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Binary symmetry constraints of theN-wave interaction equations in 111 and 2
11 dimensions are proposed to reduce theN-wave interaction equations into
finite-dimensional Liouville integrable systems. A new involutive and functionally
independent system of polynomial functions is generated from an arbitrary order
square matrix Lax operator and used to show the Liouville integrability of the
constrained flows of theN-wave interaction equations. The constraints on the po-
tentials resulting from the symmetry constraints give rise to involutive solutions to
the N-wave interaction equations, and thus the integrability by quadratures are
shown for theN-wave interaction equations by the constrained flows. ©2001
American Institute of Physics.@DOI: 10.1063/1.1388898#

I. INTRODUCTION

It is a usual practice to utilize the idea of linearization in analyzing nonlinear differential or
differential-difference equations~see, for example Refs. 1 and 2!. The method of inverse scattering
transform is an important application of such an idea to the theory of soliton equations,3,4 which
has been recognized as one of the most significant contributions in the field of applied mathemat-
ics in the second half of the last century. The general formulation of Lax pairs is a spectacular tool
of realization of inverse scattering transform,5 by which one can break a nonlinear problem into a
couple of linear problems and then handle the resulting linear problems to solve the nonlinear
problem.

Recently in the past decade, an unusual way of using the nonlinearization technique arose in
the theory of soliton equations.6–10 Although using the idea of nonlinearization is not normally
considered to be a good direction in studying nonlinear equations, one gradually realizes that the
nonlinearization technique provides a powerful approach for analyzing soliton equations, espe-
cially for showing the integrability by quadratures for soliton equations. The manipulation of
nonlinearization not only leads to finite-dimensional Liouville integrable systems,6–15 but also
decomposes infinite-dimensional soliton equations, in whatever dimensions, into finite-
dimensional Liouville integrable systems.16–18 Moreover, it narrows the gap between infinite-
dimensional soliton equations and finite-dimensional Liouville integrable systems,11,16,18 and
paves a method of separation of variables for soliton equations,19,20 which can also be used to
analyze the resulting finite-dimensional integrable systems.21–23 Mathematically speaking, much
excitement in the study of nonlinearization comes from a kind of specific symmetry
constraints,24–27engendered from the variational derivative of the spectral parameter.26,27 It is due
to symmetry constraints that the nonlinearization technique is so powerful in showing the integra-
bility by quadratures for soliton equations.28,29 The study of symmetry constraints itself is an
important part of the kernel of the mathematical theory of nonlinearization, which is also a
common conceptional umbrella under which one can manipulate both mono-nonlinearization6 and
binary nonlinearization.26

However, all examples of application of the nonlinearization technique, discussed so far, are
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related to lower-order matrix~here, and in what follows, a matrix is assumed to be square! spectral
problems of soliton equations, most of which are only concerned with second-order traceless
matrix spectral problems. On the one hand, there appears much difficulty in handling the Liouville
integrability30 of the so-called constrained flows generated from spectral problems, in the case of
the third- and fourth-order matrix spectral problems.28,31,32It is a challenging task to extend the
theory of nonlinearization to the case of higher-order matrix spectral problems. On the other hand,
one also notices that mono-nonlinearization cannot be carried out in the cases of odd-order matrix
spectral problems and even-order, including the simplest second-order, nontraceless matrix spec-
tral problems. Even for even-order traceless matrix spectral problems, it is not clear how to
determine pairs of canonical variables to obtain Hamiltonian structures of the constrained flows
while doing mono-nonlinerization. Therefore, one has to take into account adjoint spectral prob-
lems and manipulate binary nonlinearization for the case of general matrix spectral problems. In
the theory of binary nonlinearization,33 there exists a natural way for determining symplectic
structures to exhibit Hamiltonian forms of the constrained flows.

In this article, we would like to establish a concrete example to apply the nonlinearization
technique to the case of higher-order matrix spectral problems, by manipulating binary nonlinear-
ization for arbitrary-order matrix spectral problems associated with theN-wave interaction equa-
tions in both 111 and 211 dimensions. The resulting theory will show a direct way for gener-
ating sufficiently many integrals of motion, and more importantly for proving the functional
independence of the required integrals of motion, for the Liouville integrability of the constrained
flows resulting from higher-order matrix spectral problems.

Let us recall some basic notation on binary nonlinearization~see, for example, Ref. 33 for a
detailed description!. Let us assume that we have a matrix spectral problem

fx5Uf5U~u,l!f, U5~Ui j !r 3r , f5~f1 ,... ,f r !
T ~1.1!

with a spectral parameterl and a potentialu5(u1 ,...,uq)T. Suppose that the compatability
conditions

Utm
2Vx

(m)1@U,V(m)#50, m>0,

of the spectral problem~1.1! and the associated spectral problems

f tm
5V(m)f5V(m)~u,ux ,...;l!f, V(m)5~Vi j

(m)!r 3r , m>0, ~1.2!

determine an isospectral (l tm
50) soliton hierarchy

utm
5Xm~u!5JGm5J

dH̃m

du
, m>0, ~1.3!

whereJ is a Hamiltonian operator andH̃m are Hamiltonian functionals. Obviously, the compat-
ability conditions of the adjoint spectral problem

cx52UT~u,l!c, c5~c1 ,...,c r !
T, ~1.4!

and the adjoint associated spectral problems

c tm
52V(m)Tl52V(m)T~u,ux ,...;l!c ~1.5!

still give rise to the same hierarchyutm
5Xm(u) defined by~1.3!. It has been pointed out16,26 that

Jdl/du is a common symmetry of all equations in the hierarchy~1.3!. IntroducingN distinct
eigenvaluesl1 ,l2 ,...,lN , we have

fx
(s)5U~u,ls!f

(s), cx
(s)52UT~u,ls!c

(s), 1<s<N, ~1.6!
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and

f tm
(s)5V(m)~u,ux ,...;ls!f

(s), c tm
(s)52V(m)T~u,ux ,...;ls!c

(s), 1<s<N, ~1.7!

where we set the corresponding eigenfunctions and adjoint eigenfunctions asf (s) and c (s), 1
<s<N. It is assumed that the conserved covariantGm0

does not depend on any derivative ofu

with respect tox, and thus the so-called general binary Bargmann symmetry constraint reads as

Xm0
5(

s51

N

EsmsJ
dls

du
, i.e., JGm0

5J(
s51

N

msc
(s)T

]U~u,ls!

]u
f (s), ~1.8!

wherems , 1<s<N, are arbitrary nonzero constants, andEs , 1<s<N, are normalized con-
stants. The right-hand side of the symmetry constraint~1.8! is a linear combination ofN symme-
tries

EsJ
dls

du
5Jc (s)T

]U~u,ls!

]u
f (s), 1<s<N.

Such symmetries are not Lie point, contact or Lie–Ba¨cklund symmetries, sincef (s) and c (s)

cannot be expressed in terms ofx, u and derivatives ofu with respect tox to some finite order.
Suppose that~1.8! has an inverse function

u5ũ5ũ~f (1),...,f (N);c (1),...,c (N)!. ~1.9!

Replacingu with ũ in the system~1.6! or the system~1.7!, we obtain the so-called spatial
constrained flow:

fx
(s)5U~ ũ,ls!f

(s), cx
(s)52UT~ ũ,ls!c

(s), 1<s<N, ~1.10!

or the so-called temporal constrained flows:

f tm
(s)5V(m)~ ũ,ũx ,...;ls!f

(s), c tm
(s)52V(m)T~ ũ,ũx ,...;ls!c

(s), 1<s<N. ~1.11!

The main problem of nonlinearization is to show that the spatial constrained flow~1.10! and the
temporal constrained flows~1.11! under the control of~1.10! are Liouville integrable. Then iff (s)

andc (s), 1<s<N, solve two constrained flows~1.10! and~1.11! simultaneously,u5ũ will give
rise to a solution to themth soliton equationutm

5Xm(u). It also follows that the soliton equation
utm

5Xm(u) is decomposed into two finite-dimensional Liouville integrable systems, andu5ũ

presents a Ba¨cklund transformation between infinite-dimensional soliton equations and finite-
dimensional Liouville integrable systems. More generally, if a soliton equation is associated with
a set of spectral problems

fxi
5U ( i )~u,l!f, 1< i<p,

then it will be decomposed intop11 finite-dimensional Liouville integrable systems. The above
whole process is called binary nonlinearization.16,33

This article is structured as follows. In Sec. II, we will present binary symmetry constraints of
the N-wave interaction equations in 111 dimensions, and show Hamiltonian structures and Lax
presentations of the corresponding constrained flows. In Sec. III, we consider the 211 dimen-
sional case. We will similarly construct binary symmetry constraints of theN-wave interaction
equations in 211 dimensions, and discuss some properties of the corresponding constrained
flows. In Sec. IV, we go on to propose an involutive system of functionally independent polyno-
mial functions, generated from an arbitrary-order matrix Lax operator, along with an alternative
involutive and functionally independent system. Anr -matrix formulation will be established for
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the Lax operator, and used to show the involutivity of the obtained system of polynomial func-
tions, together with Newton’s identities on elementary symmetric polynomials. A detailed proof
will also be made for the functional independence of the system of polynomial functions by using
the determinant property of the tensor product of matrices. In Sec. V, two applications of the
involutive system engendered in Sec. IV will be given, which verify that all constrained flows
associated with theN-wave interaction equations in both 111 and 211 dimensions are Liouville
integrable. Moreover, a kind of involutive solution of theN-wave interaction equations in two
cases will be depicted. These also show the integrability by quadratures for theN-wave interaction
equations. Finally, in Sec. VI, some concluding remarks will be given, together with conclusions.

II. BINARY SYMMETRY CONSTRAINTS IN 1 ¿1 DIMENSIONS

A. nÃn AKNS hierarchy and 1 ¿1 dimensional N-wave interaction equations

Let n be an arbitrary natural number strictly greater than 2. We begin with then3n matrix
AKNS spectral problem34

fx5Uf5U~u,l!f, U~u,l!5lU01U1~u!, f5~f1 ,...,fn!T, ~2.1!

with a spectral parameterl and

U05diag~a1 ,...,an!, U1~u!5~ui j !n3n , ~2.2!

wherea i , 1< i<n, are distinct constants, anduii 50, 1< i<n. The standard AKNS spectral
problem, i.e., the spectral problem~2.1! with n52, has been analyzed in Ref. 35, but it cannot
generate anyN-wave interaction equations and thus it is not discussed here. In order to express
related soliton equations in a compact form, we write down the potentialu as

u5r~U !, i.e., u5~u21,u12,u13,u31,u23,u32!
T, when n53,

~2.3!
u5~u21,u12,u13,u31,u14,u41,u23,u32,...,un,n21 ,un21,n!T, when n>4,

in which we arrange the exponentsui j in a specific way, first from smaller to larger of the integers
k5 i 1 j and then symmetrically for each set$ui ,k2 i u1< i<k21%.

Let us now consider the construction of the 111 dimensionalN-wave interaction equations
and its whole isospectral hierarchy associated with the spectral problem~2.1!. We first solve the
stationary zero-curvature equation forW:

Wx2@U,W#50, W5~Wi j !n3n , ~2.4!

which is equivalent to

Wi j ,x1ui j ~Wii 2Wj j !1 (
k51
kÞ i , j

n

~uk jWik2uikWk j!2l~a i2a j !Wi j 50, iÞ j ,

~2.5!

Wii ,x5 (
k51
kÞ i

n

~uikWki2ukiWik!,

where 1< i , j <n. We look for a formal solution of the form

W5(
l>0

Wll
2 l , Wl5~Wi j

( l )!n3n , ~2.6!

and thus~2.5! becomes the following recursion relation
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Wii ,x
(0) 50, Wi j

(0)50, iÞ j , ~2.7a!

Wi j ,x
( l ) 1ui j ~Wii

( l )2Wj j
( l )!1 (

k51
kÞ i , j

n

~uk jWik
( l )2uikWk j

( l )!2~a i2a j !Wi j
( l 11)50, iÞ j , ~2.7b!

Wii ,x
( l 11)5 (

k51
kÞ i

n

~uikWki
( l 11)2ukiWik

( l 11)!, ~2.7c!

where 1< i , j <n and l>0. In particular, from the above recursion relation, we have that

Wii
(0)5b i5const, Wi j

(0)50, 1< iÞ j <n, ~2.8!

and

Wii
(1)50, Wi j

(1)5
b i2b j

a i2a j
ui j , 1< iÞ j <n. ~2.9!

We require that

Wi j
( l )uu5050, 1< i , j <n, l>1. ~2.10!

This condition~2.10! means to identify all constants of integration to be zero while using~2.7! to
determineW, and thus allWl , l>1, will be uniquely determined. For example, we can obtain
from ~2.7! under~2.10! that

Wi j
(2)5

b i2b j

~a i2a j !
2 ui j ,x1

1

a i2a j
(
k51
kÞ i , j

n S bk2b i

ak2a i
2

bk2b j

ak2a j
Duikuk j , 1< iÞ j <n,

~2.11!

Wii
(2)5 (

k51
kÞ i

n
bk2b i

~ak2a i !
2 uikuki , 1< i<n.

It is easy to see that the recursion relation~2.7! can lead to

2ui j ]
21ui j Wji

( l )1~]22ui j ]
21uji !Wi j

( l )1 (
k51
kÞ i , j

n

@ui j ]
21uikWki

( l )1~uk j2ui j ]
21uki!Wik

( l )#

1 (
k51
kÞ i , j

n

@ui j ]
21uk jWjk

( l )2~uik1ui j ]
21ujk!Wk j

( l )#5~a i2a j !Wi j
( l 11) , iÞ j , ~2.12!

where 1< i , j <n, l>1, and]21 is the inverse operator of]5 ]/]x. This can be written as the
Lenard form

MGl 215JGl , l>1, ~2.13!
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whereGl5r(Wl 11) is generated fromWl 11 in the same way as that foru, andJ is a constant
operator

~2.14!

with s0 being given by

s05S 0 1

21 0D .

For example, whenn>4, we have

Gl 215~W21
( l ) ,W12

( l ) ,W31
( l ) ,W13

( l ) ,W41
( l ) ,W14

( l ) ,W32
( l ) ,W23

( l ) , ...,Wn,n21
( l ) ,Wn21,n

( l ) !T, l>1, ~2.15!

the first of which reads as

G05S b12b2

a12a2
u21,

b12b2

a12a2
u12,

b12b3

a12a3
u31,

b12b3

a12a3
u13,

b12b4

a12a4
u41,

b12b4

a12a4
u14,...,

bn212bn

an212an
un,n21 ,

bn212bn

an212an
un21,n D T

. ~2.16!

The operatorsJ andM are skew-symmetric and can be shown to be a Hamiltonian pair.36,37

We proceed to introduce the associated spectral problems with the spectral problem~2.1!,

f tm
5V(m)f, V(m)5V(m)~u,l!5~lmW!1 , m>1, ~2.17!

where the symbol1 stands for the choice of the part of non-negative powers ofl. Note that we
have

Wlx5@U0 ,Wl 11#1@U1 ,Wl #, l>0,

and we can compute that

@U,V(m)#5FlU01U1 ,(
l 50

m

lm2 lWl G
5(

l 50

m

@U0 ,Wl #l
m112 l1(

l 50

m

@U1 ,Wl #l
m2 l

5 (
l 50

m21

@U0 ,Wl 11#lm2 l1(
l 50

m

@U1 ,Wl #l
m2 l ,

where we have used@U0 ,W0#50. Therefore, under the isospectral conditions

l tm
50, m>1, ~2.18!
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the compatibility conditions of the spectral problem~2.1! and the associated spectral problems
~2.17!, i.e., the zero-curvature equations

Utm
2Vx

(m)1@U,V(m)#50, m>1,

equivalently lead to

U1tm
5Wmx2@U1 ,Wm#5@U0 ,Wm11#, m>1.

This gives rise to the so-calledn3n AKNS soliton hierarchy

utm
5XmªJGm , m>1, ~2.19!

whereJ andGm5r(Wm11) are determined by~2.14! and ~2.13!.
Applying the trace identity38

d

du E trS W
]U

]l Ddx5l2g
]

]l
lgtrS W

]U

]u D ,

whereg is a constant to be determined, we can obtain

dH̃ l

dui j
5Wji

( l ) , H̃ lª2
1

l E ~a1W11
( l 11)1a2W22

( l 11)1...1anWnn
( l 11)! dx, l>1, ~2.20!

in which 1< iÞ j <n andg is determined to be zero. In this computation, we need to note that

trS W
]U

]l D5tr~WU0!5(
l>0

~a1W11
( l )1a2W22

( l )1...1anWnn
( l )!l2 l ,

and

trS W
]U

]ui j
D5tr~WEi j !5Wji 5(

l>0
Wji

( l )l2 l , 1< iÞ j <n,

whereEi j is ann3n matrix whose (i , j ) entry is one but other entries are all zero. Therefore, the
isospectral hierarchy~2.19! has a bi-Hamiltonian formulation

utm
5Xm5J

dH̃m11

du
5M

dH̃m

du
, m>1. ~2.21!

The first nonlinear system in the hierarchy~2.19! is the 111 dimensionalN-wave interaction
equations39

ui j ,t1
5

b i2b j

a i2a j
ui j ,x1 (

k51
kÞ i , j

n S b i2bk

a i2ak
2

bk2b j

ak2a j
Duikuk j , 1< iÞ j <n. ~2.22!

This system is actually equivalent to the following equation in the matrix form

U1t1
5W1x2@U1 ,W1#, ~2.23!

which can be rewritten as

Pt1
5Qx2@P,Q#, @U0 ,Q#5@W0 ,P#, ~2.24!
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whereP andQ are assumed to be two off-diagonal potential matrices. Based on~2.23!, a vector
field r(dP) is a symmetry of~2.22! if the matrix dP satisfies the linearized system of~2.22!:

~dP! t1
5~dQ!x2@U1 ,dQ#2@dP,W1# ~2.25!

with dQ being determined by

@U0 ,dQ#5@W0 ,dP#. ~2.26!

TheN-wave interaction equations~2.22! contains a couple of physically important nonlinear
models as special reductions,40 for example, three-wave interaction equations arising in fluid
dynamics and plasma physics,41–43 with U being chosen to be an anti-Hermitian matrix. Its
Darboux transformation has been established in Ref. 44, which allows one to construct soliton
solutions in a purely algebraic way. The Darboux transformation has also been analyzed for the
N-wave interaction equations with additional linear terms.45

B. Binary symmetry constraints in 1 ¿1 dimensional case

We would like to present binary symmetry constraints of the 111 dimensionalN-wave
interaction equations~2.22!. To this end, we need to introduce the adjoint spectral problem of
~2.1!:

cx52UT~u,l!c, c5~c1 ,...,cn!T, ~2.27!

and the adjoint associated spectral problem of~2.17!:

c tm
52V(m)T~u,l!c, ~2.28!

whereU andV(m) are given as in~2.1! and ~2.17!, respectively. The compatability condition of
~2.27! and ~2.28! still gives rise toutm

5Xm defined by~2.19!.
The variational derivative of the spectral parameterl with respect to the potentialu can be

calculated by~see Refs. 26, 28, or 16 for a detailed deduction!

dl

du
5E21cT

]U

]u
f, i.e.,

dl

dui j
5E21f ic j , 1< iÞ j <n, ~2.29!

whereE is the normalized constant:

E52E
2`

`

cT
]U

]l
f dx.

A direct calculation can show that the variational derivative satisfies the following equation:

M
dl

du
5lJ

dl

du
. ~2.30!

Sincel does not vary with respect to time, we have a specific common symmetryJ(dl/du) of the
hierarchy ~2.19!. To carry out binary nonlinearization, we take a Lie point symmetry of the
N-wave interaction equations~2.22!,

Y0ªr~@G,U1# !, G5diag~g1 ,...,gn!, ~2.31!

whereg1 ,g2 ,...,gn are arbitrary distinct constants~X05JG0 is an example withG5W0!. It can
be easily checked that

4352 J. Math. Phys., Vol. 42, No. 9, September 2001 W.-X. Ma and Z. Zhou



~dP,dQ!5~@G,U1#,@G,W1# !

satisfies~2.25!, and thusY0 is a symmetry of~2.22!. Then, make the following binary Bargmann
symmetry constraint

Y05mEJ
dl

du
5mJcT

]U

]u
f, ~2.32!

wherem is an arbitrary nonzero constant,J is defined by~2.14!, andf andc are the eigenfunction
and adjoint eigenfunction of~2.1! and~2.27!, respectively. Upon introducingN distinct eigenval-
uesl1 ,l2 ,...,lN , we obtain a general binary symmetry constraint

Y05J(
s50

N

msc
(s)T

]U~u,ls!

]u
f (s)

ªZ0 , ~2.33!

wherems , 1<s<N, areN nonzero constants, andf (s) andc (s), 1<s<N, are eigenfunctions and
adjoint eigenfunctions defined by

fx
(s)5U~u,ls!f

(s), cx
(s)52UT~u,ls!c

(s), 1<s<N, ~2.34!

and

f t1
(s)5V(1)~u,ls!f

(s), c t1
(s)52V(1)T~u,ls!c

(s), 1<s<N. ~2.35!

Let us rewrite the left-hand side of~2.33! as the matrix form

dP5r21~Z0!5FU0 ,(
s51

N

msf
(s)c (s)TG , ~2.36!

which allows us to prove, by a direct computation as in Ref. 46 but more conveniently, that the
vector fieldZ05r(dP) is really a symmetry of theN-wave interaction equations~2.22!. Now the
symmetry problem is equivalent to showing that

~dP,dQ!5S FU0 ,(
s51

N

msf
(s)c (s)TG ,FW0 ,(

s51

N

msf
(s)c (s)TG D ~2.37!

satisfies the linearized system~2.25!, whenf (s) andc (s), 1<s<N, satisfy ~2.34! and ~2.35!. A
detailed proof will be given in Appendix A.

Therefore, we have the following binary symmetry constraint:

Y05J(
s50

N

msc
(s)T

]U~u,ls!

]u
f (s), i.e., @G,U1#5FU0 ,(

s51

N

msf
(s)c (s)TG . ~2.38!

WhenN andms vary, ~2.38! provides us with a set of binary symmetry constraints of theN-wave
interaction equations~2.22!. Let us assume that

f (s)5~f1s ,f2s ,...,fns!
T, c (s)5~c1s ,c2s ,...,cns!

T, ~2.39!

in order to get an explicit expression foru from the symmetry constraint~2.38!, and introduce two
diagonal matrices

A5diag~l1 ,...,lN!, B5diag~m1 ,...,mN!, ~2.40!
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which will be used throughout our discussion. Solving the Bargmann symmetry constraint~2.38!
for u, we obtain

ui j 5ũi jª
a i2a j

g i2g j
^F i ,BC j&, 1< iÞ j <n, ~2.41!

whereB is given by~2.40!, andF i andC i are defined by

F i5~f i1 ,f i2 ,...,f iN!T, C i5~c i1 ,c i2 ,...,c iN!T, 1< i<n, ~2.42!

and ^•,•& denotes the standard inner-product of the Euclidean spaceRN.
Note that the compatability condition of~2.34! and~2.35! is still nothing but the 111 dimen-

sional N-wave interaction equations~2.22!. Now using ~2.41!, we nonlinearize the spatial part
~2.34! and the temporal part~2.35! of spectral problems and adjoint spectral problems of the
N-wave interaction equations~2.22!. Namely we replaceui j with ũi j in N replicas of the spectral
problems and adjoint spectral problems~2.34! andN replicas of the associated spectral problems
and adjoint associated spectral problems~2.35!, and then obtain two constrained flows for the
N-wave interaction equations~2.22!:

fx
(s)5U~ ũ,ls!f

(s), cx
(s)52UT~ ũ,ls!c

(s), 1<s<N, ~2.43!

and

f t1
(s)5V(1)~ ũ,ls!f

(s), c t1
(s)52V(1)T~ ũ,ls!c

(s), 1<s<N, ~2.44!

whereũ5r((ũi j )n3n) is defined likeu. For example, whenn>4, we have

ũ5~ ũ21,ũ12,ũ31,ũ13,ũ14,ũ41,ũ23,ũ32,...,ũn,n21 ,ũn21,n!T. ~2.45!

In order to analyze the Liouville integrability of the above two constrained flows, let us first
introduce a symplectic structure

v25(
i 51

n

BdF i∧dC i5(
i 51

n

(
s51

N

msdf is∧dc is ~2.46!

over R2nN, and then the corresponding Poisson bracket

$ f ,g%5v2~ Idg,Id f !5(
i 51

n S K ] f

]C i
,B21

]g

]F i
L 2 K ] f

]F i
,B21

]g

]C i
L D

5(
i 51

n

(
s51

N

ms
21S ] f

]c is

]g

]f is
2

] f

]f is

]g

]c is
D , f ,gPC`~R2nN!,

~2.47!

where the vector fieldId f is defined by

v2~X,Id f !5d f~X!, XPT~R2nN!.

A Hamiltonian system with a HamiltonianH defined over the symplectic manifold (R2nN,v2) is
given by

F i t5$F i ,H%52B21
]H

]C i
, C i t5$C i ,H%5B21

]H

]F i
, 1< i<n, ~2.48!

wheret is assumed to be the evolution variable. Second, we need a matrix Lax operator
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L (1)~l!5C11D1~l!, ~2.49!

with C1 andD1(l) being defined by

C15G5diag~g1 ,...,gn!, D1~l!5~Di j
(1)~l!!n3n , Di j

(1)~l!5(
s51

N
ms

l2ls
f isc js ,

~2.50!

where 1< i , j <n. Note that upon taking binary nonlinearization, we obtain

U~ ũ,l!5lU01U1~ ũ!5lU01~ ũi j !, ũi j 5
a i2a j

g i2g j
^F i ,BC j&, ~2.51!

V(1)~ ũ,l!5lW01W1~ ũ!5lW01~ ṽ i j !, ṽ i jª
b i2b j

a i2a j
ũi j 5

b i2b j

g i2g j
^F i ,BC j&, ~2.52!

where 1< i , j <n.
Theorem 2.1:Under the symplectic structure (2.46), the spatial constrained flow (2.43) and

the temporal constrained flow (2.44) for the 111 dimensionalN-wave interaction equations
(2.22) are Hamiltonian systems with the evolution variables x and t1 , and the Hamiltonians

H1
x52 (

k51

n

ak^AFk ,BCk&2 (
1<k, l<n

ak2a l

gk2g l
^Fk ,BC l&^F l ,BCk&, ~2.53!

H1
t152 (

k51

n

bk^AFk ,BCk&2 (
1<k, l<n

bk2b l

gk2g l
^Fk ,BC l&^F l ,BCk&, ~2.54!

respectively, where A and B are defined by (2.40), andF i andC i , 1<i<n, are defined by (2.42).
Moreover, they possess necessary Lax representations, i.e., we have

~L (1)~l!!x5@U~ ũ,l!,L (1)~l!#, ~L (1)~l!! t1
5@V(1)~ ũ,l!,L (1)~l!#, ~2.55!

where L(1)(l), U, and V(1)(l) are given by (2.49)–(2.52), if (2.43) and (2.44) hold, respectively.
Proof: A direct calculation can show the Hamiltonian structures of the spatial constrained flow

~2.43! and the temporal constrained flow~2.44! with H1
x andH1

t defined by~2.53! and~2.54!. Let
us then check the Lax representations. By using~2.43!, we can compute that

~L (1)~l!!x5(
s51

N
ms

l2ls
~fx

(s)c (s)T1f (s)cx
(s)T!

5(
s51

N
ms

l2ls
~U~ ũ,ls!f

(s)c (s)T2f (s)c (s)TU~ ũ,ls!!

5(
s51

N
ms

l2ls
@U~ ũ,ls!,f

(s)c (s)T#

5@U~ ũ,l!,L (1)~l!2C1#2FU0 ,(
s51

N

msf
(s)c (s)TG

5@U~ ũ,l!,L (1)~l!#1@C1 ,U~ ũ,l!#2FU0 ,(
s51

N

msf
(s)c (s)TG

5@U~ ũ,l!,L (1)~l!#1@C1 ,U1~ ũ!#2FU0 ,(
s51

N

msf
(s)c (s)TG .

4355J. Math. Phys., Vol. 42, No. 9, September 2001 Binary symmetry constraints of N-wave . . .



This implies that (L (1)(l))x5@U(ũ,l),L (1)(l)# if and only if

@C1 ,U1~ ũ!#5FU0 ,(
s51

N

msf
(s)c (s)TG .

The above equality equivalently requires the constraints on the potentials shown in~2.41!. There-
fore, the spatial constrained flow~2.43! has the necessary Lax representation defined as in~2.55!.
The proof of the other necessary Lax representation (L (1)(l)) t1

5@V(1)(ũ,l),L (1)(l)# is com-
pletely similar, and thus we omit it. The proof is finished. j

We remark that the Lax representations~2.55! are not sufficient. Namely, we cannot obtain the
spatial constrained flow~2.43! or the temporal constrained flow~2.44! from the corresponding Lax
representation in~2.55!. This can be easily observed by considering a special class of solutions of
~2.55!. For example, either any vector functionsf (s) with c (s)50, 1<s<N, or any vector func-
tions c (s) with f (s)50, 1<s<N, will solve ~2.55!, but it is easy to see that they do not always
solve ~2.43! @or ~2.44!# sincef (s) and c (s), 1<s<N, have to solve some ordinary differential
equations~ODEs! resulting from~2.43! @or ~2.44!#.

III. BINARY SYMMETRY CONSTRAINTS IN 2 ¿1 DIMENSIONS

A. 2¿1 dimensional N-wave interaction equations

Let n be an arbitrary natural number strictly greater than 2. Similar to the case of the 111
dimensionalN-wave interaction equations, let us begin with the Lax system

Fy5JFx1PF, Ft5KFx1QF, F5~ f 1 ,...,f n!T ~3.1!

in 211 dimensions. Here it is assumed that

J5diag~J1 ,...,Jn!, K5diag~K1 ,...,Kn!, JiÞJj , KiÞK j , 1< iÞ j <n, ~3.2!

are two constant diagonal matrices, andP andQ are twon3n off-diagonal potential matrices

P5P~x,y,t !5~pi j !n3n , Q5Q~x,y,t !5~qi j !n3n . ~3.3!

The compatability conditionFyt5Fty of the Lax system~3.1! reads as

@J,Q#5@K,P#, Pt2Qy1@P,Q#1JQx2KPx50, ~3.4!

which is called the 211 dimensionalN-wave interaction equations.47 The equation@J,Q#
5@K,P# tells us thatQ can be represented byP and vice versa, and so, practically, we have just
one of two potential matrices to be solved. The adjoint system of the Lax system~3.1! is given by

Gy5JGx2PTG, Gt5KGx2QTG, G5~g1 ,...,gn!T, ~3.5!

whose compatability conditionGyt5Gty still gives rise to the 211 dimensionalN-wave interac-
tion equations~3.4!.

We first use a symmetry constraint of the 211 dimensionalN-wave interaction equations
~3.4! to change the above problem in 211 dimensions to three problems in 111 dimensions. As
made in Refs. 48, and 49, we introduce the spectral problems

fx5Vx~F,G,l!f5~lV0
x1V1

x!f5S lI n F

GT 0 Df, ~3.6a!

fy5Vy~P,F,G,l!f5~lV0
y1V1

y!f5S lJ1P JF

GTJ 0 Df, ~3.6b!
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f t5V t~Q,F,G,l!f5~lV0
t 1V1

t !f5S lK1Q KF

GTK 0 Df, ~3.6c!

whereI n is thenth-order identity matrix andf5(f1 ,...,fn ,fn11)T. The new extended poten-
tials in the above spectral systems consist of not only the original potentials,P andQ, but also the
solutions of the Lax system and the adjoint Lax system,F andG. The compatability conditions
fxy5fyx , fxt5f tx , andfyt5fyt give rise to the 211 dimensionalN-wave interaction equa-
tions ~3.4!, the original Lax system~3.1! and its adjoint system~3.5!, and the nonlinear symmetry
constraint of~3.4!:

Px5@FGT,J#, Qx5@FGT,K#. ~3.7!

It is easy to check that (dP,dQ)5(@FGT,J#,@FGT,K#) satisfies the linearized system of the 2
11 dimensionalN-wave interaction equations~3.4!:

@J,dQ#5@K,dP#, ~dP! t2~dQ!y1@dP,Q#1@P,dQ#1J~dQ!x2K~dP!x50, ~3.8!

whenF andG solve the Lax system~3.1! and the adjoint Lax system~3.5!, respectively. There-
fore, ~3.7! is really a symmetry constraint of the 211 dimensionalN-wave interaction equations
~3.4!, since both sides of~3.7! are symmetries of~3.4!. Now we see that the original problem in
211 dimensions is transformed into three problems in 111 dimensions. The spectral problems
~3.6! are our starting point to make a link of the 211 dimensionalN-wave interaction equations
~3.4! to finite-dimensional integrable systems.

B. Binary symmetry constraints in 2 ¿1 dimensional case

Let us start from the spectral problems in~3.6!, which are similar to those for the 111
dimensionalN-wave interaction equations~2.22!. The main difference is that the coefficient ma-
trix of l in the x-part of the spectral problems~3.6! is

~3.9!

whose diagonal entries are not distinct. However, they-part of the spectral problems~3.6! has the
same property as the spectral problem~2.1! in 111 dimensions. Therefore, we use they-part of
the spectral problems~3.6! to compute the variational derivatives ofl:

dl

dpi j
5E21cT

]Vy

]pi j
f5E21f ic j ,

dl

dqi j
5E21cT

]Vy

]qi j
f5E21

Ji2Jj

Ki2K j
f ic j , 1< iÞ j <n,

dl

d f i
5E21cT

]Vy

] f i
f5E21Jifn11c i ,

dl

dgi
5E21cT

]Vy

]gi
f5E21Jif icn11 , 1< i<n,

whereE is the normalized constant, andc5(c1 ,...,cn ,cn11)T is an adjoint eigenfunction of the
adjoint spectral problems

cx52~Vx~F,G,l!!Tc52~l~V0
x!T1~V1

x!T!c52S lI n G

FT 0 Dc, ~3.10a!

cy52~Vy~P,F,G,l!!c52~l~V0
y!1~V1

y!T!c52S lJ1PT JG

FTJ 0 Dc, ~3.10b!

c t52~V t~Q,F,G,l!!Tc52~l~V0
t !T1~V1

t !T!c52S lK1QT KG

FTK 0 Dc. ~3.10c!
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These variational derivatives ofl give us a conserved covariant and also a clue to compute a
required symmetry, expressed in terms of eigenfunctions and adjoint eigenfunctions.

As in the 111 dimensional case, upon introducingN distinct eigenvaluesl1 ,l2 ,...,lN , we
have

fx
(s)5Vx~u,ls!f

(s), fy
(s)5Vy~u,ls!f

(s), f t
(s)5V t~u,ls!f

(s), 1<s<N, ~3.11!

and

cx
(s)52~Vx!T~u,ls!c

(s), cy
(s)52~Vy!T~u,ls!c

(s), c t
(s)52~V t!T~u,ls!c

(s), 1<s<N,
~3.12!

wheref (s) andc (s) aren11 dimensional vector functions:

f (s)5~f1s ,...,fns ,fn11,s!
T, c (s)5~c1s ,...,cns ,cn11,s!

T, 1<s<N. ~3.13!

To carry out binary nonlinearization, we need to construct two special symmetries, one of which
is a Lie point symmetry, and the other of which is not a Lie point, contact or Lie–Ba¨cklund
symmetry, but generated from~3.11! and ~3.12!. Let us choose a set ofn11 arbitrary distinct
constantsd1 ,...,dn ,dn11 , and set

D5diag~d1 ,...,dn!. ~3.14!

Similar to the 111 dimensional case, it can be directly shown that

~dP,dQ,dF,dG!5~@D,P#,@D,Q#,DF2dn11F,DG2dn11G! ~3.15!

and

dpi j 5~Ji2Jj !^F i ,BC j&, dqi j 5~Ki2K j !^F i ,BC j&, 1< iÞ j <n,
~3.16!

d f i5^F i ,BCn11&, dgi5^Fn11 ,BC i&, 1< i<n,

are two symmetries of the equations~3.4!, ~3.1! and ~3.5!. That is to say, that they satisfy the
linearized system of the equations~3.4!, ~3.1! and ~3.5!: the first subsystem~3.8! and the second
subsystem

~dF !y5J~dF !x1~dP!F1PdF, ~dF ! t5K~dF !x1~dQ!F1QdF,
~3.17!

~dG!y5J~dG!x2~dP!TG2PTdG, ~dG! t5K~dG!x2~dQ!TG2QTdG,

for all solutions (P,Q,F,G) of ~3.4!, ~3.1! and ~3.5!. Here we remind that

B5diag~m1 ,...,mN!T

is defined by~2.40!, ^•,•& denotes the standard inner product ofRN, andF i andC i are similarly
defined as

F i5~f i1 ,f i2 ,...,f iN!T, C i5~c i1 ,c i2 ,...,c iN!T, 1< i<n11. ~3.18!

Now a binary Bargmann symmetry constraint of~3.4!, ~3.1! and ~3.5! can be taken as

~@D,P# ! i j 5~Ji2Jj !^F i ,BC j&, ~@D,Q# ! i j 5~Ki2K j !^F i ,BC j&, 1< iÞ j <n, ~3.19!

~DF2dn11F ! i5^F i ,BCn11&, ~DG2dn11G! i5^Fn11 ,BC i&, 1< i<n. ~3.20!

This symmetry constraint gives us the following choice for the constraints on the extended po-
tentials
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pi j 5 p̃i jª
Ji2Jj

d i2d j
^F i ,BC j&, qi j 5q̃i jª

Ki2K j

d i2d j
^F i ,BC j&, 1< iÞ j <n, ~3.21!

f i5 f̃ iª
1

d i2dn11
^F i ,BCn11&, gi5g̃iª

1

d i2dn11
^Fn11 ,BC i&, 1< i<n. ~3.22!

One can express the above symmetry constraint in another way. Actually, it can be proved that

~dP,dQ!5~@D,P#,@D,Q# !,

and under the constraint~3.22!,

dpi j 5~Ji2Jj !^F i ,BC j&, dqi j 5~Ki2K j !^F i ,BC j&, 1< iÞ j <n,

are two symmetries of the 211 dimensionalN-wave interaction equations~3.4!.
Now plug the above expressions for the extended potentials,~3.21! and ~3.22!, into the

spectral problems~3.6! and the adjoint spectral problems~3.10!, and then we get the constrained
flows

fx
(s)5Vx~ F̃,G̃,ls!f

(s), cx
(s)52~Vx~ F̃,G̃,ls!!Tc (s), ~3.23!

fy
(s)5Vy~ P̃,F̃,G̃,ls!f

(s), cy
(s)52~Vy~ P̃,F̃,G̃,ls!!Tc (s), ~3.24!

f t
(s)5V t~Q̃,F̃,G̃,ls!f

(s), c t
(s)52~V t~Q̃,F̃,G̃,ls!!Tc (s), ~3.25!

where

P̃5~ p̃i j !n3n , Q̃5~ q̃i j !n3n , F̃5~ f̃ 1 ,...,f̃ n!T, G̃5~ g̃1 ,...,g̃n!T. ~3.26!

All these three constrained flows are systems of ordinary differential equations off is and c is ,
1< i<n11, 1<s<N.

We introduce the symplectic structure

v25 (
i 51

n11

BdF i∧dC i5 (
i 51

n11

(
s51

N

msdf is∧dc is ~3.27!

overR2(n11)N. The corresponding Poisson bracket and the corresponding Hamiltonian form with
the HamiltonianH and the evolution variablet are similarly taken as

$ f ,g%5 (
i 51

n11 S K ] f

]C i
,B21

]g

]F i
L 2 K ] f

]F i
,B21

]g

]C i
L D , f ,gPC`~R2(n11)N!, ~3.28!

F i t5$F i ,H%52B21
]H

]C i
, C i t5$C i ,H%5B21

]H

]F i
, 1< i<n11. ~3.29!

Similar to Theorem 2.1, we have the following.
Theorem 3.1: Under the symplectic structure (3.27), three constrained flows (3.23), (3.24)

and (3.25) are Hamiltonian systems with the evolution variables x, y and t, and the Hamiltonians

H2
x52 (

k51

n

^AFk ,BCk&2 (
k51

n
1

dk2dn11
^Fk ,BCn11&^Fn11 ,BCk&, ~3.30!
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H2
y52 (

k51

n

Jk^AFk ,BCk&2 (
1<k, l<n

Jk2Jl

dk2d l
^Fk ,BC l&^F l ,BCk&

2 (
k51

n
Jk

dk2dn11
^Fk ,BCn11&^Fn11 ,BCk&, ~3.31!

H2
t 52 (

k51

n

Kk^AFk ,BCk&2 (
1<k, l<n

Kk2Kl

dk2d l
^Fk ,BC l&^F l ,BCk&

2 (
k51

n
Kk

dk2dn11
^Fk ,BCn11&^Fn11 ,BCk&, ~3.32!

respectively, where A and B are defined by (2.40),F i and C i , 1<i<n11, are defined by (3.18).
Moreover, they possess the necessary Lax representations

~L (2)~l!!x5@Vx~ F̃,G̃,l!,L (2)~l!#, ~3.33!

~L (2)~l!!y5@Vy~ P̃,F̃,G̃,l!,L (2)~l!#, ~3.34!

~L (2)~l!! t5@V t~Q̃,F̃,G̃,l!,L (2)~l!#, ~3.35!

respectively, where P˜ , Q̃, F̃ and G̃ are given by (3.26), (3.21) and (3.22), and L(2)(l) is defined
by

L (2)~l!5C21D2~l!, C25diag~D,dn11!5diag~d1 ,...,dn ,dn11!,
~3.36!

D25~Di j
(2)!n11,n11 , Di j

(2)5(
s51

N
ms

l2ls
f isc js , 1< i , j <n11.

Proof: It can be verified by a direct calculation that all three constrained flows~3.23!–~3.25!
have the Hamiltonian structures under the symplectic structure~3.27! with the Hamiltonian func-
tionsH2

x , H2
y andH2

t shown in~3.30!–~3.32!. Let us now check three Lax representations~3.33!–
~3.35!. Since the proofs are similar for all three cases, we just show the second case, i.e., the Lax
representation of the constrained flow~3.24!. By using~3.24!, we can compute that

~L (2)~l!!y5(
s51

N
ms

l2ls
~fy

(s)c (s)T1f (s)cy
(s)T!

5(
s51

N
ms

l2ls
~Vy~ P̃,F̃,G̃,ls!f

(s)c (s)T2f (s)c (s)TVy~ P̃,F̃,G̃,ls!!

5(
s51

N
ms

l2ls
@Vy~ P̃,F̃,G̃,ls!,f

(s)c (s)T#

5(
s51

N
ms

l2ls
~@Vy~ P̃,F̃,G̃,l!,f (s)c (s)T#2@Vy~ P̃,F̃,G̃,l!

2Vy~ P̃,F̃,G̃,ls!,f
(s)c (s)T# !

5@Vy~ P̃,F̃,G̃,l!,L (2)~l!2C2#2FV0
y ,(

s51

N

msf
(s)c (s)TG

5@Vy~ P̃,F̃,G̃,l!,L (2)~l!#2@V1
y~ P̃,F̃,G̃!,C2#2FV0

y ,(
s51

N

msf
(s)c (s)TG .
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Therefore, it follows that (L (2)(l))y5@Vy( P̃,F̃,G̃,l),L (2)(l)# if and only if

@C2 ,V1
y~ P̃,F̃,G̃!#5FV0

y ,(
s51

N

msf
(s)c (s)TG .

This equality equivalently requires the nonlinear constraints on the potentials defined by~3.21!
and ~3.22!. Therefore, the constrained flow~3.24! has the necessary Lax representation shown in
~3.34!. The proof is finished. j

We also remark that the Lax representations~3.33!–~3.35! are not sufficient to generate the
corresponding constrained flows defined by~3.23!–~3.25!, since the Gateaux derivative operators
of the Lax operatorsVx, Vy andV t given in ~3.23!–~3.25! are not injective. However, it will be
shown that they are good enough in generating integrals of motion of the constrained flows.

IV. AN INVOLUTIVE AND FUNCTIONALLY INDEPENDENT SYSTEM OF POLYNOMIAL
FUNCTIONS

Let m be an arbitrary natural number. We start from anmth-order matrix Lax operator

L~l!5L~l;c1 ,...,cm!5C1D~l!, ~4.1!

with C andD(l) being defined by

C5diag~c1 ,...,cm!, D~l!5~Di j ~l!!m3m , Di j ~l!5(
s51

N
ms

l2ls
f isc js , 1< i , j <m.

~4.2!

Hereci , ls , andms are arbitrary constants satisfying

)
s51

N

msÞ0, l iÞl j , 1< iÞ j <N, ~4.3!

andf is andc js are pairs of canonical variables of the symplectic manifold (R2mN,v2) with the
symplectic structure

v25(
i 51

m

(
s51

N

msdf is∧dc is . ~4.4!

The corresponding Poisson bracket reads as

$ f ,g%5v2~ Idg,Id f !5(
i 51

m

(
s51

N

ms
21S ] f

]c is

]g

]f is
2

] f

]f is

]g

]c is
D , f ,gPC`~R2mN!. ~4.5!

A. r-matrix formulation

As usual, two special matrices defined by the tensor product of matrices are chosen as

L1~l!5L~l! ^ I m , L2~m!5I m^ L~m!, ~4.6!

whereI m is themth-order identity matrix, and

~A^ B! i j ,kl5aikbjl if A5~ai j ! and B5~bi j !. ~4.7!

We want to find anm23m2 matrix r5r (l,m) so that we have anr -matrix formulation50,51
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$L~l! ,̂ L~m!%5@r ~l,m!,L1~l!1L2~m!#, ~4.8!

with the Poisson bracket$L(l) ,̂ L(m)% being defined by

~$L~l! ,̂ L~m!%! i j ,kl5$Lik~l!,L jl ~m!%5v2~ IdL jl ~m!,IdLik~l!!, 1< i , j ,k,l<m, ~4.9!

whereL5(Li j )m3m is assumed. Let us first compute$Li j (l),Lkl(m)%. WheniÞ l and j Þk, it is
easy to obtain$Li j (l),Lkl(m)%50. WheniÞ l and j 5k, we have

$Li j ~l!,L jl ~m!%5(
s51

N

ms

f is

l2ls

c ls

m2ls

5(
s51

N
1

m2l S ms

l2ls
2

ms

m2ls
Df isc ls

5
1

m2l
~Lil ~l!2Lil ~m!!.

Similarly, wheni 5 l and j Þk, we have

$Li j ~l!,Lki~m!%52(
s51

N

ms

c js

l2ls

fks

m2ls
5

1

m2l
~Lk j~m!2Lk j~l!!,

and wheni 5 l and j 5k, we have

$Li j ~l!,L ji ~m!%5(
s51

N

ms

f is

l2ls

c is

m2ls
2(

s51

N

ms

c js

l2ls

f js

m2ls

5
1

m2l
@~Lii ~l!2Lii ~m!!2~L j j ~l!2L j j ~m!!#.

Therefore, we obtain

$Li j ~l!,Lkl~m!%55
0, when iÞ l , j Þk;

1

m2l
~Lk j~m!2Lk j~l!!, when i 5 l , j Þk;

1

m2l
~Lil ~l!2Lil ~m!!, when iÞ l , j 5k;

1

m2l
@~Lii ~l!2Lii ~m!!2~L j j ~l!2L j j ~m!!#, when i 5 l , j 5k.

~4.10!

In view of this property, we claim that

r ~l,m!5
1

m2l
P, P5 (

p,q51

m

Epq^ Eqp , ~4.11!

whereEpq is anm3m matrix with the (p,q) entry being one but the others, zero. Let us second
compute that
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S F 1

m2l
P,L1~l!1L2~m!G D

i j ,kl

5
1

m2l
~@P,L1~l!#1@P,L2~m!#! i j ,kl

5
1

m2l (
p,q51

m

~@Epq ,L~l!# ^ Eqp1Eqp^ @Epq ,L~m!#! i j ,kl

5
1

m2l (
p,q51

m

~@Epq ,L~l!#! ik~Eqp! j l 1~Eqp! ik@Epq ,L~m!# j l

5
1

m2l
~@El j ,L~l!# ik1@Eki ,L~m!!# j l ,

where we have used (A^ B)(A8^ B8)5(AA8) ^ (BB8). Further noting that

@Epq ,L#5EpqL2LEpq5pth

qth

F 0 ¯ 2L1p ¯ 0

] ] ]

Lq1 ¯ Lqq2Lpp ¯ Lqm

] ] ]

0 ¯ 2Lmp ¯ 0

G ,

we have

S F 1

m2l
P,L1~l!1L2~m!G D

i j ,kl

55
0, when iÞ l , j Þk;

1

m2l
~L jk~l!2L jk~m!!, when i 5 l , j Þk;

1

m2l
~2Lil ~l!1Lil ~m!!, when iÞ l , j 5k;

1

m2l
@~L j j ~l!2Lii ~l!!1~Lii ~m!2L j j ~m!!#, when i 5 l , j 5k.

~4.12!

Now ~4.10! and ~4.12! shed right on the following theorem.
Theorem 4.1: If L (l)5L(l;c1 ,...,cm) is defined by (4.1) and (4.2), then ther -matrix for-

mulation

$L~l! ,̂ L~m!%5@r ~l,m!,L~l! ^ I m1I m^ L~m!#, r5
1

m2l (
i , j 51

m

Ei j ^ Eji ~4.13!

holds for arbitrary constants c1 ,c2 ,...,cm .
It follows from ~4.13! that

$Lk~l! ,̂ Ll~m!%5@r k,l~l,m!,L1~l!1L2~m!#, k,l>1, ~4.14!

wherer k,l(l,m) is given by52
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r k,l~l,m!5(
i 51

k

(
j 51

l

L1
k2 i~l!L2

l 2 j~m!r ~l,m!L1
i 21~l!L2

j 21~m!. ~4.15!

Since forA5(ai j )m3m andB5(bi j )m3m we have

tr $A ,̂ B%5 (
i , j 51

m

$A ,̂ B% i j ,i j 5 (
i , j 51

m

$aii ,bj j %5$tr A,tr B%, ~4.16!

we can compute, based on~4.14!, that

$tr Lk~l!,tr Ll~m!%

5tr$Lk~l! ,̂ Ll~m!%5tr@r k,l~l,m!,L1~l!1L2~m!#50, k,l>1. ~4.17!

This will be used to generate an involutive system of functions defined over the symplectic
manifold (R2mN,v2) for any natural numberm.

B. An involutive and functionally independent system

Let us begin to construct an involutive system of polynomial functions by expanding

det~nI m2L~l!!5nm2F l
(1)nm211F l

(2)nm221¯1~21!mF l
(m) , n5const, ~4.18!

whereF l
(k) , 1<k<m, must read as

F l
(k)5F l

(k)~c1 ,...,cm!5 (
1< j 1, j 2,¯, j k<mUL j 1 j 1

L j 1 j 2 ¯ L j 1 j k

L j 2 j 1
L j 2 j 2 ¯ L j 2 j k

] ] � ]

L j kj 1
L j kj 2 ¯ L j kj k

U , 1<k<m.

~4.19!

Here we mention once more thatL5(Li j )m3m is assumed. We define bilinear functionsQ
i j

l on RN

Q
i j

l5(
s51

N

ms

f isc js

l2ls
5(

l>0
^AlF i ,BC j&l

2 l 21, 1< i , j <m, ~4.20!

whereA andB are given by~2.40!, andF i andC i are defined as before,

F i5~f i1 ,f i2 ,...,f iN!T, C i5~c i1 ,c i2 ,...,c iN!T, 1< i<m. ~4.21!

Then we have

Li j 5(
l>0

^AlF i ,BC j&l
2 l 215Q

i j

l , 1< iÞ j <m,

Lii 5ci1(
l>0

^AlF i ,BC i&l
2 l 215ci1Q

ii

l , 1< i<m.

Therefore, the system of functionsF l
(k) is transformed into
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Fl
(k)5 (

1< j 1, j 2,¯, j k<mU cj 1
1 Q

j 1 j 1

l Q
j 1 j 2

l
¯

Q
j 1 j k

l

Q
j 2 j 1

l cj 2
1 Q

j 2 j 2

l
¯

Q
j 2 j k

l

] ] � ]

Q
j kj 1

l Q
j kj 2

l
¯ cj k

1 Q
j kj k

l

U , 1<k<m. ~4.22!

A set of more concrete formulas for computingFl
(k) will be given in Appendix B. Now we further

expandF l
(k) as a power series of 1/l:

F l
(k)5F l

(k)~c1 ,...,cm!5(
l>0

Fkl~c1 ,...,cm!l2 l , 1<k<m. ~4.23!

Based on the formulas ofF l
(k) in Appendix B, it is not difficult to find that

Fk05Fk0~c1 ,...,cm!5 (
1< j 1, j 2,¯, j k<m

)
p51

k

cj p
,

Fkl5Fkl~c1 ,...,cm!

5 (
1< j 1, j 2,¯, j k<m

(
r 51

min(k,l )

(
1< i 1, i 2,¯, i r<k

)
p51

pÞ i 1 ,i 2 ,¯ ,i r

k

cj p

3 (
p11p21¯1pr5 l 2r

p1 ,p2 ,¯ ,pr>0
U ^Ap1F j i 1

,BC j i 1
& ^Ap2F j i 2

,BC j i 1
&

¯
^AprF j i r

,BC j i 1
&

^Ap1F j i 1
,BC j i 2

& ^Ap2F j i 2
,BC j i 2

&
¯

^AprF j i r
,BC j i 2

&

] ] � ]

^Ap1F j i 1
,BC j i r

& ^Ap2F j i 2
,BC j i r

&
¯

^AprF j i r
,BC j i r

&

U , l>1,

~4.24!

which are all polynomials in the canonical variablesf is andc is , 1< i<m, 1<s<N.
Theorem 4.2: For all constants c1 ,c2 ,...,cm , the polynomial functions inf is and c is ,

1<i<m, 1<s<N: Fil (c1 ,...,cm), 1<i<m, l>1, defined by (4.24), are in involution in pair with
respect to the Poisson bracket (4.5).

Proof: On the one hand, by using Newton’s identities on elementary symmetric polynomials53

zk~l!2F l
(1)zk21~l!1F l

(2)zk22~l!1¯1~21!k21F l
(k21)z1~l!1~21!kkF l

(k)50,

where 1<k<m and

z i~l!5tr Li~l!, 1< i<m,

we can have

F l
(k)5F l

(k)~z1~l!,z2~l!,...,zk~l!!, 1<k<m. ~4.25!

Therefore, we can compute that
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$F l
(k) ,F m

( i )%5$F l
(k)~z1~l!,z2~l!,...,zk~l!!,F m

( i )~z1~m!,z2~m!,...,z i~m!!%

5(
l 51

k

(
j 51

i ]F l
(k)

]z l~l!

F m
( i )

]z j~m!
$trLl~l!,tr L j~m!%50, 1<k,i<m.

The last equality is a consequence of the involutivity ofz i(l), 1< i<m, shown in~4.17!. On the
other hand, we have

$F l
(k) ,F m

( i )%5 (
l , j >0

$Fkl ,Fi j %l
2 lm2 j .

It follows that the polynomial functionsFil 5Fil (c1 ,...,cm), 1< i<m, l>1, are in involution in
pair with respect to the Poisson bracket~4.5!. j

Let us now go on to show the functional independence of the polynomial functions
Fis(c1 ,...,cm), 1< i<m, 1<s<N.

Theorem 4.3: If all constants c1 ,c2 ,...,cm are distinct, then the polynomial functions inf is

and c is , 1<i<m, 1<s<N: Fis(c1 ,...,cm), 1<i<m, 1<s<N, defined by (4.24), are functionally
independent over a dense open subset ofR2mN.

Proof: Let P0 be a point ofR2mN satisfying

f is5«, 1< i<m, 1<s<N,

where« is a small constant. Keep~4.24! in mind, and then at this pointP0 , we obviously have

]Fis1

]c js2

5
]

]c js2

(
1< j 1, j 2,¯, j i<m

(
q51

i

)
p51
pÞq

i

cj p
^As121F j q

,BC j q
&1O~«2!

5« (
1< j 1, j 2,¯, j i 21<m

j 1 , j 2 ,¯ , j i 21Þ j

cj 1
cj 2

¯cj i 21
ls2

s121ms2
1O~«2!, ~4.26!

where 1< i , j <m, 1<s1 ,s2<N. In the above computation, only the term withr 51 in the ex-
pression~4.24! of Fis contributes to the first-order term of«. Let the matrixQN be defined by

QN5~Q i j
(N)!N3N , Q i j

(N)5l i
j 21m i , 1< i , j <N,

whose determinant is easily found to be

det~QN!5)
i 51

N

m i )
1< i , j <N

~l j2l i !.

Then at the pointP0 , the Jacobian of the functionsFis1
with respect toc js2

can be computed as
follows
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]~F11,¯ ,F1N ,F21,¯ ,F2N ,¯ ,Fm1 ,¯ ,FmN!

]~c11,¯ ,c1N ,c21,¯ ,c2N ,¯ ,cm1 ,¯ ,cmN!

5«mNUQN (
i 52

m

ciQN (
2< i , j <m

cicjQN ¯ )
i 52

m

ciQN

QN (
i 51
iÞ2

m

ciQN (
1< i , j <m

i , j Þ2

cicjQN ¯ )
i 51
iÞ2

m

ciQN

] ] ] � ]

QN (
i 51

m21

ciQN (
1< i , j <m21

cicjQN ¯ )
i 51

m21

ciQN

U1O~«mN11!

5«mNdet~Vm^ QN!1O~«mN11!

5«mN~det~Vm!!N~det~QN!!m1O~«mN11!

5«mN )
1< i , j <m

~ci2cj !
N)

i 51

N

m i )
1< i , j <N

~l j2l i !
m1O~«mN11!,

where we have used the determinant property of the tensor product of matrices and the determi-
nant result of the matrixVm in Appendix C. This allows us to conclude that if the constants
c1 ,c2 ,...,cm are distinct, the above Jacobian is not zero atP0 when«Þ0 is small enough. Since
the Jacobian is a polynomial function off is and c is , 1< i<m, 1<s<N, it is not zero over a
dense open subset ofR2mN. Therefore, the functionsFis , 1< i<m, 1<s<N, are functionally
independent over that dense open subset ofR2mN. The proof is completed. j

C. An alternative involutive system to the Fis ’s

We would like to express the involutive system of the polynomial functionsFis in another
way, and so we introduce

s0~v1 ,¯ ,vm!51, ~4.27a!

sk~v1 ,¯ ,vm!5 (
1< j 1, j 2,¯, j k<m

v j 1
¯v j k

, 1<k<m, ~4.27b!

sk~v1 ,¯ ,vm!50, when k>m11 or k<21, ~4.27c!

wherev1 ,v2 ,...,vm arem numbers. Obviously, form>2, we have the following relation:

sk~v1 ,...,vm!5vmsk21~v1 ,...,vm21!1sk~v1 ,...,vm21!, kPZ. ~4.28!

Let us now define

E1l5F1l , Eil 5~21! i 11Fil 1(
j 51

i 21

~21! j 11sj~c1 ,...,cm!Ei 2 j ,l , i>2, l>1. ~4.29!

From ~4.29!, we can have

Fil 5(
j 50

i 21

~21! i 2 j 11sj~c1 ,...,cm!Ei 2 j ,l , i ,l>1. ~4.30!

Therefore, by Proposition D.2 in Appendix D, we obtain
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Eil 5Eil ~c1 ,...,cm!

5 (
r 51

min(i ,l )

~21!r 11 (
1< j 1, j 2,¯, j r<m

(
l 11 l 21¯1 l r5 i 2r

l 1 ,l 2 ,¯ ,l r>0

cj 1

l 1cj 2

l 2
¯cj r

l r

3 (
p11p21¯1pr5 l 2r

p1 ,p2 ,¯ ,pr>0
U ^Ap1F j 1

,BC j 1
& ^Ap2F j 2

,BC j 1
& ¯ ^AprF j r

,BC j 1
&

^Ap1F j 1
,BC j 2

& ^Ap2F j 2
,BC j 2

& ¯ ^AprF j r
,BC j 2

&

] ] � ]

^Ap1F j 1
,BC j r

& ^Ap2F j 2
,BC j r

& ¯ ^AprF j r
,BC j r

&

U ,

~4.31!

where 1< i<m and l>1. Obviously, eachEil is a linear combination of theFil ’s, and hence
$Eik ,Ejl %50 holds for all 1< i , j <m andk,l>1. This means that the polynomial functionsEis ,
1< i<m, 1<s<N, are also in involution in pair.

In order to show the functional independence ofEis , 1< i<m, 1<s<N, similar to the proof
of Theorem 4.3, letP0 be a point ofR2mN satisfyingf is5«, 1< i<m, 1<s<N, where« is a
small constant. Then at this pointP0 , we have

]Eis1

]c js2

5«cj
i 21ls2

s121ms2
1O~«2!, 1< i , j <m, 1<s1 ,s2<N. ~4.32!

Hence a direct argument can give rise to

]~E11,¯ ,E1N ,E21,¯ ,E2N ,¯ ,Em1 ,¯ ,EmN!

]~c11,¯ ,c1N ,c21,¯ ,c2N ,¯ ,cm1 ,¯ ,cmN!

5«mN)
i 51

N

m i )
1< i , j <N

~l j2l i !
m )

1< i , j <m
~cj2ci !

N1O~«mN11!. ~4.33!

Therefore, ifc1 ,c2 ,...,cm are distinct, the above Jacobian is not zero atP0 when«Þ0 is small
enough. This implies that the functionsEis , 1< i<m, 1<s<N, are functionally independent
over a dense open subset ofR2mN.

Let us sum up these results in the following theorem.
Theorem 4.4: All polynomial functions inf is and c is , 1< i<m, 1<s<N: Eil (c1 ,...,cm),

1< i<m, l>1, defined by (4.31), are in involution in pair with respect to the Poisson bracket
(4.5) for all constants c1 ,c2 ,...,cm . Moreover, among them the polynomial functions
Eis(c1 ,...,cm), 1< i<m, 1<s<N, are functionally independent over a dense open subset of
R2mN for distinct constants c1 ,c2 ,...,cm .

Note that all polynomial functionsFil are also linear combinations of theEil ’s. The above
theorem actually shows us an alternative to the involutive and functionally independent system of
the polynomial functionsFis , 1< i<m, 1<s<N. The Eis’s have the compact form for the
constantsc1 ,c2 ,...,cm , and thus it is more convenient to deal with them.

V. LIOUVILLE INTEGRABILITY AND INVOLUTIVE SOLUTIONS

Let us now turn to establish the Liouville integrability of the obtained constrained flows, and
to present involutive solutions of theN-wave interaction equations in both 111 and 211 dimen-
sions. The involutive system of the polynomial functions

Fis5Fis~c1 ,...,cm!, 1< i<m, 1<s<N,

alternatively
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Eis5Eis~c1 ,...,cm!, 1< i<m, 1<s<N,

will play an extremely important role in the following discussion.

A. Liouville integrability of the constrained flows

For the 111 dimensional case, we have the matrix Lax operator as defined by~2.49! and
~2.50!, i.e.,

L (1)~l!5L (1)~l;g1 ,...,gn!5C1~g1 ,...,gn!1D1~l!,

whereC1 andD1(l) are given by~2.50!. Note that

g iÞg j , 1< iÞ j <n.

According to Theorems 4.2 and 4.3 for the casem5n and ci5g i , 1< i<n, we know that
Fis(g1 ,...,gn), 1< i<n, 1<s<N, defined by~4.24!, are functionally independent over a dense
open subset ofR2nN and in involution in pair with respect to the Poisson bracket~2.47!, i.e.,

$ f ,g%5(
i 51

n S K ] f

]C i
,B21

]g

]F i
L 2 K ] f

]F i
,B21

]g

]C i
L D , f ,gPC`~R2nN!.

Theorem 5.1: Let g1 ,g2 ,...,gn be n distinct numbers. Then the spatial constrained flow
(2.43) and the temporal constrained flow (2.44) of the111 dimensionalN-wave interaction
equations (2.22) are Liouville integrable Hamiltonian systems, which possess involutive and func-
tionally independent integrals of motion

Fis~g1 ,...,gn!, 1< i<n, 1<s<N,

defined by (4.24) in the case

m5n, ci5g i , 1< i<n.

Proof: From the necessary Lax representations of the spatial constrained flow~2.43! and the
temporal constrained flow~2.44!,

~L (1)~l!!x5@U~ ũ,l!,L (1)~l!#, ~L (1)~l!! t1
5@V(1)~ ũ,l!,L (1)~l!#,

which are shown in Theorem 2.1, we can obtain26

~L (1)~l!! i)x5@U~ ũ,l!,~L (1)~l!! i #, ~L (1)~l!! j ) t1
5@V(1)~ ũ,l!,~L (1)~l!! j #, i , j >1,

and thus we have

~ tr~L (1)~l!! i !x5tr~~L (1)~l!! i !x5tr@U~ ũ,l!,~L (1)~l!! i #50, i>1,

~ tr~L (1)~l!! j ! t1
5tr~~L (1)~l!! j ! t1

5tr@V(1)~ ũ,l!,~L (1)~l!! j #50, j >1.

Therefore,F l
(k)(g1 ,...,gn) are all generating functions of integrals of motion of~2.43! and~2.44!

in the light of the expression~4.25! determined by Newton’s identities. It follows that
Fis(g1 ,...,gn), 1< i<n, 1<s<N, are all integrals of motion of the spatial constrained flow
~2.43! and the temporal constrained flow~2.44!. Note that all constantsg1 ,g2 ,...,gn are distinct.
Therefore, Theorems 4.2 and 4.3 in the case ofm5n andci5g i , 1< i<n, together with Theorem
2.1, show that the spatial constrained flow~2.43! and the temporal constrained flow~2.44! are
Liouville integrable Hamiltonian systems, which possess the involutive and functionally indepen-
dent integrals of motionFis(g1 ,...,gn), 1< i<n, 1<s<N. The proof is finished. j

We remark that from the Lax representations shown in Theorem 2.1, we have
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~nI n2L (1)~l!!x5@U~ ũ,l!,nI n2L (1)~l!#,

~nI n2L (1)~l!! t1
5@V(1)~ ũ,l!,nI n2L (1)~l!#

for any constantn. It follows54 that det(nIn2L(1)(l)! is a common generating function of integrals
of motion of the constrained flows~2.43! and ~2.44!, and thus so areF l

(k)(g1 ,...,gn), 1<k<n.
This is an alternative proof for showing thatF l

(k)(g1 ,...,gn), 1<k<n, are the generating func-
tions of integrals of motion of~2.43! and ~2.44!.

For the 211 dimensional case, a completely similar argument can give rise to the following
theorem on the Liouville integrability of the constrained flows~3.23!–~3.25! of the 211 dimen-
sionalN-wave interaction equations~3.4!.

Theorem 5.2:Let d1 ,...,dn ,dn11 be n11 distinct numbers. Then all three constrained flows
(3.23)–(3.25) of the211 dimensionalN-wave interaction equations (3.4) are Liouville integrable
Hamiltonian systems, which possess the involutive and functionally independent integrals of mo-
tion

Fis~d1 ,...,dn ,dn11!, 1< i<n11, 1<s<N,

defined by (4.24) in the case

m5n11, ci5d i , 1< i<n11.

B. Involutive solutions of the N-wave interaction equations

We would like to show that the constrained flows provide involutive solutions to theN-wave
interaction equations in both 111 and 211 dimensions. For the 111 dimensional case, we have
the following result.

Theorem 5.3: If f is(x,t1) and c is(x,t1), 1< i<n, 1<s<N, solve the spatial constrained
flow (2.43) and the temporal constrained flow (2.44) simultaneously, then

ui j ~x,t1!5
a i2a j

g i2g j
^F i~x,t1!,BC j~x,t1!&, 1< iÞ j <n, ~5.1!

with F i(x,t1) and C i(x,t1) being given by

F i~x,t1!5~f i1~x,t1!,...,f iN~x,t1!!T, C i~x,t1!5~c i1~x,t1!, . . . ,c iN~x,t1!!T, 1< i<n,

solve the111 dimensionalN-wave interaction equations (2.22).
Proof: Note that the 111 dimensionalN-wave interaction equations~2.22! is the compat-

ability condition of the spectral problem~2.1! and the associated spectral problem~2.17! with
m51 or the adjoint spectral problem~2.27! and the adjoint associated spectral problem~2.28!
with m51 for whatever potentialu. Therefore, the 111 dimensionalN-wave interaction equa-
tions ~2.22! are also the compatability condition of the spatial constrained flow~2.43! and the
temporal constrained flow~2.44! under the constraint~2.41!. Now f is(x,t1) andc is(x,t1), 1< i
<n, 1<s<N, are assumed to solve~2.43! and ~2.44! simultaneously, and thus the potential
defined by~5.1! must satisfy the compatability condition of the spatial constrained flow~2.43! and
the temporal constrained flow~2.44!. This means that the potential defined by~5.1! must be a
solution to the 111 dimensionalN-wave interaction equations~2.22!. The proof is finished.j

We remark that a direct computation can also show the above theorem. For the 211 dimen-
sional case, a similar deduction can give rise to the following theorem.

Theorem 5.4: If f is(x,t) and c is(x,t), 1< i<n11, 1<s<N, solve the constrained flows
(3.23)–(3.25) simultaneously, then
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pi j ~x,y,t !5
Ji2Jj

d i2d j
^F i~x,y,t !,BC j~x,y,t !&, 1< iÞ j <n,

~5.2!

qi j ~x,y,t !5
Ki2K j

d i2d j
^F i~x,y,t !,BC j~x,y,t !&, 1< iÞ j <n,

with F i(x,t) and C i(x,t) being given by

F i~x,t !5~f i1~x,t !,...,f iN~x,t !!T, C i~x,t !5~c i1~x,t !,...,c iN~x,t !!T, 1< i<n11,

solve the211 dimensionalN-wave interaction equations (3.4).
Also, one can find that

f i5
1

d i2dn11
^F i ,BCn11&, gi5

1

d i2dn11
^Fn11 ,BC i&, 1< i<n ~5.3!

provide a solution to the Lax system~3.1! and the adjoint Lax system~3.5! with the potentials
given by ~5.2!. What’s more,~5.2! and ~5.3! automatically satisfy our first symmetry constraint
~3.7!.

In the following theorem, the solutions given in Theorems 5.3 and 5.4 are shown to be
involutive.

Theorem 5.5: The Hamiltonians H1
x and H1

t1 of the constrained flows in111 dimensions,
defined by (2.53) and (2.54), are the second-order polynomial functions of Eil (g1 ,...,gn), 1< i
<n, l 51,2, and thus they commute, i.e.,

$H1
x ,H1

t1%50, ~5.4!

where the Poisson bracket$•,•% is defined by (2.47). The Hamiltonians H2
x , H2

y and H2
t of the

constrained flows in211 dimensions, defined by (3.30)–(3.32), are also the second-order poly-
nomial functions of Eil (d1 ,...,dn ,dn11), 1< i<n11, l 51,2, and thus they commute with each
other, i.e.,

$H2
x ,H2

y%5$H2
x ,H2

t %5$H2
y ,H2

t %50, ~5.5!

where the Poisson bracket$•,•% is defined by~3.28!.
Proof: Directly from the explicit expression~4.31! of the Eis’s, we have

Ei15(
j 51

m

cj
i 21^F j ,BC j&, 1< i<m, ~5.6!

Ei25(
j 51

m

cj
i 21^AF j ,BC j&

2 (
1< j ,k<m

cj
i 212ck

i 21

cj2ck
~^F j ,BC j&^Fk ,BCk&2^F j ,BCk&^Fk ,BC j&!

5(
j 51

m

cj
i 21Ej2 (

j ,k51
j Þk

m cj
i 21

cj2ck
^F j ,BC j&^Fk ,BCk&, 1< i<m, ~5.7!

where theEj ’s are defined as follows:
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Ej5^AF j ,BC j&1 (
k51
kÞ j

m
1

cj2ck
^F j ,BCk&^Fk ,BC j&, 1< j <m. ~5.8!

Now solving ~5.6! for ^F i ,BC i&, 1< i<m, leads to

^F i ,BC i&5S )
r 51
rÞ i

m
1

ci2cr D (
j 51

m

~21!m2 j sm2 j~c1 ,...,ci 21 ,ĉi ,ci 11 ,...,cm!Ej 1 , 1< i<m,

~5.9!

where thesj ’s are defined by~4.27! and ĉi means thatci does not appear. Therefore, each
^F i ,BC i& can be expressed as a linear combination ofEi1 , 1< i<m. Similarly, solving~5.7! for
Ej , 1< j <m, leads to

Ei5S )
r 51
rÞ i

m
1

ci2cr D (
j 51

m

~21!m2 j sm2 j~c1 ,...,ci 21 ,ĉi ,ci 11 ,...,cm!

3S Ej 21 (
k,l 51
kÞ l

m ck
j 21

ck2cl
^Fk ,BCk&^F l ,BC l& D , 1< i<m. ~5.10!

This expression together with~5.9! implies that eachEj can be expressed as a linear combination
of Ei1 andEi2 , 1< i<m.

In the 111 dimensional case, we havem5n, cj5g j , 1< j <n. Hence

Ej5^AF j ,BC j&1 (
k51
kÞ j

n
1

g j2gk
^F j ,BCk&^Fk ,BC j&, 1< j <n. ~5.11!

The HamiltoniansH1
x andH1

t1 in Theorem 2.1 can be easily expressed as

H1
x52 (

k51

n

akEk , H1
t152 (

k51

n

bkEk , ~5.12!

where theEk’s are defined by~5.11!.
Likewise, in the 211 dimensional case, we havem5n11, cj5d j , 1< j <n11. Hence

Ej5^AF j ,BC j&1 (
k51
kÞ j

n
1

d j2dk
^F j ,BCk&^Fk ,BC j&1

1

d j2dn11
^F j ,BCn11&^Fn11 ,BC j&,

1< j <n, ~5.13!

En115^AFn11 ,BCn11&1 (
k51

n
1

dn112dk
^Fn11 ,BCk&^Fk ,BCn11&. ~5.14!

The HamiltoniansH2
x , H2

y andH2
t in Theorem 3.1 can be expressed as

H2
x52 (

k51

n

Ek , H2
y52 (

k51

n

JkEk , H2
t 52 (

k51

n

KkEk , ~5.15!

where theEk’s are defined by~5.13!.
Therefore,H1

x and H1
t1 are linear combinations ofEil (g1 ,...,gn), 1< i<n, l 51,2, and

H2
x , H2

y andH2
t are linear combinations ofEil (d1 ,...,dn ,dn11), 1< i<n11, l 51,2. It fol-

lows from Theorem 4.4 thatH1
x andH1

t1 are in involution, andH2
x , H2

y andH2
t are in involution

in pair, too. The proof is finished. j

4372 J. Math. Phys., Vol. 42, No. 9, September 2001 W.-X. Ma and Z. Zhou



We remark that a direct computation can also give a proof for the involutive property of the
Hamiltonians of the constrained flows in both 111 and 211 dimensions. Only a new set of
equalities

aj2ai

cj2ci

bk2bi

ck2ci
2

ak2ai

ck2ci

bj2bi

cj2ci
1cycle~ i , j ,k!50, 1< i , j ,k<n,

has to be utilized, whereai , bi , andci , 1< i<n, are arbitrary constants. This just needs a direct
check, too. However, the proof of Theorem 5.5 also gives rise to the explicit expressions for all
Hamiltonians of the constrained flows in both 111 and 211 dimensions, in terms of the integrals
of motion Eis .

Now if we denote the Hamiltonian flows of the spatial constrained flow~2.43! and the tem-

poral constrained flow~2.44! by g
x

H1
x

and g
t

H
1

t1

, respectively, then the above theorems present a
kind of involutive solution to the 111 dimensionalN-wave interaction equations~2.22!:

ui j ~x,t1!5
a i2a j

g i2g j
^gx

H1
x

g
t

H
1

t1

F i0 ,g
x

H1
x

g
t

H
1

t1

BC j 0&

5
a i2a j

g i2g j
^g

t

H
1

t1

g
x

H1
x

F i0 ,g
t

H
1

t1

g
x

H1
x

BC j 0&, 1< iÞ j <n, ~5.16!

where the initial valuesF i0 and C i0 of F i and C i can be taken to be any arbitrary constant
vectors of the Euclidean spaceRN. Similarly, if we denote the Hamiltonian flows of the con-

strained flows~3.23!–~3.25! by g
x

H2
x

, g
y

H2
y

, andg
t

H2
t

, respectively, then the above theorems present
a kind of involutive solutions to the 211 dimensionalN-wave interaction equations~3.4!:

pi j ~x,t !5
Ji2Jj

d i2d j
^gx

H2
x

g
y

H2
y

g
t

H2
t

F̄ i0 ,g
x

H2
x

g
y

H2
y

g
t

H2
t

BC̄ j 0&

5
Ji2Jj

d i2d j
^gy

H2
y

g
t

H2
t

g
x

H2
x

F̄ i0 ,g
y

H2
y

g
t

H2
t

g
x

H2
x

BC̄ j 0&

5
Ji2Jj

d i2d j
^gt

H2
t

g
x

H2
x

g
y

H2
y

F̄ i0 ,g
t

H2
t

g
x

H2
x

g
y

H2
y

BC̄ j 0&

5¯ , 1< iÞ j <n, ~5.17!

qi j ~x,t !5
Ki2K j

d i2d j
^gx

H2
x

g
y

H2
y

g
t

H2
t

F̄ i0 ,g
x

H2
x

g
y

H2
y

g
t

H2
t

BC̄ j 0&

5
Ki2K j

d i2d j
^gy

H2
y

g
t

H2
t

g
x

H2
x

F̄ i0 ,g
y

H2
y

g
t

H2
t

g
x

H2
x

BC̄ j 0&

5
Ki2K j

d i2d j
^gt

H2
t

g
x

H2
x

g
y

H2
y

F̄ i0 ,g
t

H2
t

g
x

H2
x

g
y

H2
y

BC̄ j 0&

5¯ , 1< iÞ j <n, ~5.18!

where the initial valuesF̄ i0 andC̄ i0 of F i andC i can also be taken to be any arbitrary constant
vectors of the Euclidean spaceRN.

Note that all constrained flows in both 111 and 211 dimensions are Liouville integrable,
and that the initial values ofF i andC i , 1< i<n, can be arbitrarily chosen. Therefore, together
with Theorems 5.1 and 5.2, the above involutive solutions also show us the richness of solutions
and the integrability by quadratures for theN-wave interaction equations in both 111 and 2
11 dimensions. Of importance is of course that binary symmetry constraints decompose the
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N-wave interaction equations in both 111 and 211 dimensions into finite-dimensional Liouville
integrable Hamiltonian systems, and the resulting involutive solutions present the Ba¨cklund trans-
formations between theN-wave interaction equations in both 111 and 211 dimensions and
these finite-dimensional Liouville integrable Hamiltonian systems.

VI. CONCLUSIONS AND REMARKS

We have introduced a class of special symmetry constraints,~2.38! in the 111 dimensional
case, and~3.19! and~3.20! in the 211 dimensional case, for theN-wave interaction equations in
both 111 and 211 dimensions. These symmetry constraints nonlinearize then3n spectral
problem and adjoint spectral problem,~2.34! and~2.35!, and the (n11)3(n11) spectral problem
and adjoint spectral problem,~3.11! and~3.12!, into finite-dimensional Liouville integrable Hamil-
tonian systems, and decompose theN-wave interaction equations in both 111 and 211 dimen-
sions into these finite-dimensional Liouville integrable Hamiltonian systems. A general involutive
and functionally independent system of the polynomial functionsFis(c1 ,...,cm), 1< i<m, 1
<s<N, or alternativelyEis(c1 ,...,cm), 1< i<m, 1<s<N, associated with an arbitrarily higher-
order matrix Lax operator, was presented and used to show the Liouville integrability of the
resulting constrained flows. The nonlinear constraints on the potentials, resulting from the sym-
metry constraints, also provide us with a class of Ba¨cklund transformations from theN-wave
interaction equations to the obtained finite-dimensional Liouville integrable systems. The involu-
tive solutions to theN-wave interaction equations are given through the constrained flows, and
thus the integrability by quadratures has been exhibited for theN-wave interaction equations. The
special case withG5W0 , i.e., diag(g1,...,gn)5diag(b1,...,bn) of two reductions ofn53 andn
54 in 111 dimensions presents all results established in Refs. 31 and 32.

We point out that for a more general matrix Lax operatorL5C1D with any constant matrix
C5(ci j )m3m and the matrixD defined by ~4.2!, the r -matrix formulation ~4.13! still holds.
Therefore, an involutive system of polynomial functions can be generated, but we do not know
what conditions on the matrixC can ensure the functional independence of that involutive system.
We are also curious about other examples of higher-order matrix Lax operators which lead to
involutive and functionally independent systems. Our crucial techniques to present the involutive
and functionally independent systemFis , 1< i<m, 1<s<N, are ther -matrix formulation,
Newton’s identities on elementary symmetric polynomials, and the determinant property of tensor
products of matrices; and the whole process of their applications provides an efficient way to show
the involutive property and the functional independence.

Of course, one of the important results in binary nonlinearization is the integrability of soliton
equations by quadratures, which implies that one can integrate soliton equations themselves by
quadratures. However, the potentials obtained by symmetry constraints can be proved to belong to
a kind of finite-gap-type solutions containing multi-soliton solutions, and thus they may not
present solutions to given initial value and/or boundary problems of soliton equations. It is a
challenging problem to establish a general theory of complete integrability for nonlinear differen-
tial and differential-difference equations, which should state what mathematical properties the
equations must possess so that their solutions to initial value and/or boundary problems can also
be determined by quadratures.

Symmetry constraints yield nonlinear constraints on potentials of soliton equations, and put
linear spectral problems~linear with respect to eigenfunctions! into nonlinear constrained flows
~nonlinear again with respect to eigenfunctions!, which makes it more complicated to solve soliton
equations. However, since spectral problems are overdetermined, one needs additional conditions
~compatability conditions! to guarantee the existence of eigenfunctions of spectral problems. The
symmetry property brings us the Liouville integrability for nonlinear constrained flows. Thus,
symmetry constraints make up for the disadvantage of nonlinearization in manipulating binary
nonlinearization. Of special interest in the study of symmetry constraints are creating new classical
integrable systems,55 which supplement the known class of integrable systems,56 and exposing the
integrability by quadratures for soliton equations by using constrained flows.33
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The idea of binary nonlinearization is quite similar to that of using adjoint symmetries to
generate conservation laws for differential equations, both Lagrangian and non-Lagrangian.57 In
binary nonlinearization, we adopt adjoint spectral problems to formulate Hamiltonian structures
for constrained flows so that finite-dimensional Liouville integrable systems result. Note that there
exist also some special symmetry constraints which do not yield Hamiltonian structures with
constant coefficient symplectic forms, including both canonical and noncanonical ones, for con-
strained flows.46 Therefore, it will be particularly interesting and important to classify symmetry
constraints which exhibit Hamiltonian structures with constant and variable coefficient symplectic
forms for constrained flows.
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APPENDIX A: NON-LIE SYMMETRIES

Proposition A.1: Iff (s) and c (s), 1<s<N, satisfy (2.34) and (2.35), then the vector field

Z05J(
s51

N

msc
(s)T

]U~u,ls!

]u
f (s)5rS FU0 ,(

s51

N

msf
(s)c (s)TG D ~A1!

is a symmetry of the111 dimensionalN-wave interaction equations (2.22).
Proof: It is required to show that

~dP,dQ!5S FU0 ,(
s51

N

msf
(s)c (s)TG ,FW0 ,(

s51

N

msf
(s)c (s)TG D ~A2!

satisfies the linearized system~2.25!. By using~2.34! and ~2.35!, we can first compute that

S (
s51

N

msf
(s)c (s)TD

t1

5(
s51

N

msf t1
(s)c (s)T1(

s51

N

msf
(s)c t1

(s)T

5(
s51

N

msV
(1)~u,ls!f

(s)c (s)T2(
s51

N

msf
(s)c (s)TV(1)~u,ls!

5(
s51

N

ms@V(1)~u,ls!,f
(s)c (s)T#

5(
s51

N

lsms@W0 ,f (s)c (s)T#1FW1 ,(
s51

N

msf
(s)c (s)TG ,

and, similarly, we can have

S (
s51

N

msf
(s)c (s)TD

x

5(
s51

N

lsms@U0 ,f (s)c (s)T#1FU1 ,(
s51

N

msf
(s)c (s)TG .

Thus, noting the Jacobi identity, it follows that
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~dP! t1
2~dQ!x5FU0 ,S (

s51

N

msf
(s)c (s)TD

t1

G2FW0 ,S (
s51

N

msf
(s)c (s)TD

x
G

5(
s51

N

lsms([U0 ,[W0 ,f (s)c (s)T]] 2[W0 ,[U0 ,f (s)c (s)T]])

1FU0 ,FW1 ,(
s51

N

msf
(s)c (s)TG G2FW0 ,FU1 ,(

s51

N

msf
(s)c (s)TG G

5FU0 ,FW1 ,(
s51

N

msf
(s)c (s)TG G2FW0 ,FU1 ,(

s51

N

msf
(s)c (s)TG G ,

wheredP anddQ are defined by~A2!. Then, again noting the Jacobi identity, we can have

~dP! t1
2~dQ!x1@U1 ,dQ#1@dP,W1#

5F (
s51

N

msf
(s)c (s)T,@U0 ,W1#G2F (

s51

N

msf
(s)c (s)T,@W0 ,U1#G50,

in the last step of which we have used@U0 ,W1#5@W0 ,U1#. The proof is finished. j

All of the symmetries presented in this proposition are not Lie point, contact, or Ba¨cklund
symmetries, since they cannot be written in terms of the potentialsui j and their spatial derivatives.

APPENDIX B: FORMULAS FOR COMPUTING Fl
„k …

Immediately from the expressions ofFl
(k) in ~4.22!, we can obtain the following more con-

crete formulas for computingFl
(k) :

Fl
(1)5(

i 51

m

~ci1Q
ii

l!,

Fl
(2)5 (

1< i , j <m S cicj1cjQ
ii

l1ciQ
j j

l1UQ
ii

l Q
i j

l

Q
ji

l Q
j j

l

U D ,

Fl
(3)5 (

1< i , j ,k<m
~cicjck1cickQ

j j

l1cjckQ
ii

l1cicjQ
kk

l!

1 (
1< i , j ,k<m S ciUQ

j j

l Q
jk

l

Q
k j

l Q
kk

l

U1cjUQ
ii

l Q
ik

l

Q
ki

l Q
kk

l

U1ckUQ
ii

l Q
i j

l

Q
ji

l Q
j j

l

U1UQ
ii

l Q
i j

l Q
ik

l

Q
ji

l Q
j j

l Q
jk

l

Q
ki

l Q
k j

l Q
kk

l

U D ,

... ,

Fl
(k)5 (

1<j1,j2,...,jk<m S )
p51

k

cjp
1(

i51

k

)
pÞi
p51

k

cj p
Q
j i j i

l1 (
1< i 1, i 2<k

)
pÞi1,i2

p51

k

cjpU Q

j i 1
j i 1

l Q

j i 1
j i 2

l

Q

j i 2
j i 1

l Q

j i 2
j i 2

l

U D
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1 (
1< j 1, j 2,..., j k<m

(
1< i 1, i 2, i 3<k

)
pÞ i 1 ,i 2 ,i 3

p51

k

cj pU Q

j i 1
j i 1

l Q

j i 1
j i 2

l Q

j i 1
j i 3

l

Q

j i 2
j i 1

l Q

j i 2
j
2

l Q

j i 2
j i 3

l

Q

j i 3
j i 1

l Q

j i 3
j i 2

l Q

j i 3
j i 3

l

U1...

1 (
1< j 1, j 2,..., j k<mU Q

j 1 j 1

l Q
j 1 j 2

l
...

Q
j 1 j k

l

Q
j 2 j 1

l Q
j 2 j 2

l
...

Q
j 2 j k

l

A A � A

Q
j kj 1

l Q
j kj 2

l
...

Q
j kj k

l

U ,

...,

Fl
(m)5 )

p51

m

cp1(
i 51

m

)
pÞ i
p51

m

cpQ
ii

l1 (
1< i , j <m

)
pÞ i , j
p51

m

cpUQ
ii

l Q
i j

l

Q
ji

l Q
j j

l

U
1 (

1< i , j ,k<m
)

pÞ i , j ,k
p51

k

cpUQ
ii

l Q
i j

l Q
ik

l

Q
ji

l Q
j j

l Q
jk

l

Q
ki

l Q
k j

l Q
kk

l

U1...1UQ
11

l Q
12

l
...

Q
1m

l

Q
21

l Q
22

l
...

Q
2r

l

A A � A

Q
m1

l Q
r2

l
...

Q
mm

l

U .

APPENDIX C: THE DETERMINANT OF Vm

The following proposition has been used while showing the functional independence of the
polynomial functionsFis(c1 ,...,cm), 1< i<m, 1<s<N, which is of interest itself.

Proposition C.1: Let m>2, and c1 ,c2 ,...,cm be constants. Then

det~Vm!5U1 (
i 52

m

ci (
2< i , j <m

cicj (
2< i , j ,k<m

cicjck ... )
i 52

m

ci

1 (
i 51
iÞ2

m

ci (
1< i , j <m

i , j Þ2

cicj (
1< i , j ,k<m

i , j ,kÞ2

cicjck ... )
i 51
iÞ2

m

ci

A A A A � A

1 (
i 51

m21

ci (
1< i , j <m21

cicj (
1< i , j ,k<m21

cicjck ... )
i 51

m21

ci

U
5 )

1< i , j <m
~ci2cj !. ~C1!
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Proof: We prove this proposition by the principle of mathematical induction. It is obvious that
~C1! is true whenm52. Suppose that~C1! is true whenm5 l . Let us verify that~C1! is also true
whenm5 l 11. Note that

(
1< i 1, i 2,..., i k< l 11

i 1 ,i 2 ,...,i kÞ j

ci 1
ci 2

...ci k
2 (

1< i 1, i 2,..., i k< l 11
i 1 ,i 2 ,...,i kÞ i

ci 1
ci 2

...ci k

5~ci2cj ! (
1< i 1, i 2,..., i k21< l 11

i 1 ,i 2 ,...,i k21Þ i , j

ci 1
ci 2

...ci k21
,

1< i , j < l 11, 1<k< l .

For each 2< j < l 11, we subtract

(
2< i 1, i 2,..., i j 21< l 11

l 11

ci 1
ci 2

...ci j 21
3the first column of det~V l 11!

from the j th column of det(Vl11), and then we have

det~V l 11!

5U1 0 0 0 ... 0

1 c12c2 ~c12c2!(
i 53

l 11

ci ~c12c2! (
3< i , j < l 11

cicj ... ~c12c2!)
i 53

l 11

ci

1 c12c3 ~c12c3!(
i 52
iÞ3

l 11

ci ~c12c3! (
2< i , j < l 11

i , j Þ3

cicj ... ~c12c3!)
i 52
iÞ3

l 11

ci

A A A A � A

1 c12cl 11 ~c12cl 11!(
i 52

l

ci ~c12cl 11! (
2< i , j < l

cicj ... ~c12cl 11!)
i 52

l

ci

U
5)

j 52

l 11

~c12cj !U1 (
i 53

l 11

ci (
3< i , j < l 11

cicj ... )
i 53

l 11

ci

1 (
i 52
iÞ3

l 11

ci (
2< i , j < l 11

i , j Þ3

cicj ... )
i 52
iÞ3

l 11

ci

A A A � A

1 (
i 52

l

ci (
2< i , j < l

cicj ... )
i 52

l

ci

U5 )
1< i , j < l 11

~ci2cj !,

in the last step of which we have used the inductive assumption. This means that~C1! is also true
whenm5 l 11, i.e., the inductive step is satisfied. Therefore, the formula~C1! is always true by
the principle of mathematical induction. The proof is finished. j

APPENDIX D: TWO IDENTITIES ON SYMMETRIC POLYNOMIALS

Let thesj ’s be symmetric polynomials defined by~4.27!.
Proposition D.1: For any integers r and i with i>r>1, and any numbers c1 ,...,cr , we have
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(
j 50

i 2r

~21! j sj~c1 ,...,cr ! (
l 11...1 l r5 i 2r 2 j

l 1 ,...,l r>0

c1
l 1...cr

l r5H 1, if i 5r ,

0, if i .r .
~D1!

Proof: Use the principle of mathematical induction onr . Whenr 51 andi 51, the left-hand
side of ~D1! is 1. Whenr 51 and i .1, the left-hand side of~D1! is 0. Hence~D1! holds when
r 51.

Now suppose that~D1! holds whenr 5k, i.e.,

(
j 50

i 2k

~21! j sj~c1 ,...,ck! (
l 11...1 l k5 i 2k2 j

l 1 ,...,l k>0

c1
l 1...ck

l k5H 1, if i 5k,

0, if i .k.
~D2!

Then, whenr 5k11, the left-hand side of~D1! is

(
j 50

i 2k21

~21! j sj~c1 ,...,ck11! (
l 11¯1 l k115 i 2k2 j 21

l 1 ,¯ ,l k11>0

c1
l 1
¯ck11

l k11 . ~D3!

By using ~4.28!, it equals

(
j 50

i 2k21

~21! j (
l r 1150

i 2k2 j 21

ck11
l k1111sj 21~c1 ,...,ck! (

l 11¯1 l k5 i 2k2 j 212 l k11
l 1 ,...,l k>0

c1
l 1
¯ck

l k

1 (
j 50

i 2k21

~21! j (
l r 1150

i 2k2 j 21

ck11
l k11sj~c1 ,...,ck! (

l 11¯1 l k5 i 2k2 j 212 l k11
l 1 ,¯ ,l k>0

c1
l 1
¯ck

l k

5 (
l r 1150

i 2k21

ck11
l k1111 (

j 50

i 2k2 l k1122

~21! j 11sj~c1 ,...,ck! (
l 11¯1 l k5 i 2k2 j 2 l k1122

l 1 ,¯ ,l k>0

c1
l 1
¯ck

l k

1 (
l r 1150

i 2k21

ck11
l k11 (

j 50

i 2k2 l k1121

~21! j sj~c1 ,...,ck! (
l 11¯1 l k5 i 2k2 j 2 l k1121

l 1 ,¯ ,l k>0

c1
l 1
¯ck

l k , ~D4!

where an empty sum is understood to be zero.
When i 5k11, it is easy to see that~D4! equals 1. Ifi .k11, then by~D2!, the first sum

equals

2ck11
l k1111u l k115 i 2k2252ck11

i 2k21 , ~D5!

and again, by~D2!, the second sum equals

ck11
l k11u l k115 i 2k215ck11

i 2k21 . ~D6!

Hence~D4! equals 0 ifi .k11, which implies that~D1! holds whenr 5k11. Therefore,~D1!
always holds by the principle of mathematical induction. The proposition is proved. j

Proposition D.2: For any integers m, r , i with i>r 11>2, m numbers c1 ,...,cm , and r
integers j1 ,...,j r with 1< j 1,..., j r<m, we have
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(
j 50

i 2r

~21! i 2r 2 j sj~c1 ,...,cm! (
l 11¯1 l r5 i 2r 2 j

l 1 ,...,l r>0

cj 1

l 1
¯cj r

l r 5 (
1<r1,¯,r i 2r<m

raÞ j b for all a,b

cr1
¯cr i 2r

. ~D7!

Proof: Without loss of generality, suppose thatj i5 i wheni 51,...,r , since eachsj (c1 ,...,cm)
is symmetric with respect toc1 ,...,cm . Then,~D7! becomes

(
j 50

i 2r

~21! i 2r 2 j sj~c1 ,...,cm! (
l 11¯1 l r5 i 2r 2 j

l 1 ,¯ ,l r>0

c1
l 1
¯cr

l r5 (
r 11<r1,¯,r i 2r<m

cr1
¯cr i 2r

. ~D8!

Obviously, for any fixedj with r 11< j <m, both sides of~D8! are linear with respect tocj .
We use the principle of mathematical induction oni to prove~D8!. Wheni 5r 11, both sides

of ~D8! equalcr 111¯1cm .
Suppose that~D8! holds wheni 5k (k.r ). Then, wheni 5k11, the left-hand side of~D8!

reads as

Rª (
j 50

k112r

~21!k112r 2 j sj~c1 ,...,cm! (
l 11¯1 l r5k112r 2 j

l 1 ,¯ ,l r>0

c1
l 1
¯cr

l r

5 (
j 521

k2r

~21!k2r 2 j sj 11~c1 ,... ,cm! (
l 11¯1 l r5k2r 2 j

l 1 ,¯ ,l r>0

c1
l 1
¯cr

l r . ~D9!

Then by~4.28!, we have

]R

]cm
5(

j 50

k2r

~21!k2r 2 j sj~c1 ,...,cm21! (
l 11¯1 l r5k2r 2 j

l 1 ,¯ ,l r>0

c1
l 1
¯cr

l r . ~D10!

By the inductive assumption, it becomes

]R

]cm
5 (

r 11<r1,...,rk2r<m21
cr1

¯crk2r
. ~D11!

Hence we obtain

R5 (
r 11<r1,¯,rk2r<m21

cr1
¯crk2r

cm1R1~c1 ,...,cm21!, ~D12!

whereR1 is a polynomial. SinceR is symmetric with respect tocr 11 ,...,cm , we have

R5 (
r 11<r1,¯,rk112r<m

cr1
¯crk112r

1R0~c1 ,...,cr !, ~D13!

where by settingcr 115¯5cm50 in ~D9!, R0 is determined to be

R0~c1 ,...,cr !5 (
j 50

k112r

~21!k112r 2 j sj~c1 ,...,cr ! (
l 11¯1 l r5k112r 2 j

l 1 ,...,l r>0

c1
l 1
¯cr

l r . ~D14!

By Proposition D.1,R050 sincek115 i .r . Hence
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R5 (
r 11<r1,¯,rk112r<m

cr1
¯crk112r

, ~D15!

which implies that~D8! holds wheni 5k11. Therefore,~D8! holds for alli .r by the principle of
mathematical induction. The proof is completed. j

The identity~D7! is needed in presenting an alternative involutive systemEis’s to theFis’s in
Sec. IV C.
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