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Lump solutions with higher-order rational dispersion relations
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Abstract. This paper aims to explore a kind of lump solutions in nonlinear dispersive waves with higher-order
rational dispersion relations. We show that the second member in the commuting Kadomtsev–Petviashvili hierarchy
is such an example, and construct its lump solutions, based on a Hirota trilinear form. The presented lump solutions
have one peak and two valleys, where the global maximum and minimum values are achieved. A few three-
dimensional plots and contour plots are made for a specific example of the lumps.
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1. Introduction

The main question in the theory of differential equations
is to explore the existence of solutions to given differen-
tial equations, for example, dispersive wave equations
describing real-world problems. Theoretically, it is also
interesting to determine what kind of differential equa-
tions can possess particularly interesting given solutions
such as solitons and lumps. Initial-value problems are
about the existence, uniqueness and stability of solu-
tions which satisfy the given initial data. Laplace’s
method and the Fourier transform method are powerful
in solving initial-value problems for linear ordinary and
partial differential equations, respectively. Soliton the-
ory encompasses the systematic study of initial-value
problems of soliton equations and the involved tech-
nique is called the inverse scattering transform method
[1,2].

It is well-known that it is extremely difficult to con-
struct exact solutions even for integrable equations.
The Hirota bilinear method provides an efficient tech-
nique to determine soliton solutions [3,4], historically
found for the Korteweg–de Vries equation. Soliton

solutions are analytic functions usually exponentially
localised, which are used to describe various wave phe-
nomena in science and technology. Lump solutions
are another kind of exact analytical solutions, which
are rational and localised in all directions in space
(see, e.g., [5–7] in (2 + 1) dimensions). The motiva-
tion is the long wave limits of N -soliton solutions [8].
The richness of lump solutions can be seen in many
integrable equations in (2 + 1) dimensions (see, e.g.,
[5,6]). Illustrative examples of such integrable equa-
tions include the Kadomtsev–Petviashvili-I (KPI) equa-
tion [9], the B-Kadomtsev–Petviashvili (BKP) equation
[10,11], the Davey–Stewartson equation II [8], the
three-wave resonant interaction [12] and the Ishimori-
I equation [13]. Special lump solutions of the KPI
equation have been computed from N -soliton solutions
[14]. Recent studies also show that there exist lumps
in the Kadomtsev–Petviashvili (KP) equation with a
self-consistent source [15]. A crucial step in computing
lump solution is to look for positive quadratic func-
tion solutions to bilinear equations [5]. Then taking
the logarithmic transformations of the obtained positive
solutions, one can generate lump solutions to nonlinear
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differential equations (see, e.g. [5] and [6] in the cases of
Hirota and generalised bilinear equations, respectively).

In this paper, we would like to explore a kind of lump
solutions in nonlinear dispersive waves with higher-
order rational dispersion relations. We shall show that
the second member in the commuting KP hierarchy pos-
sesses such lump solutions. Instead of Hirota bilinear
forms, we shall use a trilinear form to compute lump
solutions, and unlike the cases of using bilinear forms
(see, e.g., [5,6,16–18]), the dispersion relations in the
presented lump solutions are higher-order rational func-
tions of wave numbers. The peak and two valleys of the
lump solutions and their corresponding extreme values
will be determined through symbolic computation with
Maple. A few three-dimensional plots and contour plots
will be made in a specific case via the Maple plot tool,
to shed light on the dynamical properties of the lump
solutions. Concluding remarks will be given in the final
section.

2. Lump solutions

2.1 Second KPI equation

It is obvious that under a reduction of α = (
√

6/6)i , the
second member of the commuting KP hierarchy (see
[19]) reads as

P(u, v) = ut + 2uxvx + 4uuy − 1

6
vyy + uxxy = 0,

(2.1)

where vxx = uy . The equation has a trilinear form

B( f ) = f 2 fyyy − 3 f fy fyy − 6 f 2 fxxt

+6 f ft fxx − 12 ft f
2
x + 12 f fx ft x

−6 f 2 fxxxxy + 6 f fy fxxxx + 24 f fx fxxxy

−12 f fxx fxxy+2 f 3
y −24 fx fy fxxx+12 fy f

2
x

−24 f 2
x fxxy + 24 fx fxx fxy = 0 (2.2)

under the second- and first-order logarithmic transfor-
mations

u = 2(ln f )xx , v = 2(ln f )y . (2.3)

Precisely, we have

B( f ) = −3 f 3P(u, v).

We call eq. (2.1) as the second KPI equation, to reflect
the second member in the KP hierarchy and the similar-
ity to the KPI equation. In what follows, we would like
to determine lump solutions to the second KPI equation
(2.1), through symbolic computation with Maple.

2.2 Higher-order rational dispersion relation

As usual, we begin with a search for positive quadratic
solutions to the corresponding trilinear equation (2.2):

f = (a1x + a2y + a3t + a4)
2

+(a5x + a6y + a7t + a8)
2 + a9 (2.4)

in order to generate lump solutions to the second KPI
equation (2.1). Substituting this function f into the
trilinear equation (2.2) yields a large system of nonlin-
ear algebraic equations on the involved parameters ai ,
1 ≤ i ≤ 9. To get solutions to this nonlinear system, we
conduct a direct symbolic computation to obtain a set of
solutions for those parameters. The dispersion relations
and the translation in the set of solutions read as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 = a2
1a

3
2 − 3a2

1a2a2
6 + 6a1a2

2a5a6 − 2a1a5a3
6 − a3

2a
2
5 + 3a2a2

5a
2
6

6(a2
1 + a2

5)2
,

a7 = 3a2
1a

2
2a6 − a2

1a
3
6 − 2a1a3

2a5 + 6a1a2a5a2
6 − 3a2

2a
2
5a6 + a2

5a
3
6

6(a2
1 + a2

5)2
,

a9 = 6(a2
1 + a2

5)3

(a1a6 − a2a5)2 ,

(2.5)

and all other parameters ai ’s are arbitrary.
The first two formulas above exhibit a novel kind of

interactive dispersion relations between two dispersive
waves. Compared with the case of the KPI equation [9],
we find that the dispersion relations in the second KPI
equation involve higher-order rational dependences on
the wave numbers, a1, a2, a5 and a6. This is the first
example to exhibit such higher-order rational disper-
sion relations, whose numerators are of degree 5 and
whose denominators are of degree 4. All previous exam-
ples of lumps in the literature, including higher-order
lumps (see, e.g., [8,20,21]), only have the third-order
numerators and the second-order denominators of the
wave numbers in the wave variables. One reason for
the difference should be the differential order of Lax
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operators of symmetries that are used to formulate
soliton equations, which reflect the order of practical
perturbations that could be taken for physical systems.

2.3 Lump characteristic

The natural condition

a1a6 − a2a5 �= 0 (2.6)

guarantees that the functions

u = 2(ln f )xx = 2( fxx f − f 2
x )

f 2 ,

v = 2(ln f )y = 2 fy
f

, (2.7)

decay in all space directions. It also implies that a2
1 +

a2
5 > 0, and so based on (2.5), f is positive and further

u and v are analytic. Therefore, under condition (2.6),
(2.7) presents lump solutions to the second KPI equation
(2.1), together with (2.4) and (2.5).

Condition (2.6) is also necessary for (2.7) to define
lump solutions to (2+1)-dimensional soliton equations.

2.4 Extreme values

We point out that in what follows, all formulas are
obtained under simplification processes with Maple. A
direct computation shows that the lump solution u has
three critical points:

(xi , y0), i = 1, 2, 3, (2.8)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = (a2
2 + a2

6)(a1a2 + a5a6)

3(a2
1 + a2

5)2
t + a2a8 − a4a6

a1a6 − a2a5
,

x2,3 = z±
3(a2

1 + a2
5)2(a1a6 − a2a5)

,

y0 = −3a2
1a

2
2 − a2

1a
2
6+8a1a2a5a6−a2

2a
2
5+3a2

5a
2
6

6(a2
1+a2

5)2
t

−a1a8 − a4a5

a1a6 − a2a5
.

(2.9)

The values z± are two solutions of the following
quadratic equation:

z2 + (p1t + p2)z + p3t
2 + p4t + p5 = 0, (2.10)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = −2(a2
2 + a2

6)(a1a2 + a5a6)(a1a6 − a2a5),

p2 = −6(a2
1 + a2

5)2(a2a8 − a4a6),

p3 = (a2
2 + a2

6)2(a1a2 + a5a6)
2(a1a6 − a2a5)

2,

p4 = 6(a2
2 + a2

6)(a2
1 + a2

5)2(a1a2 + a5a6)

×(a1a6 − a2a5)(a2a8 − a4a6),

p5 = −9(a2
1 +a2

5)4[18(a2
1 +a2

5)2−(a2a8−a4a6)
2].

(2.11)

The discriminant of this quadratic polynomial can be
worked out as follows:

(p1t + p2)
2 − 4(p3t

2 + p4t + p5) = 648(a2
1 + a2

5)6,

which is always positive when (2.6) holds and so guar-
antees the existence of the two real solutions z±.

By the second derivative test in calculus, the lump
solution u has a peak at the first critical point (x1, y0),
because we have

uxx = −2(a1a6 − a2a5)
4

3(a2
1 + a2

5)4
< 0,

uxxuyy − u2
xy = 4(a1a6 − a2a5)

10

27(a2
1 + a2

5)10
> 0,

at the critical point (x1, y0), and two valleys at the second
and third critical points (x2,3, y0), because we have

uxx = (a1a6 − a2a5)
4

48(a2
1 + a2

5)4
> 0,

uxxuyy − u2
xy = (a1a6 − a2a5)

10

1728(a2
1 + a2

5)10
> 0,

at the critical points (x2,3, y0). The values of the lump
solution u at the peak and the two valleys are

u1 = 2(a1a6 − a2a5)
2

3(a2
1 + a2

5)2
, u2,3 = −(a1a6 − a2a5)

2

12(a2
1 + a2

5)2
,

(2.12)

which are also the global maximum and minimum val-
ues of the lump solution u, because u decays in all space
directions. Based on (2.9) and (2.10), we see that the
single peak moves in a straight line and the two valleys
move in algebraic curves in space, when time t changes.

2.5 An illustrative example

If we take

a1 =2, a2 =−1, a4 =1, a5 =−2, a6 =−1, a8 =−1,

(2.13)

the transformations in (2.7) with (2.4) and (2.5) present
the lump solutions u and v for the second KPI
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Figure 1. Profiles of u when t = 0, 50, 100: contour plots (top) and 3D plots (bottom).

Figure 2. Profiles of v when t = 0, 50, 100: contour plots (top) and 3D plots (bottom).
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equation (2.1):

u= 9216(t2−48t y−2304x2+576y2−2304x+54720)

(t2−48t y−2304x2+576y2+2304x+55872)2

(2.14)

and

v = 2304y−96t

t2 − 48t y − 2304x2 + 576y2 + 2304x+55872
,

(2.15)

where the denominators have no singularity, as we
explicitly have

t2 − 48t y − 2304x2 + 576y2 + 2304x + 55872

= 288

(
1

24
t + 2x − y + 1

)2

+288

(
1

24
t − 2x − y − 1

)2

+ 55296 > 0.

Three three-dimensional plots and contour plots of the
lump solutions u and v are made via Maple plot tools,
to shed light on the characteristic of the lump solutions,
in figures 1 and 2, respectively.

All the presented lump solutions above gain invalu-
able insights into the existing results on exact solutions
to nonlinear differential equations, including soliton
solutions [1–3] and dromion solutions [22–25]. Lumps,
solitons and dromions share the same coherent struc-
tures, except lumps decay algebraically but solitons and
dromions decay exponentially. Our results also provide
some supplements to the existing literature on differ-
ent effective approaches such as the Hirota bilinear
method, the Wronskian approach, the Riemann–Hilbert
technique, the algebro-geometric method, and symme-
try reductions and constraints (see, e.g., [26–34]).

3. Concluding remarks

We have studied the second member in the KP hierarchy
and constructed its lump solutions. The results enrich the
discussions in the literature about lumps and solitons,
providing the first example of applying trilinear forms
to explore nonlinear partial differential equations which
possess lump solutions. The study consists of a kind
of symbolic computations with Maple. It is particularly
interesting that the dispersion relations in the obtained
lump solutions involve higher-order rational depen-
dences on the wave numbers. All existing examples
only involve lower-order rational dispersion relations.
Contour plots and three-dimensional plots were drawn
for a specific example by using Maple.

It is known from recent studies that many
(2 + 1)-dimensional nonlinear equations possess lump
solutions, and those equations contain the generalised
KP equation, the generalised BKP equation, the
KP–Boussinesq equation, the generalised Bogoyav-
lensky–Konopelchenko equation, the generalised
Calogero–Bogoyavlenskii–Schiff equation and the
Sawada–Kotera equation [35–39]. It has also been
demonstrated that linear partial differential equations
can possess abundant lump solutions [27,40,41], besides
nonlinear partial differential equations in (2+1) dimen-
sions (see, e.g., [42–46]) and in (3+1) dimensions (see,
e.g., [47–52]). Furthermore, there exist interaction solu-
tions [53] to (2 + 1)-dimensional integrable equations,
and such solutions include lump soliton solutions of
homoclinic type (see, e.g., [54–56]) and lump-kink solu-
tions of heteroclinic type (see, e.g., [57–60]). It should
be interesting to look for interaction solutions with lump
solutions whose dispersion relations involve higher-
order rational dependences on wave numbers. Lump and
interaction solutions also exhibit diversity of exact solu-
tions constructed from other kinds of combinations (see,
e.g., [61–63]), and they can lead to many symmetries of
Lie–Bäcklund type, from which one can formulate con-
servation laws (see [64–66] for conservation laws by
pairs of symmetries and adjoint symmetries).

We also remark that under a reduction of α = √
6/6,

the second member of the commuting KP hierarchy (see
[19]) gives the second KPII equation

P(u, v) = ut + 2uxvx + 4uuy + 1

6
vyy + uxxy = 0,

where vxx = uy . This equation has a trilinear form

B( f ) = − f 2 fyyy + 3 f fy fyy − 6 f 2 fxxt

+ 6 f ft fxx − 12 ft f
2
x

+ 12 f fx ft x − 6 f 2 fxxxxy + 6 f fy fxxxx

+ 24 f fx fxxxy − 12 f fxx fxxy

− 2 f 3
y − 24 fx fy fxxx + 12 fy f

2
x

− 24 f 2
x fxxy + 24 fx fxx fxy = 0,

under the logarithmic transformations

u = 2(ln f )xx , v = 2(ln f )y .

Clearly, there is the same relation between the two equa-
tions as before: B( f ) = −3 f 3P(u, v). Also, we can
similarly determine that a kind of polynomial solutions
to the above trilinear equation is given by

f = (a1x + a2y + a3t + a4)
2

+ (a5x + a6y + a7t + a8)
2 + a9,
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a3 = −a2
1a

3
2 − 3a2

1a2a2
6 + 6a1a2

2a5a6 − 2a1a5a3
6 − a3

2a
2
5 + 3a2a2

5a
2
6

6(a2
1 + a2

5)2
,

a7 = −3a2
1a

2
2a6 − a2

1a
3
6 − 2a1a3

2a5 + 6a1a2a5a2
6 − 3a2

2a
2
5a6 + a2

5a
3
6

6(a2
1 + a2

5)2
,

a9 = − 6(a2
1 + a2

5)3

(a1a6 − a2a5)2 .

Here the three signs in the frequencies and the transla-
tion were just changed. Due to the negative translation
parameter a9, the polynomial solutions of the above
kind never yield any lump solution to the second KPII
equation above. This leads us to the conjecture that no
lump solution would exist for the second KPII equa-
tion. Finally, we remark that we could consider other
members in the KP hierarchy, which could exhibit
even higher-order rational dispersion relations. It would
also be important to explore what relation could exist
between dispersion relations of different members in
the commuting KP hierarchy.
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