existence of real solutions

(ω, l) to the system (2.15) at least for k 6∈ A0. About nonzero solutions, we can

have the following analysis.
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If deg(R) = 0, i.e. R = c, where c is a nonzero real constant, then it follows

from (2.14) that b(k) does not depend on k and

b(k) = (b1(k), b2(k))T 6= 0 ,

and so, there is the unique nonzero solution of (ω, l) to the system (2.15) for k 6∈ A0.

If deg(R) ≥ 2, then

B0 := {k ∈ R | (b1(k))2 + b2(k))2 = 0} (2.18)

is either an empty set or a finite set, since each of b1(k) and b2(k) is a polynomial

in k of degree deg(R). Therefore, there is the unique nonzero solution of (ω, l) to

the system (2.15) for k 6∈ A0 ∪ B0.

2.2. Two-periodic wave solutions

Let us now consider the case of N = 2 and the corresponding two-periodic wave

solutions. Similarly, based on the derivative formula (2.8) and introducing m′ =

n + m, we can have

F (Dx, Dy, Dt)f · f =
∑

m,n∈Z2

F (Dx, Dy, Dt)e
2πi〈η,n〉+πi〈τn,n〉 · e2πi〈η,m〉+πi〈τm,m〉

=
∑

m,n∈Z2

F (2πi〈n − m, k〉, 2πi〈n − m, l〉, 2πi〈n− m, ω〉)

× e2πi〈η,n+m〉+πi(〈τm,m〉+〈τn,n〉)

=
∑

m′∈Z2

∑

n∈Z2

F (2πi〈2n − m′, k〉, 2πi〈2n − m′, l〉, 2πi〈2n− m′, ω〉)

× eπi(〈τ(n−m′),n−m′〉+〈τn,n〉)e2πi〈η,m′〉

=
∑

m′∈Z2

F̃ (m′
1, m

′
2)e

2πi〈η,m′〉 ,

where F̃ (m′
1, m

′
2) = F̃ (m′) is defined by

F̃ (m′
1, m

′
2)

=
∑

n∈Z2

F (2πi〈2n − m
′
, k〉, 2πi〈2n − m

′
, l〉, 2πi〈2n − m

′
, ω〉)eπi(〈τ(n−m′),n−m′〉+〈τn,n〉)

.

(2.19)

Shifting index n as n′ = n − er with r = 1 or r = 2, where e1 = (1, 0)T and

e2 = (0, 1)T, we can compute that

F̃ (m′
1, m

′
2) = F̃ (m′) = F̃ (m′ − 2er)e

2πi(〈τ(m′−2er),er〉+〈τer,er〉)

=

{

F̃ (m′
1 − 2, m′

2)e
2πi(m′

1−1)τ11+2πim′

2τ12 , r = 1 ,

F̃ (m′
1, m

′
2 − 2)e2πi(m′

2−1)τ22+2πim′

1τ12 , r = 2 ,
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where τ = (τpq)2×2. It now follows that if

F̃ (0, 0) = F̃ (0, 1) = F̃ (1, 0) = F̃ (1, 1) = 0 , (2.20)

then F̃ (m′
1, m

′
2) = 0 for all m′

1, m
′
2 ∈ Z.

For our selected equation (2.5), we have

F̃ (m1, m2) =
∑

n∈Z2

[2πi〈2n − m, ω〉P (2πi〈2n− m, k〉)

+ 2πi〈2n− m, l〉Q(2πi〈2n− m, k〉)

+ R(2πi〈2n− m, k〉)]eπi(〈τ(n−m),n−m〉+〈τn,n〉) , (2.21)

where we set

m = (m1, m2)
T , n = (n1, n2)

T , k = (k1, k2)
T ,

l = (l1, l2)
T , ω = (ω1, ω2)

T .

(2.22)

For simplicity, define

θr(n) = eπi(〈τ(n−m(r)),n−m(r)〉+〈τn,n〉) , 1 ≤ r ≤ 4 , (2.23)

where m(r) = (m
(r)
1 , m

(r)
2 )T, 1 ≤ r ≤ 4, are given by

m(1) = (0, 0)T , m(2) = (0, 1)T , m(3) = (1, 0)T , m(4) = (1, 1)T.

Then, upon introducing


























ars(k) =

∞
∑

n1,n2=−∞

2πi(2ns − m(r)
s )P (2πi〈2n − m(r), k〉)θr(n) ,

ar,s+2(k) =

∞
∑

n1,n2=−∞

2πi(2ns − m(r)
s )Q(2πi〈2n − m(r), k〉)θr(n) ,

(2.24)

where 1 ≤ r ≤ 4 and 1 ≤ s ≤ 2, and

br(k) = −

∞
∑

n1,n2=−∞

R(2πi〈2n− m(r), k〉)θr(n) , 1 ≤ r ≤ 4 , (2.25)

the linear system (2.20) of (ω, l) can be compactly written as

A(k)













ω1

ω2

l1

l2













= b(k) =













b1(k)

b2(k)

b3(k)

b4(k)













, (2.26)

where A(k) = (ars(k))4×4. If τ is purely imaginary, i.e. it satisfies (2.16), then A(k)

and b(k) are real, due to our assumption on the polynomials P, Q, R. Note that if



July 10, 2009 15:18 WSPC/146-MPLA 03009

1684 W. X. Ma, R. G. Zhou & L. Gao

det(A(k)) 6≡ 0 (this condition will be satisfied in our concrete examples), then

A0 := {k ∈ R
2 | det(A(k)) = 0} (2.27)

is either an empty set or a finite set.

Now if deg(R) = 0, i.e. R = c, where c is a nonzero real constant, then it follows

from (2.25) that b(k) does not depend on k and b(k) 6= 0, and so, there is the unique

nonzero solution of (ω1, ω2, l1, l2) to the system (2.26) for k 6∈ A0.

If deg(R) ≥ 2, then

B0 :=

{

k ∈ R
2

∣

∣

∣

∣

∣

4
∑

r=0

(br(k))2 = 0

}

(2.28)

is either an empty set or a finite set, since each of br(k), 1 ≤ r ≤ 4, is a polynomial

in k1 and k2 of degree deg R. Therefore, there is the unique nonzero solution of

(ω1, ω2, l1, l2) to the system (2.26) for k 6∈ A0 ∪ B0.

3. Two Illustrative Examples

Let us illustrate our idea of generating one-periodic and two-periodic wave solutions

through two particular Hirota bilinear equations. The first example is

ut + uxxy − 3uuy − 3uxv = 0 , vx = uy , (3.1)

in the physical field. This nonlinear equation is related to the breaking soliton

equation31:

ut + uxxy − 4uuy − 2ux∂−1
x uy = 0 ,

and it can be transformed into

(DtDx + DyD3
x + c)f · f = 0 , (3.2)

where c can be an arbitrary function of y and t, under the transformation

u = −2(ln f)xx , v = −2(ln f)xy . (3.3)

Actually, we have

ut + uxxy − 3uuy − 3uxv = −

(

(DtDx + DyD
3
x)f · f

f2

)

x

.

The second example is

ut + uxxxxy − (5uxxv + 10uxyu − 15u2v)x = 0 , vx = uy , (3.4)

in the physical field. This nonlinear equation can be transformed into

(DtDx + DyD5
x + c)f · f = 0 , (3.5)

where c can be an arbitrary function of y and t, under the same transformation

(3.3). Similarly, we have

ut + uxxxxy − (5uxxv + 10uxyu − 15u2v)x = −

(

(DtDx + DyD5
x)f · f

f2

)

x

.



July 10, 2009 15:18 WSPC/146-MPLA 03009

Hirota Bilinear Equations in (2 + 1) Dimensions 1685

The involved arbitrary function c of y and t shows the diversity of solutions to

(2 + 1)-dimensional differential equations.

To generate one-periodic and two-periodic wave solutions by the solution

method in the last section, we need to assume that the above function c is constant,

based on which the angular wave number l (or the angular wave numbers l1 and

l2) and the frequency ω (or the frequencies ω1 and ω2) are constant and thus the

derivative formula (2.8) will hold. Obviously, we have

P (z) = z , Q(z) = z3 , R(z) = c , (3.6)

for Eq. (3.1) and

P (z) = z , Q(z) = z5 , R(z) = c , (3.7)

for Eq. (3.4). The polynomials P and Q defined above are odd and the polynomials

R defined above are even, and so, the property (2.6) is satisfied. The determinants

of the corresponding coefficient matrices of the linear systems (2.15) and (2.26) are

not identically equal to zero, namely,

det(A(k)) 6= 0 and det(A(k1, k2)) 6= 0

in the two examples. For instance, in the case of one-periodic wave solutions, we

have

det(A(k)) = ak4 or det(A(k)) = bk6 , (3.8)

where

a = −256π6
∞
∑

n=−∞

n2e2n2πiτ

∞
∑

n=−∞

(2n − 1)4e(2n2−2n+1)πiτ

+ 1024π6
∞
∑

n=−∞

n4e2n2πiτ

∞
∑

n=−∞

(2n − 1)2e(2n2−2n+1)πiτ ,

b = 1024π8
∞
∑

n=−∞

n2e2n2πiτ

∞
∑

n=−∞

(2n − 1)6e(2n2−2n+1)πiτ

− 16384π8
∞
∑

n=−∞

n6e2n2πiτ

∞
∑

n=−∞

(2n − 1)2e(2n2−2n+1)πiτ .

A direct computation by Maple 11 with Digits = 30 shows that

a|τ=0.1i ≈ 4563.212514 , a|τ=0.2i ≈ 140396.7042 , a|τ=0.5i ≈ 25831.08621 ,

b|τ=0.1i ≈ 11012599.24 , b|τ=0.2i ≈ 28544399.95 , b|τ=0.5i ≈ −4884657.870 ,

which are all nonzero. Generally, our general analysis made before is valid for the

two equations (3.2) and (3.5), and so, one-periodic and two-periodic wave solutions

to the two (2 + 1)-dimensional Hirota bilinear equations (3.1) and (3.4) can be

computed explicitly.
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4. Conclusion and Remarks

The Riemann theta functions have been used to generate one-periodic and two-

periodic wave solutions of a particular class of (2 + 1)-dimensional Hirota bilinear

equations, and the corresponding solution analysis has been made to guarantee the

existence of such multi-periodic wave solutions. Two illustrative examples:

ut + uxxy − 3uuy − 3uxv = 0

and ut + uxxxxy − (5uxxv + 10uxyu − 15u2v)x = 0 ,

where vx = uy, have been discussed in details, along with their one-periodic and

two-periodic wave solutions involving an arbitrary purely imaginary Riemann ma-

trix.

Our solution analysis provides a way to construct one-periodic and two-periodic

wave solutions to (2 + 1)-dimensional nonlinear differential equations. It allows

different angular wave numbers k (or k1 and k2), but the angular wave number l

(or the angular wave numbers l1 and l2) and the frequency ω (or the frequencies

ω1 and ω2) are determined in terms of the angular wave number k (or the angular

wave numbers k1 and k2) and hence the obtained solutions describe one-dimensional

propagation of waves.

We also remark that the proposed approach can be applied to other nonlin-

ear differential equations. For example, the following combined equation with the

Sawada–Kotera vector field:

ut + uxxy − 3uuy − 3uxv + uxxxxx − 15(uuxx − u3)x = 0 , vx = uy ,

can be analyzed similarly. Under the transformation (3.3), this equation can be put

into the following bilinear equation:

(DtDx + DyD
3
x + D6

x + c)f · f = 0 ,

where c is an arbitrary function of y and t. The corresponding polynomials P , Q,

R read

P (z) = z , Q(z) = z3 , R(z) = z6 + c , (4.1)

where c is assumed to be constant. Therefore, the same analysis on one-periodic and

two-periodic wave solutions will work for this equation as well. On the other hand,

soliton solutions to Eqs. (3.1) and (3.4) can be computed by using Hirota’s direct

method. For example, one soliton solutions to Eqs. (3.1) and (3.4) are determined

by

f = 1 + e±k3t+kx∓ky and f = 1 + e±k5t+kx∓ky , k-arbitrary const. ,

respectively. This can also be verified by using (2.8). It should be, however, inter-

esting to establish any relations between soliton solutions and multi-periodic wave

solutions.
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It is our hope that our analysis on one-periodic and two-periodic wave solutions

made for the particularly selected class of Hirota bilinear equations could help to

better understand the diversity and integrability of nonlinear differential equations.
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