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Binary symmetry constraints of th&-wave interaction equations in+11 and 2

+1 dimensions are proposed to reduce tkewvave interaction equations into
finite-dimensional Liouville integrable systems. A new involutive and functionally
independent system of polynomial functions is generated from an arbitrary order
square matrix Lax operator and used to show the Liouville integrability of the
constrained flows of th&/-wave interaction equations. The constraints on the po-
tentials resulting from the symmetry constraints give rise to involutive solutions to
the N-wave interaction equations, and thus the integrability by quadratures are
shown for theN-wave interaction equations by the constrained flows. 2@1
American Institute of Physics[DOI: 10.1063/1.1388898

I. INTRODUCTION

It is a usual practice to utilize the idea of linearization in analyzing nonlinear differential or
differential-difference equatior(see, for example Refs. 1 angl Zhe method of inverse scattering
transform is an important application of such an idea to the theory of soliton equéfiersch
has been recognized as one of the most significant contributions in the field of applied mathemat-
ics in the second half of the last century. The general formulation of Lax pairs is a spectacular tool
of realization of inverse scattering transforrny which one can break a nonlinear problem into a
couple of linear problems and then handle the resulting linear problems to solve the nonlinear
problem.

Recently in the past decade, an unusual way of using the nonlinearization technique arose in
the theory of soliton equatiorfs° Although using the idea of nonlinearization is not normally
considered to be a good direction in studying nonlinear equations, one gradually realizes that the
nonlinearization technique provides a powerful approach for analyzing soliton equations, espe-
cially for showing the integrability by quadratures for soliton equations. The manipulation of
nonlinearization not only leads to finite-dimensional Liouville integrable sysfeMgut also
decomposes infinite-dimensional soliton equations, in whatever dimensions, into finite-
dimensional Liouville integrable systerts:*® Moreover, it narrows the gap between infinite-
dimensional soliton equations and finite-dimensional Liouville integrable systetht® and
paves a method of separation of variables for soliton equatitfiisyhich can also be used to
analyze the resulting finite-dimensional integrable systéfs.Mathematically speaking, much
excitement in the study of nonlinearization comes from a kind of specific symmetry
constraint$*~2’ engendered from the variational derivative of the spectral paraiiétdt.is due
to symmetry constraints that the nonlinearization technique is so powerful in showing the integra-
bility by quadratures for soliton equatioffs?® The study of symmetry constraints itself is an
important part of the kernel of the mathematical theory of nonlinearization, which is also a
common conceptional umbrella under which one can manipulate both mono-nonlineafiaation
binary nonlinearizatioR®

However, all examples of application of the nonlinearization technique, discussed so far, are

0022-2488/2001/42(9)/4345/38/$18.00 4345 © 2001 American Institute of Physics
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related to lower-order matrithere, and in what follows, a matrix is assumed to be squsuectral
problems of soliton equations, most of which are only concerned with second-order traceless
matrix spectral problems. On the one hand, there appears much difficulty in handling the Liouville
integrability®® of the so-called constrained flows generated from spectral problems, in the case of
the third- and fourth-order matrix spectral probleffid>*It is a challenging task to extend the
theory of nonlinearization to the case of higher-order matrix spectral problems. On the other hand,
one also notices that mono-nonlinearization cannot be carried out in the cases of odd-order matrix
spectral problems and even-order, including the simplest second-order, nontraceless matrix spec-
tral problems. Even for even-order traceless matrix spectral problems, it is not clear how to
determine pairs of canonical variables to obtain Hamiltonian structures of the constrained flows
while doing mono-nonlinerization. Therefore, one has to take into account adjoint spectral prob-
lems and manipulate binary nonlinearization for the case of general matrix spectral problems. In
the theory of binary nonlinearizatiohi,there exists a natural way for determining symplectic
structures to exhibit Hamiltonian forms of the constrained flows.

In this article, we would like to establish a concrete example to apply the nonlinearization
technique to the case of higher-order matrix spectral problems, by manipulating binary nonlinear-
ization for arbitrary-order matrix spectral problems associated with\fiveave interaction equa-
tions in both 1+ 1 and 2+1 dimensions. The resulting theory will show a direct way for gener-
ating sufficiently many integrals of motion, and more importantly for proving the functional
independence of the required integrals of motion, for the Liouville integrability of the constrained
flows resulting from higher-order matrix spectral problems.

Let us recall some basic notation on binary nonlinearizats@®, for example, Ref. 33 for a
detailed description Let us assume that we have a matrix spectral problem

dx=Ud=UUuN)p, U=(Uirxr, ¢=(d1,....¢)" 1y

with a spectral parametex and a potentiau=(ul,...,uq)T. Suppose that the compatability
conditions

Uy —V{"+[U,VM]=0, m=0,
of the spectral probleril.l) and the associated spectral problems
¢, =V p=V(u,uy,...N) ¢, VW=V, m=0, (1.2
determine an isospectral&n=0) soliton hierarchy

SH,,
utm=Xm(u)=JGm=Jﬁ, m=0, (1.3

whereJ is a Hamiltonian operator anid,, are Hamiltonian functionals. Obviously, the compat-
ability conditions of the adjoint spectral problem

lﬂX:_UT(U,)\)lﬁ, lﬂ:(lﬂlr---a'ﬁr)T: (14)
and the adjoint associated spectral problems
g, ==V IN=—VOT(Uuy, ..\ (1.5

still give rise to the same hierarchy =Xq(u) defined by(1.3). It has been pointed ctit**that

JS6N/Su is a common symmetry of all equations in the hierar¢hy). IntroducingN distinct
eigenvalues\1,\,,...,.\y, We have

G=U(urgd @, ¢&=-UT(urgy®, 1<s<N, (1.6)
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and
¢§:‘):V(m)(uvuxl"-;)\s)d)(S)v '7[/5:1):_V(m)T(uruX!'--;)\S)dl(S)v 1$S$Ny (17)

where we set the corresponding eigenfunctions and adjoint eigenfunctiogS aand (%, 1
<s<N. It is assumed that the conserved covari@mo does not depend on any derivative wof

with respect tax, and thus the so-called general binary Bargmann symmetry constraint reads as

N Shs
Xm0= 521 Esusd Su’

AU (u,\s)

N
ie., JGy = Jsgl wﬁ‘s”T 0, (1.8

whereug, 1<s=<N, are arbitrary nonzero constants, &g 1<s<N, are normalized con-
stants. The right-hand side of the symmetry constrdir® is a linear combination dil symme-
tries

O\ dU(u,\g) ney

S g7 <s<
EJJ SU Jy 70 1s=s<N.

Such symmetries are not Lie point, contact or LiéeBand symmetries, since)® and
cannot be expressed in termsxgfu and derivatives ofi with respect tax to some finite order.
Suppose thatl.8) has an inverse function

u=tu=T(epW,...,.oMN; gD . M), (1.9

Replacingu with T in the system(1.6) or the system(1.7), we obtain the so-called spatial
constrained flow:

O=UTr)P®, ¢ O=-UTTUN)Y®, 1=s=<N, (1.10
or the so-called temporal constrained flows:
GO =V (TT,... ), P{d=-VOTOT,,.. AP, 1ss=N. (11D

The main problem of nonlinearization is to show that the spatial constrained fld®) and the
temporal constrained flowd.11) under the control of1.10 are Liouville integrable. Then i$(

and ¢, 1<s<N, solve two constrained flowd.10 and(1.11) simultaneouslyu=1 will give

rise to a solution to thenth soliton equatiomtmzxm(u). It also follows that the soliton equation
utmzxm(u) is decomposed into two finite-dimensional Liouville integrable systems,ua+d
presents a Bzklund transformation between infinite-dimensional soliton equations and finite-
dimensional Liouville integrable systems. More generally, if a soliton equation is associated with
a set of spectral problems

by =UD(uN ¢, 1sisp,

then it will be decomposed intp+ 1 finite-dimensional Liouville integrable systems. The above
whole process is called binary nonlinearizatt6ri®

This article is structured as follows. In Sec. II, we will present binary symmetry constraints of
the N-wave interaction equations i1l dimensions, and show Hamiltonian structures and Lax
presentations of the corresponding constrained flows. In Sec. Ill, we consider+thedinen-
sional case. We will similarly construct binary symmetry constraints of ¥h@ave interaction
equations in 2=1 dimensions, and discuss some properties of the corresponding constrained
flows. In Sec. IV, we go on to propose an involutive system of functionally independent polyno-
mial functions, generated from an arbitrary-order matrix Lax operator, along with an alternative
involutive and functionally independent system. Amnatrix formulation will be established for
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the Lax operator, and used to show the involutivity of the obtained system of polynomial func-
tions, together with Newton’s identities on elementary symmetric polynomials. A detailed proof
will also be made for the functional independence of the system of polynomial functions by using
the determinant property of the tensor product of matrices. In Sec. V, two applications of the
involutive system engendered in Sec. IV will be given, which verify that all constrained flows
associated with thad/~wave interaction equations in both+1l and 2+ 1 dimensions are Liouville
integrable. Moreover, a kind of involutive solution of tiéwave interaction equations in two
cases will be depicted. These also show the integrability by quadratures foFwee interaction
equations. Finally, in Sec. VI, some concluding remarks will be given, together with conclusions.

II. BINARY SYMMETRY CONSTRAINTS IN 1 +1 DIMENSIONS

A. nXn AKNS hierarchy and 1 +1 dimensional A-wave interaction equations

Let n be an arbitrary natural number strictly greater than 2. We begin withm the matrix
AKNS spectral problertf

¢ =Ud=U(uN)¢, U(UN)=AUg+Us(u), ¢=(¢1,....40)", (2.)
with a spectral parametérand
Uo=diag ay,...,an), Ui(U)=(Uij)nxn, 2.2

wherea;, 1<i=<n, are distinct constants, ang;=0, 1<i=<n. The standard AKNS spectral
problem, i.e., the spectral problef@.1) with n=2, has been analyzed in Ref. 35, but it cannot
generate anyV-wave interaction equations and thus it is not discussed here. In order to express
related soliton equations in a compact form, we write down the potentées

u=p(U), i.e.,u=(Uy,Ujp,Uz3,Uz1,Uz3,U3)", When n=3,

(2.3
_ T
U=(Up1,U12,U13,Uz7,U14,Us1,Uz3,Uz0, ... Upn—1,Up—15) , When n=4,

in which we arrange the exponents in a specific way, first from smaller to larger of the integers
k=i+j and then symmetrically for each st ,_;|1<i<k—1}.

Let us now consider the construction of the-1 dimensional\V-wave interaction equations
and its whole isospectral hierarchy associated with the spectral praBlémWe first solve the
stationary zero-curvature equation ot

WX_[U!VV]:O! W:(Wij)anv (24)

which is equivalent to

n

Wij Ui (W — W) + kzl (U Wi— Ui Wyj) = N(aj— o)) W;;=0, 1 #],

K#i,j
(2.9
n
Wii,x:kzl (Ui Wi — Ui Wik),
k#i
where 1=<i,j=<n. We look for a formal solution of the form
W= 2 WA W= (WD), (2.6

and thus(2.5) becomes the following recursion relation
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Wi=0, wW=0, i#j, (2.79

n
W+ uy (W = WD) + kzl (UgWR — U W) — (@ —apW{ D=0, i#], (27b
K#0,j

n
Wi H= 2 (U WG = ug Wi D), (2.79
k¢|

where 1=<i,j=<n and|=0. In particular, from the above recursion relation, we have that

W= g;=const, W=0, 1<i#j<n, 2.8
and
wWh=0, Wb= B'_?uij, 1<i#j<n. 2.9
i
We require that
W,-o=0, 1<i,j=n, I=1. (2.10

This condition(2.10 means to identify all constants of integration to be zero while u&ng to
determineW, and thus alW;, =1, will be uniquely determined. For example, we can obtain
from (2.7) under(2.10 that

1 & (BB BB
(2)_ Bi— B k™ Pi k— Bj Cizie
Wl(j (a' _ )Zulj x+ ; _a,J k21 (a'k_ ak_a] ulkukj! 1 Hﬁj n,
k#i,j
(2.11
Wi(iz)—E —zu,kukl, 1<i=n.
It is easy to see that the recursion relati@n7) can lead to
n
2uij&_1uijW(I)+(c9 2U (9 U |)W(I)+ kg]_ [uij&_luikW(kli)+(ukj—uij&_luki)Wi(ll()]

K#i |

+ E [ulja uk] (u|k+u|j‘9 u]k) ] (a|_aJ)W(|+l): i#], (2.12

k#lj

where I<i,j<n, |=1, andg ! is the inverse operator af= 9/9x. This can be written as the
Lenard form

MG,_,=JG,, |=1, (2.13
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whereG,=p(W,, 1) is generated fronW, . ; in the same way as that far, andJ is a constant
operator

J=diag((a;—a3)0¢,(@;—a3)09,(ay—a3)0p), when n=3,

J=diag((a, —a,)0g,(a;—a3)00,(a;—ay) 0g,(@,—a3)0q,....(@, | —a,)0),

n(n—1)/2
when n=4, (2.19

with o being given by

0 1
Oo= -1 0

For example, whem=4, we have
G-y = (WE) W3 WE) WA WE) WL WA WES, . Wik WL, )T, =1, (215

the first of which reads as

[B1=Bz2 Bi=Bz2  PB1=Bs  B1— Bz  B1— B4
= u u u

a—ay, Paj—a, Pa—az Fa—az Ba—a

Go

T
B1—Ba Bn-1—Bn Bn-1—Bn

_ Uigy--; _ Unn-1, _ Un—1n | - (2-16)
a1~y dp—17 ap dp—17 ap

The operators) andM are skew-symmetric and can be shown to be a Hamiltoniar?$Hir.
We proceed to introduce the associated spectral problems with the spectral p(@dlem

¢ =V, VM=V \)=(\"W),, m=1, (2.17)

where the symbol- stands for the choice of the part of non-negative powerns. dote that we
have

Wi =[Ug,W,;11]+[U1, W], =0,

and we can compute that

m

[U,VM]=| AUy+ U, > Ay,
1=0

m

=2, [Uo,WiIA™ 2714 3 [Uy Wi

I=0
m—1 m
=2, [Uo,Wiea ™'+ 25 [Ug WA,
where we have usddJ,,W,]=0. Therefore, under the isospectral conditions

A, =0, m=1, (2.18
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the compatibility conditions of the spectral probldthl) and the associated spectral problems
(2.17), i.e., the zero-curvature equations

Uy —V{M+[U,VM]=0, m=1,
equivalently lead to
Uit =Wimnx—[U1,Wn]=[Ug,Wr+1], m=1.
This gives rise to the so-calleadx n AKNS soliton hierarchy
Uy =Xpn=JGn, m=1, (2.19

whereJ andG,,= p(W,,; 1) are determined by2.14) and(2.13.
Applying the trace identif}?

J' W dX=N"7Y—N\" Wé’U
tr —|ax= 5 tr o)

wherey is a constant to be determined, we can obtain

SH ~ 1
5u' =W, Hyj=— f(alw“*lhrazwg;l>+...+anw(n';1))dx, =1, (2.20
ij

in which 1=i#j=n andy is determined to be zero. In this computation, we need to note that
| (1) () (yy —!
trf W~ :tr(WU0)=I>ZO (o WA+ W+ .+ WO\
and

U
(W—)—tr(WE) W = EWJ(P)C', I<i#j=n,
IJ

whereE;; is annXn matrix whose {,j) entry is one but other entries are all zero. Therefore, the
isospectral hierarchy2.19 has a bi-Hamiltonian formulation

SHp.y  oHpy,
su  Su’

Uy =Xpn=1 m=1. (2.20)

The first nonlinear system in the hierarct®/19 is the 141 dimensional\-wave interaction
equationd’

Bi—B; " (Bi—Bk BB
uij,tlz Fajuij'x_F kgl ( k Pk Pj
K#i,j

)ulkukj, I<i#j=n. (2.22

o) — g ay— aJ
This system is actually equivalent to the following equation in the matrix form

U, =W —[U1, W], (2.23
which can be rewritten as

P, =Qx—[P.Q], [Uo,Q]=[W,,P], (2.24
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whereP andQ are assumed to be two off-diagonal potential matrices. Basd@.28, a vector
field p(SP) is a symmetry 0f2.22) if the matrix SP satisfies the linearized system @.22):

(6P),=(8Q)x—[U1,6Q]—[6P, W] (2.29
with 6Q being determined by
[U015Q]:[W015P]' (22@

The N-wave interaction equatior®.22) contains a couple of physically important nonlinear
models as special reductioffsfor example, three-wave interaction equations arising in fluid
dynamics and plasma physits;*® with U being chosen to be an anti-Hermitian matrix. Its
Darboux transformation has been established in Ref. 44, which allows one to construct soliton
solutions in a purely algebraic way. The Darboux transformation has also been analyzed for the
N-wave interaction equations with additional linear tefths.

B. Binary symmetry constraints in 1 +1 dimensional case

We would like to present binary symmetry constraints of the 11 dimensional\V-wave
interaction equation$2.22). To this end, we need to introduce the adjoint spectral problem of
(2.2):

G=—UTUN G, =), (2.2
and the adjoint associated spectral problen(2o17):
g, =—VT(UN) g, (2.28

whereU and V(™ are given as in2.1) and(2.17), respectively. The compatability condition of
(2.27) and (2.28 still gives rise tou; =X, defined by(2.19.

The variational derivative of the spectral parametexith respect to the potential can be
calculated by(see Refs. 26, 28, or 16 for a detailed dedugtion

5)\—E’1 r Y e, 2 =g ! 1<i#j< 2.29
TR "e"auij_ b, 1si#Fj=n, (2.29

whereE is the normalized constant:
E= f C Mg
=)L e
A direct calculation can show that the variational derivative satisfies the following equation:
1) N
M—=N—. (2.30
Since\ does not vary with respect to time, we have a specific common symdeiky su) of the

hierarchy (2.19. To carry out binary nonlinearization, we take a Lie point symmetry of the
N-wave interaction equation®.22),

Y0==p([F,U1]), F:diaq’)/lv"'i'yn)v (23];'

wherevyy,v,,...,y, are arbitrary distinct constan{X,=JG, is an example witH'=W,). It can
be easily checked that
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(6P,6Q)=([I',U],[T,W1])

satisfies(2.25, and thusY, is a symmetry 0{2.22. Then, make the following binary Bargmann
symmetry constraint

Yo= EJ&\— J 7Y 2.3
0= uEIS =udy mdn (2.32

whereu is an arbitrary nonzero constadtis defined by2.14), and¢ and are the eigenfunction
and adjoint eigenfunction gR.1) and(2.27), respectively. Upon introducinly distinct eigenval-
uesikq,\a,...,AN, We obtain a general binary symmetry constraint

dU(u,\g)

(S) =
au ¢ Zy, (2.33

N
Yo=32 ppdT
s=0

whereus, 1<s<N, areN nonzero constants, artf® and'®, 1<s<N, are eigenfunctions and
adjoint eigenfunctions defined by

O=Uur)d®, yP=-UT(ur)yl®, 1<s<N, (2.34
and
PP =VOuN) ¢,y =-VOT(ur )y, 1<s=N. (2.39

Let us rewrite the left-hand side ¢2.33 as the matrix form

, (2.39

N
SP=p 1(Zy)= [ Uo 1521 s ST

which allows us to prove, by a direct computation as in Ref. 46 but more conveniently, that the
vector fieldZy=p(P) is really a symmetry of thé/-wave interaction equation.22. Now the
symmetry problem is equivalent to showing that

N N
(6P,86Q)= ( Up, 2, pse w“”} ,[Wo, 2, 1t WT} ) (2.37)

satisfies the linearized systef®.25, when ¢® and ¢, 1<s<N, satisfy(2.34 and(2.35. A
detailed proof will be given in Appendix A.
Therefore, we have the following binary symmetry constraint:

dU(u,\g)

N N
Yo=32 pIT——=9¢0, e, [IUi]=|Uo. 2 ps@ydT. (239
s=0 s=1

WhenN and u vary, (2.38 provides us with a set of binary symmetry constraints ofthevave
interaction equation§.22. Let us assume that

¢(S)=(¢lsv¢25a---v¢ns)1—r ’/’(S)z(lr/flsv‘r/fZSv---x'J’ns)Ta (2.39

in order to get an explicit expression forfrom the symmetry constraii2.38), and introduce two
diagonal matrices

A=diaQ)\l,...,)\N), B=diag,ul,...,,uN), (24@
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which will be used throughout our discussion. Solving the Bargmann symmetry con$&&i@t
for u, we obtain

a
Uij =Tij = — y]@“B‘P,) 1<i#j=n, (2.4))

whereB is given by(2.40, and®; andV; are defined by
®|:(¢ill¢i2!"'l¢iN)Tl \Pi:(d/il,l//iz,...,l/liN)T, 1$|$n| (242

and(-,-) denotes the standard inner-product of the Euclidean sp¥ce

Note that the compatability condition (2.34) and(2.35 is still nothing but the 31 dimen-
sional NV-wave interaction equation®.22. Now using(2.41), we nonlinearize the spatial part
(2.34 and the temporal part2.35 of spectral problems and adjoint spectral problems of the
N-wave interaction equatior(®.22. Namely we replace;; with T;; in N replicas of the spectral
problems and adjoint spectral proble2s34) andN replicas of the associated spectral problems
and adjoint associated spectral problef@s35, and then obtain two constrained flows for the
N-wave interaction equation®.22:

O=U@Nrg)d®, ¥&=—-UTUN)PO, 1<s<N, (2.43
and
pP=VOTN) O, §¥=-VITTN)PO, 1ss<N, (2.44
whereti=p((Tjj)nxn) is defined likeu. For example, whem=4, we have

~ i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T
U= (Upq,Uq2,Usz1,U13,U14,Ug1,Up3, U2, U n—1,Un—1p) - (2.49

In order to analyze the Liouville integrability of the above two constrained flows, let us first
introduce a symplectic structure

n

n N
“’2:; quaiudqfi:zl 321 sl Odifis (2.46)

over R?"N, and then the corresponding Poisson bracket

. d9 of _, 99
{f,)=w2(1dg,Idf )= E (<a\lf B lr@>‘<7¢>i'8 W>)

=2§M§1(

of a9 of a9
(91/IIS(9¢IS aqbis‘?wis

), f,ge C*(R*™),
i=1s=1

(2.47)
where the vector fielddf is defined by
w?(X,1df)=df(X), XeT(R>N).
A Hamiltonian system with a HamiltoniaH defined over the symplectic manifol®{"N, w?) is

given by

oH
Y, ={¥; H}=B" 1(9 1<i=n, (2.48

Py ={; H}=~ T

-1
o’

wheret is assumed to be the evolution variable. Second, we need a matrix Lax operator
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LM(N)=C;+D;(N), (2.49
with C; andD4(\) being defined by

Ci=T=diag y1,....7n), DM =(DPN))nun, DIV = E e h o Gistis
(2.50
where 1=<i, j=<n. Note that upon taking binary nonlinearization, we obtain
U(Ti, ) =\Ug+ U (T) = AU+ (Ti; ), nijz%@i,wQ, (2.51)
V(TN ) =AW+ Wy (T) =AW+ (T)), T Bl_ﬁ(g;*ij:i::f;(cpi,aqu), (2.52

where I=i, j=n.

Theorem 2.1:Under the symplectic structure (2.46), the spatial constrained flow (2.43) and
the temporal constrained flow (2.44) for thet1 dimensionalN-wave interaction equations
(2.22) are Hamiltonian systems with the evolution variables x andibhd the Hamiltonians

n

H?Z_ E ak<A(I)k,B\I’k>— <(Dk B\If|><<I)| ,B\Pk> (253
k=1 1sk<lsn Yk—
——k; Bi{ADy BV ) — SKZM 5: Dy B (D) ,BYY), (2.59

respectively, where A and B are defined by (2.40), @h@nd V;, 1<i<n, are defined by (2.42).
Moreover, they possess necessary Lax representations, i.e., we have

(LB, =LU@N), LD, (LD =[VO@N),LD0)], (2.59

where LY(\), U, and VI(\) are given by (2.49)(2.52), if (2.43) and (2.44) hold, respectively.
Proof: A direct calculation can show the Hamiltonian structures of the spatial constrained flow

(2.43 and the temporal constrained flq®.44) with HY andH! defined by(2.53 and(2.54). Let

us then check the Lax representations. By ugihg3, we can compute that

N
(LOO))= )

~ N —\s

N
=3 (U OO gOITU TN

>

1]

e

A, 6O yT]
N
=[um,x>,L<”<x>—cl]—{uo,E Ms¢<s>¢<5”}
s=1
N
=[u(u,x),L<1’(>\)]+[Cl,u(u,>\)]—[uo,El /Lsd)(s)w(s”}

N
=[U(U,x),ul)(x)]+[cl,u1(u)]—{uo,zl Ms(p(s),p(s)r}
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This implies that L®(\)),=[U(@,\),LE(N\)] if and only if

N
[Cl,Ul(U)]=[U0,SEl Msd,(s)l/,(sn}

The above equality equivalently requires the constraints on the potentials shévdin There-
fore, the spatial constrained flol2.43 has the necessary Lax representation defined &6555).
The proof of the other necessary Lax representatiof(\)), =[V®"(T,\),L™D(\)] is com-
pletely similar, and thus we omit it. The proof is finished. |

We remark that the Lax representatid@s55 are not sufficient. Namely, we cannot obtain the
spatial constrained flo2.43 or the temporal constrained flo{@.44) from the corresponding Lax
representation i(2.55. This can be easily observed by considering a special class of solutions of
(2.55. For example, either any vector functio$® with (=0, 1<s<N, or any vector func-
tions (8 with ¢(&=0, 1<s<N, will solve (2.55, but it is easy to see that they do not always
solve (2.43 [or (2.44)] since ¢® and (¥, 1<s<N, have to solve some ordinary differential
equationg ODES9 resulting from(2.43 [or (2.44)].

lll. BINARY SYMMETRY CONSTRAINTS IN 2 +1 DIMENSIONS

A. 2+1 dimensional AN-wave interaction equations

Let n be an arbitrary natural number strictly greater than 2. Similar to the case of+tfie 1
dimensionalN-wave interaction equations, let us begin with the Lax system

Fy=JF+PF, Fi=KF,+QF, F=(fy,....f)7 (3.1
in 2+ 1 dimensions. Here it is assumed that
J:dlanl,,Jn)y K=dlagK1,,Kn), J|:léJJ, K|7EKJ, l$|7é]$n, (32)

are two constant diagonal matrices, dn@andQ are twonXn off-diagonal potential matrices

P=P(X,y,t)=(Pij)axn, Q=Q(XY,1)=(dij)nxn- (3.3
The compatability conditior = F,, of the Lax systen{3.1) reads as
[J.Q]=[K,P], Py=Qy+[P,Q]+JQx—KP,=0, (3.9

which is called the 21 dimensional\A-wave interaction equatiodé. The equation[J,Q]
=[K,P] tells us thatQ can be represented ¥ and vice versa, and so, practically, we have just
one of two potential matrices to be solved. The adjoint system of the Lax sy8té&nis given by

G,=JG,—P'G, G=KG—Q'G, G=(g;,....00", (3.5

whose compatability conditio®,;= G, still gives rise to the 2-1 dimensiona\-wave interac-
tion equationg3.4).

We first use a symmetry constraint of the-2 dimensional\V-wave interaction equations
(3.4) to change the above problem ir-2 dimensions to three problems ir-1l dimensions. As
made in Refs. 48, and 49, we introduce the spectral problems

A, F
¢X:QX(F161)\)¢:()\QE+Q){)¢:( GT 0)¢! (363

dy=0Y(P,F,G,\)p=(NQ+ Q) p= (3.6b

N+PJF
Gy o/"”
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$=Q'(Q,F,G,\)p=(\Qp+Q}) p= (3.60

AK+Q KF
G'K o/"”

wherel , is the nth-order identity matrix andb= (¢4, ...,¢n,bn+1) . The new extended poten-
tials in the above spectral systems consist of not only the original poterRialsdQ, but also the
solutions of the Lax system and the adjoint Lax systeEnandG. The compatability conditions
Dxy= Dyx» Dxi= bix, and gy = ¢y give rise to the 2-1 dimensionalV-wave interaction equa-
tions (3.4), the original Lax systeni3.1) and its adjoint systen(8.5), and the nonlinear symmetry
constraint of(3.4):

P,=[FG",J], Q.=[FG'K]. (3.7

It is easy to check thatdP,8Q)=([FG',J],[FG',K]) satisfies the linearized system of the 2
+1 dimensional\V-wave interaction equation8.4):

[J,0Q]=[K,6P], (6P);=(8Q)y+[6P,Q]+[P,5Q]+I(6Q)x—K(6P)=0, (3.9

whenF andG solve the Lax systen3.1) and the adjoint Lax systeit8.5), respectively. There-
fore, (3.7) is really a symmetry constraint of thet2l dimensional\V-wave interaction equations
(3.4), since both sides of3.7) are symmetries of3.4). Now we see that the original problem in
2+1 dimensions is transformed into three problems i#lldimensions. The spectral problems
(3.6) are our starting point to make a link of the+t2 dimensional\V-wave interaction equations
(3.9 to finite-dimensional integrable systems.

B. Binary symmetry constraints in 2  +1 dimensional case

Let us start from the spectral problems (@8.6), which are similar to those for the11
dimensionalV-wave interaction equatior®.22. The main difference is that the coefficient ma-
trix of \ in the x-part of the spectral probleni8.6) is

Oy =diag(1,...,1,0), (3.9

whose diagonal entries are not distinct. However,ytqgart of the spectral problent8.6) has the
same property as the spectral probl&rl) in 1+ 1 dimensions. Therefore, we use theart of
the spectral problem@.6) to compute the variational derivatives »f

S\ e1yr? ¢ - S\ —p am¢ L33, b 1=izie
— o= /. —_— — b= N/ <] <n,
5p|] 3[)” e 5q” ﬁq” Ki_Kj 7] J
[N _E-1 T&Qy _E-13 [N E-1 E-1 1<i<
of 4 ot p= iPnv1¥hi, 6_9, a 5_9|¢ ibithnr1, 1<i=n,

whereE is the normalized constant, agg= (i1, ...,¢,,¥n+1) " iS an adjoint eigenfunction of the
adjoint spectral problems

A, G
¢x=—(QX(F,G,A))W:—(MQS)T+(QDT)¢=—(FT O)t/f, (3.109
N+PT JG
py=—(QY(P,F,G,\)) =~ (N QY +(Q) =~ £T) o |¥ (3.10b
)\K+QT KG
=—(QYQ,F,G,\))Ty=—(N(Qp) T+ QD y ETK 0 )l// (3.100
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These variational derivatives of give us a conserved covariant and also a clue to compute a
required symmetry, expressed in terms of eigenfunctions and adjoint eigenfunctions.

As in the 1+ 1 dimensional case, upon introduciNgdistinct eigenvaluea ;,\5,...,Ay, We
have

= 0X(u,\g) 61, ¢§5):QY(U,)\S)¢(S), dP=0urgd®, 1=s<N, (3.11

and

== (@9 TIPS, == (@) TUAPO, PP == QYT Uy, 1<s=N,
(3.12

where ¢® and (¥ aren+1 dimensional vector functions:

d’(s):(¢lsv----¢nsr¢n+l,s)Ta (/f(s):(lr/fls-"'yl//nsa(//n+1,s)T: lss<N. (3.13

To carry out binary nonlinearization, we need to construct two special symmetries, one of which
is a Lie point symmetry, and the other of which is not a Lie point, contact or LiekiBad
symmetry, but generated fro3.11) and (3.12. Let us choose a set of+ 1 arbitrary distinct
constantsd,,...,6,,6,+1, and set

A=diag 61,...,6,). (3.19
Similar to the I+1 dimensional case, it can be directly shown that
(6P,0Q,6F,5G)=([A,P],[A,Q],AF = 8,+1F,AG—=6,,1G) (3.19

and

opij= (=P ,BY)), 8q;;=(Ki=K)(P;,BY;), 1si#j=n,
| (3.16
ofi=(P;,BVy.q), 89i=(Pn+1,BY)), 1sisn,

are two symmetries of the equatiof®.4), (3.1 and(3.5. That is to say, that they satisfy the
linearized system of the equatio(®&4), (3.1) and(3.5): the first subsysten3.8) and the second
subsystem

(6F)y=J(6F)x+(6P)F+PoF, (6F)=K(F)x+(6Q)F+QJF,
(6G),=3(8G),—(6P)TG—PT5G, (6G)=K(8G),—(5Q)TG—QTsG, 34
for all solutions P,Q,F,G) of (3.4), (3.1) and(3.5). Here we remind that
B=diag wq,...,un)"

is defined by(2.40), {-,-) denotes the standard inner productidf, and®; and¥; are similarly
defined as

Di=(ir, bizs- i) Vi=(ghir, iz, in)",  ISi=n+1. (3.18

Now a binary Bargmann symmetry constraint(8f4), (3.1) and(3.5) can be taken as
([APDij=(3i=3)(®;,.BY), ([A,QDij=(Ki=K))(®;,BY)), 1<i#j<n, (3.19
(AF =38, 1F)i=(®; B¥,.1), (AG—5,,1G)i=(P,.1,B¥;), 1<is=n. (3.20

This symmetry constraint gives us the following choice for the constraints on the extended po-
tentials
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3,-3; Ki—K; o
Pij:TJij:é:T(;j@’i,B‘l’j% Qij:ﬁij:ﬁ@’iﬁ‘l’j% 1si#j=<n,  (3.21

- 1 .
fi=fi:= (P, BYV.1), 0i=0i=rs——5——(Pn:1,BYy), 1sisn. (3.22
8= 0n+1

5i_ 5n+1
One can express the above symmetry constraint in another way. Actually, it can be proved that
(6P,5Q)=([A,P1[A,Q]),
and under the constraii(8.22),
5p|J:(\]|—J])<(D|,B\PJ>, 5q|J:(K|—KJ)<q)|,B\I’]>, 1S|¢an,

are two symmetries of the-21 dimensional\V-wave interaction equation8.4).

Now plug the above expressions for the extended potentialg]) and (3.22), into the
spectral problem$3.6) and the adjoint spectral problen(.10, and then we get the constrained
flows

d)E(S)ZQX(”'f,é,)\S)qb(S), (/,&S):_(QX(E,G,)\S))H#(S), (3.23
P=PF.C )P, ¢P=— (P F.Gr)) Ty, (3.24)
pP=0QF.Gr90®, yF=—(QYQ.F.GA) Ty, (3.2

where

P=@®inxn: Q=@ pnxn, F=(Fr,..F0", G=(@1,... 5" (3.26

All these three constrained flows are systems of ordinary differential equatiops eihd i,
1<i=n+1, 1ss=<N.
We introduce the symplectic structure

n+1 n+1 N

w?= 21 BdCDiDd\Ifizizl 521 sl i Od s (3.27

over R2M™* YN The corresponding Poisson bracket and the corresponding Hamiltonian form with
the HamiltonianH and the evolution variable are similarly taken as

n+1
of ag af ag
= . p1 2\ _ ([ Rp-1_=2 o p2(n+1)N
{f.g} iZl(<m1,i,8 r?<bi> <r9<bi’B Ni>), f,geC*(RZOTIN) (328

oH
Y, ={¥; H}=B !'—, 1<is=n+1 (3.29

oH
By ={d; H}=—B 1 e

P

Similar to Theorem 2.1, we have the following.
Theorem 3.1: Under the symplectic structure (3.27), three constrained flows (3.23), (3.24)
and (3.25) are Hamiltonian systems with the evolution variables x, y and t, and the Hamiltonians

n n

1
Hi=—2 (AP BV =23 = (®y BV o) (@1 BV, (330
= = n
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n
J—J
E J(AD,BY,)— 2 : I<q)k'B‘1’|><q)|,B‘I’k>
k= =<k<l=n 5k_5|
n
— 2 5 (PBY )P BYY, (3.3)
n
=— > KAy ,BY¥})— <q)k BY (P, ,BYy)
k=1 1=k<l=n 5k
n
<¢)k BY i )(Pri1,BYy), (3.32

=1 6k~
respectively, where A and B are defined by (2.40)and ¥, , 1<i<n+1, are defined by (3.18).
Moreover, they possess the necessary Lax representations

(LA =[QXF,G.\),LON)], (3.33
(LGN, =[QY(P,F,GN),LEMN)], (3.34
(L), =[QYQ,F,G\), LD, (3.35

respectively, where PQ, F and G are given by (3.26), (3.21) and (3.22), anéX(\) is defined
by
L@(N)=C,+Dy(\), C,=diagA,s,.;)=diagdy,...,0n,0n+1),
(3.36

N

D2:(Di(j2))n+l,n+1a Di(jZ):

1<i,jsn+1.

S
s=1 )\_)\s

Proof: It can be verified by a direct calculation that all three constrained fl@&3—(3.25
have the Hamiltonian structures under the symplectic stru¢Bi2g) with the Hamiltonian func-
tionsH%, H¥ andH), shown in(3.30—(3.32. Let us now check three Lax representatict®.83—
(3.35. Since the proofs are similar for all three cases, we just show the second case, i.e., the Lax
representation of the constrained fl§8:24). By using(3.24), we can compute that

N

(LA0)),= 3, T (29T 6O yT)

N

=3 B R BN 0PI ¢OgITI(BE B )
S

s=1

N
Ms

“F‘)jiyé!)\s)l(ﬁ(S) l//(S)T]

s=1

P,F,G\), 09 yOT—[QY(P,F,G,\)

~Q(P.F.G\), 49y

N
[QY(P,F,G\),LP\)-C,]— [Qy’El prCrCl

N
[2Y(R,F.GN).LAM]-[Q f’ﬁ,é»cz]—[m,zlMs¢<s>w<5”]
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Therefore, it follows thatl(®(\)),=[QY(P,F,G,\),L@(\)] if and only if

N
[C. (B FE)] [ 3 byl

This equality equivalently requires the nonlinear constraints on the potentials defin@®Rly
and (3.22. Therefore, the constrained floi8.24) has the necessary Lax representation shown in
(3.34). The proof is finished. |

We also remark that the Lax representatié®83—(3.35 are not sufficient to generate the
corresponding constrained flows defined(By23—(3.25), since the Gateaux derivative operators
of the Lax operator§)*, 1Y and Q! given in (3.23—(3.25 are not injective. However, it will be
shown that they are good enough in generating integrals of motion of the constrained flows.

IV. AN INVOLUTIVE AND FUNCTIONALLY INDEPENDENT SYSTEM OF POLYNOMIAL
FUNCTIONS

Let m be an arbitrary natural number. We start fromrath-order matrix Lax operator
L(N)=L(N;Cq,....Lm)=C+D(N), 4.0
with C andD(\) being defined by

C=diagcy, .. &m), DOV =(Djj(M)mxm, Dij(A)= EA N, Disthis:  1=ij=m.
(4.2)

Herec;, A, and ug are arbitrary constants satisfying

sz

| 1s#0, N, 1<i#j=<N, (4.3

and ¢;s and y;s are pairs of canonical variables of the symplectic manifdld"(", w?) with the
symplectic structure

m N
:;1 521 msdisLid s . (4.4

The corresponding Poisson bracket reads as

m N
of 9 of 9
{f.g}=w?(Idg,Idf) :2 > out g g f,ge C*(R2™). (4.5

&7 s adis ddis o)’

A. r-matrix formulation

As usual, two special matrices defined by the tensor product of matrices are chosen as
LiM)=L(M)®1n,  La(u)=1n®L(w), (4.9
wherel ,, is the mth-order identity matrix, and

(A®B),J’k|=a|kbj| if A=(a”) and B:(b”) (47)

We want to find arm?xm? matrixr=r(\,u) so that we have an-matrix formulatior?®->*
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{LOVSL(I=Ir(\ p),Li(N) +Lp(w)], (4.8

with the Poisson brackdlL (\)©L(u)} being defined by

({L()\)@L(ILL)})”’k|:{L|k()\),LJ|(M)}:wZ(IdL”(/.L),Idle()\)), 1S|111k1|$m! (49)

whereL = (Ljj)mxm iS assumed. Let us first compute;; (N),L(u)}. Wheni#1 andj #k, itis
easy to obtaifL;j(\),L(x)}=0. Wheni#| andj=k, we have

d’is ’pls
FoN=Xs =X,

N
{Lij()\)ijl(M)}:SZl

N
:E 1 Hs — Ms bisth
& M_)\ )\_)\S M_)\S is?ls

1
ZMT)\(LH()\)_LH(M))-

Similarly, wheni=1 andj#k, we have

S s e 1
(L O L= = 2 ey == (g () = L),

and wheni =1 andj=k, we have

N

{Li,-<x>,L,-i<m}=S§1 Ks

¢is ¢is % ‘pjs ¢js

_ N My _

A—Aspu—Ns $=1 AN—Ns = Asg

1

:m[(Lii()\)_Lii(ﬂ))_(ij()\)_ij(M))]-

Therefore, we obtain

(0, wheni#l, j#k;

1 . .
MT)\(LK](,LL)_LM()\)), when i=1, j?ﬁk,

(i) b} =9 0Ly, wheni#], =k

1
H[(Ln(K)—Ln(M))—(ij(?\)—ij(,u))], wheni=l, j=k.
(4.10

\

In view of this property, we claim that
m

1
()= P P pﬂZzl Epq®Eqp (4.10)

whereE is anmxm matrix with the (p,q) entry being one but the others, zero. Let us second
compute that
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1
([—ﬂ_xP,Ll<x>+L2<u>D”‘kl
1
= ﬁ([PyLl(M]+[P1L2(M)])ij,k|
1 m
= 2, ((Epar L VIO Eqpt Eqp®lEpq L(1) Dy

1 m
= ﬁpqzzl ([quxL()\)])ik(Eqp)jl +(Eqp)ik[quaL(M)]jI

1
= m([Eu L) Tt [Exi L) I

where we have usedA@B)(A’'®B’)=(AA’)®(BB'). Further noting that

gth
B 0 _Llp ces 0 =
[Epg L]1=Epel —LEpg=pth| Lar = Lagg=Lpp = Lam|,
| O Linp 0 |
we have
([ ! P,Li(N)+Lo( )D
N bk 2l
B A ij Kl
(0, wheni#l, j#k;
1 . .
H(ij()\)_l-jk(ﬂ))y when i=I, j#k;
={ 1 _ _ (4.12
ﬂ(—LuO\)H—n(M)). wheni#l, j=k;
1 . .
LIMT)\[(l-jj()\)_|—ii()\))+(|—ii(,‘U«)_|—jj(M))], wheni=I, j=k.

Now (4.10 and(4.12 shed right on the following theorem.
Theorem 4.1:1f L(A\)=L(\;cq,...,Cy) is defined by (4.1) and (4.2), then thematrix for-
mulation

1 m
LOFLEY =l w LSl t IneL(w)], 1=—=5 2 EjeE; (4.3

holds for arbitrary constants Gc,,...,.Cy-
It follows from (4.13 that

LYV ()} =[r* (N w), Li(N) +La(w)], k=1, (4.14

wherer®!(\,u) is given by?
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k |
=2 21 L5 OOLY () r O w) L P OO LE H(w). (4.19

Since forA=(ajj) mxm andB=(bjj) nxm We have

tr{A®B}= 2 (A®B}; ;= 2 {aji ,b;}={trA,trB}, (4.16
we can compute, based &h.14), that
{trL*, trL!(w)}

=tr{L*V) PL ()} =tr* (O, w) Li(V) +Lo(1)1=0, k,1=1. (4.17

This will be used to generate an involutive system of functions defined over the symplectic
manifold (R?™N, w?) for any natural numbem.

B. An involutive and functionally independent system
Let us begin to construct an involutive system of polynomial functions by expanding
de( vl = L(\)=p"—FHpm 14 F@pm-24 g (—1)"FM  p=const, (4.18

where F(', 1<k=m, must read as

Liyin L, - Lig

‘ ‘ j2j1 Lj2j2 szjk
]:&):].‘g\)(cl,___,cm)z _ 2 _ . . . : ,  lsk=m.

1sjy<jp<<jg=m [ * : o

Lia  Lid, Ly

(4.19

ij
Here we mention once more that= (L;;) mxm is assumed. We define bilinear functio@g on RN

L il
QA Z sy, = Js Z (Ad; BI)N'"L, 1<i,j<m, (4.20

whereA andB are given by(2.40, and®; andV; are defined as before,

(D|:(¢ili¢i21"'=¢iN)T= \I}i:(lpil,lpiz,---,wiN)T, 1<is=m. (421>

Then we have

ij
=> (Ad, BYHN'"1=Q,, 1<i#j=m,

1=0

i
+> (A'D; BYIN'"I=¢+Q,, 1<i=m.

=0

Therefore, the system of functiots(¥ is transformed into
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Jai1 ji2 jik
Ci1+ Q A Q A Q A
J2l1 Jal2 J2ik
c..+Q,y
Fo— Q. i Qr | 1<k=m. (.22
1<j1<jo< - <j=m . . .
i1 2 Tk
Q. Q. Cj .t Qux

A set of more concrete formulas for computifig” will be given in Appendix B. Now we further
expandF® as a power series of A/

FR=F®(c,..cm=2 Fu(Cp,ocomh ™!, 1<k=m, (4.23
EY)
Based on the formulas O’f";\k) in Appendix B, it is not difficult to find that
k
Fro=Fwo(C1se-- Cm)= E _ II Cj
1<j1<jp,<---<jg=m p=1 P
Fru=Fu(C1,...Cm)
min(k,1) K
= > > > II
1<j1<jo<--<jp=sm r=1 1<ii<i,<---<i, <k p=1 P
p#ig,ig, i
1 I 12 I Iy 1
% 1 2 2 T2 Iy 2 =1
pitpat-tpe=I-r , ,
P1.p2,,pr=0
Il Ir I2 II’ Iy Il‘
(4.29

which are all polynomials in the canonical variablgg and s, 1<i<m, 1<s<N.

Theorem 4.2: For all constants g,c,,...,C,, the polynomial functions inp;s and s,
1<i=m, 1=s<N: F;/(cq,....Cy), 1<i=m, I=1, defined by (4.24), are in involution in pair with
respect to the Poisson bracket (4.5).

Proof: On the one hand, by using Newton’s identities on elementary symmetric polyndmials

L) = FOG M)+ FRG )+ + (DTG0 + (- D)%FI=0,
where I<k=m and
LM=trL'(A), 1<i=m,
we can have

FO=FLUGMN) LM, 5(V),  Lsks=m. (4.29

Therefore, we can compute that
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{FO,FM=1FOL N, L), Gl FOE (), L), L ()}

oF (O FO
I¢i(N) 9¢;(w)

{trL'(\),tr Li(w)}=0, 1<k,i=m.

SE

The last equality is a consequence of the involutivity @h ), 1<i=<m, shown in(4.17. On the
other hand, we have

{]:gk)J:S)}:IJZ:O {Fi Fihn ™ w

It follows that the polynomial functions; =F;(c4,...,Cy), 1<i=m, |=1, are in involution in
pair with respect to the Poisson brackéi5). |

Let us now go on to show the functional independence of the polynomial functions
Fis(C1,..-.Cm), 1<i<m, 1<s<N.

Theorem 4.3:If all constants g,c,,...,C, are distinct, then the polynomial functions ¢is
and s, 1<i=m, 1=s<N: Fs(cq,...,.Cy), 1=<i=m, 1=s<N, defined by (4.24), are functionally
independent over a dense open subsetd.

Proof: Let P, be a point ofR>™N satisfying

wheree is a small constant. Keef@.24) in mind, and then at this poirRy, we obviously have

&Fisl Jd !

i
= (AS1™ 1<I) BY. ) +0O(e?
s, 0i/fsz1<jl<Jz<---<ji<mqZSEI i)+ ()

=g > Cj,Cj, " °Cj,_ 1)\51 l,usZJrO(sz), (4.26)

1<J1<]2< <jj_i=m S2
a2 di—1#]

where 1=i,j=m, 1<s,;,5,=<N. In the above computation, only the term witk-1 in the ex-
pression(4.24) of F;s contributes to the first-order term ef Let the matrix®y be defined by

On=(0nxn, O =M, 1=ij=N,

whose determinant is easily found to be

N
det®w =11 m I1_ (=2

<i<j<

Then at the poinP, the Jacobian of the functiorFaSl with respect tay;s, can be computed as
follows
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A(F11, FanaFor W Fony s Fme - Fn)
A1, s Yor v on sy s ¥mas s Ymn)

m m

Oy > Oy E ciciOn - ] 0y
=2 2<i<j=m i=2
m m

CIN > c0y E ciciOn ..o ] 0y

:SmN =1 1<i<jsm i=1 +O(8mN+1)

i#2 i,j#2 i#2
m—1 m—1

On CiOy P> ciciOy - [] oy
i=1 I<i<jsm-1 i=

= £™Nde(Q,,® @) + O(e™NF 1)

=&™N(det Q)" (de( @)™+ O0(e ™)

N
=e™ [T (ci—cp)MI wi ITI  Oy=r)m™+0(e™*h,
=1

I<i<j=m I=<i<j=N

where we have used the determinant property of the tensor product of matrices and the determi-
nant result of the matriX),, in Appendix C. This allows us to conclude that if the constants
C1,Co,...,Cy are distinct, the above Jacobian is not zer®@iwhene # 0 is small enough. Since

the Jacobian is a polynomial function ¢fs and ¢;s, 1<i=<m, 1<s<N, it is not zero over a
dense open subset &?™N, Therefore, the function§s, 1<i<=m, 1<s<N, are functionally
independent over that dense open subsdét?8¥. The proof is completed. |

C. An alternative involutive system to the Fis's

We would like to express the involutive system of the polynomial functiépsin another
way, and so we introduce

So(v1,um) =1, (4.273

v, lsksm, (4.27H

Sk(vli."VUm): 2 Uj .. o

1<j;<jp< - <je=m !

s(vi, -, vm=0, whenk=m+1 or ks—1, (4.279

wherevq,v,,...,0, arem numbers. Obviously, fom=2, we have the following relation:

S (V1 m)=UmSk—1(V1y- - Om_1) TSV 1,0 m_1), KeZ (4.28
Let us now define

i—1
Ey=Fu, Ei=(—1)""Fy+ 2> (—1)*1si(Cq,on C)Einjy, 122, 121 (4.29
<1

From (4.29, we can have

i—1

F”:ZO(_1)i7i+1Sj(Cl,...,Cm)Ei,jJ, |,|>l (43@
|=

Therefore, by Proposition D.2 in Appendix D, we obtain
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Ei=Ei(cy,...Cm)

min(i,l)
_ 1yt cligle.. .ol
21 ( ) 1sjl<j22~<jr<mI1+I2+~E~+Ir:i—r Il Ir
I1dp, 1, =0
<Ap1q)j1'Blel> (APZ(I)].Z,B\IIM) (Apr(I)J-r,B‘Ph)
. <AP1(I)J.1,B\;[II.2> <AF’2(I)J.2,B\IIJ.2> <APr(I)J-r,B‘I’jZ>
p1tpot-tp=I—r . ,
p1.p2. pr=0
pren (AP BW ) (AP2d; BW;) ... (APrd; BV, )

(4.3)

where I<i=<m and|=1. Obviously, eactE; is a linear combination of th&,;’s, and hence
{Eix,E;j}=0 holds for all I=i,j<m andk,|=1. This means that the polynomial functioBs,
1<i=m, 1=s=<N, are also in involution in pair.

In order to show the functional independenceéegf, 1<i<m, 1<s<N, similar to the proof
of Theorem 4.3, leP, be a point of R2™N satisfying ¢is=¢, 1<i<m, 1<s<N, wheree is a
small constant. Then at this poiRy, we have

aEis .
o 1:sc;*1x§;*1M32+0(82), 1<i,j<m, 1<s,;,s,<N. (4.32
1S,

Hence a direct argument can give rise to

A(Eq1,  E1nyE21Eony Bty Emn)
(?(‘10111'” vlzblel//ZL'” 1‘/’2N1'” 1wmli'” 1me)

:smN]:I;L w1l ()\j_)\i)m 11 (Cj—Ci)N+O(8mN+1). (433

Therefore, ifc,,cs,...,Cy, are distinct, the above Jacobian is not zer&®gtwhene #0 is small
enough. This implies that the functiof§s, 1<i<m, 1<s<N, are functionally independent
over a dense open subsetiRA™N,

Let us sum up these results in the following theorem.

Theorem 4.4: All polynomial functions ing;s and ¢;s, 1<i<m, 1<s<N: E;(cq,....Cp),
1<i=m, |=1, defined by (4.31), are in involution in pair with respect to the Poisson bracket
(4.5) for all constants ¢,c,,...,.C,. Moreover, among them the polynomial functions
Eis(Cq,....Cm), 1<i=m, 1<s<N, are functionally independent over a dense open subset of
[R2™N for distinct constants £,C,,....Cr-

Note that all polynomial function§; are also linear combinations of tlg,’s. The above
theorem actually shows us an alternative to the involutive and functionally independent system of
the polynomial functions=;;, 1<i=m, 1<s<N. The E;;'s have the compact form for the
constantgy,C,,...,Cy, and thus it is more convenient to deal with them.

V. LIOUVILLE INTEGRABILITY AND INVOLUTIVE SOLUTIONS

Let us now turn to establish the Liouville integrability of the obtained constrained flows, and
to present involutive solutions of th&-wave interaction equations in both+1L and 2+ 1 dimen-
sions. The involutive system of the polynomial functions

Fis=Fis(C1,....Cm), 1<i=m, 1ss<N\,

alternatively
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Eis=Eis(Cqy...Cn)y, 1<i=m, 1ss<N\,

will play an extremely important role in the following discussion.

A. Liouville integrability of the constrained flows

For the 1+ 1 dimensional case, we have the matrix Lax operator as defing@.49 and
(2.50, i.e.,

LB =LDN;y1,070) =Ca(y1,..,70) +D1(N),
whereC; andD;(\) are given by(2.50. Note that

According to Theorems 4.2 and 4.3 for the casen and ci=7v;, 1<i<n, we know that
Fis(71,---,7n), 1<i=n, 1<s<N, defined by(4.24), are functionally independent over a dense
open subset oR?"N and in involution in pair with respect to the Poisson braq@et?), i.e.,

" af a9 of ag
_ 2 g1 B [ g1 2
a3 {755 5~ (72 o)

Theorem 5.1: Let y4,7¥,,...,v, be n distinct numbers. Then the spatial constrained flow
(2.43) and the temporal constrained flow (2.44) of the 1 dimensional\NV-wave interaction
equations (2.22) are Liouville integrable Hamiltonian systems, which possess involutive and func-
tionally independent integrals of motion

, f,geC*(R?"™N),

Fis(y1,--0vn), 1<i=n, 1<s=<N,
defined by (4.24) in the case
m=n, c¢;=v;, Il<i=sn.

Proof: From the necessary Lax representations of the spatial constraine@fk8v and the
temporal constrained flow2.44),
(LOOV))=[UEN),LDN)], (LEN) =[VO@N), LD,

4

which are shown in Theorem 2.1, we can obtain
(LD )=[U@N),(LDO))T, (LD =[VE@N), (LB, i,j=1,
and thus we have
(r(LDO)) )= tr(LPO)))y=tUEN),(LP())T=0, i=1,
(LB, =tr((LDO))) =t VDT, N), (LD (V) ]=0, j=1.

Therefore, 7{¥(y4,...,y,) are all generating functions of integrals of motion(3f43 and(2.44)
in the light of the expression4.25 determined by Newton’s identities. It follows that
Fis(¥1,---¥n), 1<i=<n, 1<s<N, are all integrals of motion of the spatial constrained flow
(2.43 and the temporal constrained flq®.44). Note that all constantg;,v,,...,y, are distinct.
Therefore, Theorems 4.2 and 4.3 in the casmefn andc;= y,, 1<i<n, together with Theorem
2.1, show that the spatial constrained fl¢2v43 and the temporal constrained floi@.44) are
Liouville integrable Hamiltonian systems, which possess the involutive and functionally indepen-
dent integrals of motiofris(y4,...,vn), 1=<i=<n, 1<s<N. The proof is finished. |

We remark that from the Lax representations shown in Theorem 2.1, we have
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(vl =LA\ =[U@N), vl,—LEN)],
(v1n=LDO)) =[VE(T,N), w1, = LBV

for any constant. It follows®* that det¢l,—L™®())) is a common generating function of integrals
of motion of the constrained flow@.43 and(2.44, and thus so ar& ¥ (y,,...,y,), 1<k=n.
This is an alternative proof for showing th&‘t{k)(yl,...,yn), 1<k=n, are the generating func-
tions of integrals of motion 0f2.43 and(2.44).

For the 2+1 dimensional case, a completely similar argument can give rise to the following
theorem on the Liouville integrability of the constrained flo@8s23—(3.25 of the 2+1 dimen-
sional N-wave interaction equation8.4).

Theorem 5.2:Let 64,...,6,,6,.1 be nt 1 distinct numbers. Then all three constrained flows
(3.23)-(3.25) of the2 + 1 dimensionalV-wave interaction equations (3.4) are Liouville integrable
Hamiltonian systems, which possess the involutive and functionally independent integrals of mo-
tion

Fis(81,--:60,00+1), 1<i=n+1, 1<s<N,
defined by (4.24) in the case

m=n+1, ¢=4,, l<isn+1.

B. Involutive solutions of the ~ A/-wave interaction equations

We would like to show that the constrained flows provide involutive solutions tavieave
interaction equations in both+11 and 2+ 1 dimensions. For the41 dimensional case, we have
the following result.

Theorem 5.3: If ¢is(X,t1) and ¢is(x,t1), 1<i=<n, 1<s<N, solve the spatial constrained
flow (2.43) and the temporal constrained flow (2.44) simultaneously, then

aj—a

y'j(CDi(x,tl),B\Ifj(x,tl)), 1<i#j<n, (5.1)
]

Uij(X,ty) = ——

with ®;(x,t;) and ¥;(x,t;) being given by

Di(X,t) = (P11 (X, 1), din (X)) T, Wi t) = (i (X,ty), - .. (X, t)T,  1si<n,

solve thel+1 dimensionalV-wave interaction equations (2.22).

Proof: Note that the ¥ 1 dimensional\V-wave interaction equation®.22) is the compat-
ability condition of the spectral problerf2.1) and the associated spectral probl€l?) with
m=1 or the adjoint spectral problefi2.27) and the adjoint associated spectral problgh28
with m=1 for whatever potentiall. Therefore, the * 1 dimensional\V-wave interaction equa-
tions (2.22) are also the compatability condition of the spatial constrained f@w3 and the
temporal constrained floW2.44) under the constrain2.41). Now ¢;s(X,t;) and ¢;s(x,t;), 1<i
<n, 1<s<N, are assumed to solv@.43 and (2.44) simultaneously, and thus the potential
defined by(5.1) must satisfy the compatability condition of the spatial constrained ffo48 and
the temporal constrained flov2.44). This means that the potential defined (B1) must be a
solution to the B-1 dimensional\-wave interaction equation®.22). The proof is finished. B

We remark that a direct computation can also show the above theorem. Fot thelithen-
sional case, a similar deduction can give rise to the following theorem.

Theorem 5.4: If ¢is(X,t) and ;s(X,t), 1<i=n+1, 1=s<N, solve the constrained flows
(3.23)-(3.25) simultaneously, then
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J—J
Pi(xy.1) = 5= (Pi(xy.).BY (xy.), 1<i#j=n,
i j

(5.2

K
S0y, 0.BY(xy,D),  L=i#j=n,
j

(Xy,t) “o
.. X, y =

q” y 5i_
with ®,(x,t) and ¥,(x,t) being given by

(I)i(xvt):(d)il(xit)v'"1¢iN(X1t))T! \Pi(xit):(wil(xvt)l'"llJIiN(X!t))TI 1Si$n+1,

solve the2+ 1 dimensionalNV-wave interaction equations (3.4)
Also, one can find that

fi <q)i!Bq,n+1>! <(Dn+lvB\Pi>l l<i=n (53)

REET 9 i

provide a solution to the Lax syste(8.1) and the adjoint Lax systert8.5 with the potentials
given by (5.2). What's more,(5.2) and (5.3) automatically satisfy our first symmetry constraint
(3.7).

In the following theorem, the solutions given in Theorems 5.3 and 5.4 are shown to be
involutive.

Theorem 5.5: The Hamiltonians B and Htl1 of the constrained flows i+ 1 dimensions,
defined by (2.53) and (2.54), are the second-order polynomial functiong @f,E..,y,), 1=<i
=n, |=1,2,and thus they commute, i.e.

{H{,H =0, (5.4)
where the Poisson brackét, -} is defined by (2.47). The Hamiltonians HHY and H, of the
constrained flows ir2+1 dimensions, defined by (3.34B.32), are also the second-order poly-
nomial functions of E(8y,...,6,,0,+1), 1<i=n+1,1=1,2,and thus they commute with each
other, i.e,

{H3,HY} ={H3,Ho} ={H},H3} =0, (5.9
where the Poisson brackét, -} is defined by(3.28).

Proof: Directly from the explicit expressiot4.31) of the E;¢’'s, we have

m
Ein=> ¢ X®;BY)), 1<ism, (5.6)
j=1

m
Eiz:jzl C;_1<A(I)J ,B\I’J>

cl-l_¢i-1
= 3 (@) BY (D BYY)— (D) BV (D ,BY))
1<j<ks=m  Cj—Cg ! ! ] i
m m [—1
=2 ¢l X (D BY;NDy BV, 1<i<m, (5.7)
=1 J,_k:kl Cj—Ck
]#F

where thef's are defined as follows:
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m
1
&§=(AD; BY))+ 2 — (P BY (P, BY)), 1<j=m. (5.8
“c—
Now solving (5.6) for (®; ,B¥;), 1<i<m, leads to

I

<(Di 1B\Pi>=

m
)21 (=)™ sy i(Cy,evnCim1,8i Civaree CEjr,  1sism,

(5.9

where thes;’s are defined by(4.27 and ¢; means thatc; does not appear. Therefore, each
(®;,B¥;) can be expressed as a linear combinatiok;gf 1<i<m. Similarly, solving(5.7) for
&, 1sj=m, leads to

gi:(l_[ )Z ( 1)m_jsm—j(cll---lci—lléi!Ci+11"'!cm)

1CG—C =1
r#i

]—1
( 2+2 C<q>k,5xpk><q>|,5qf|>, 1<i<m. (5.10
kI 1 |

This expression together witl.9) implies that eaclf; can be expressed as a linear combination
of E;; andE;,, 1<i=m.
In the 1+ 1 dimensional case, we hawe=n, ¢;=1v;, 1<j<n. Hence

1
=17~ Y
k%]

The HamiltoniandH’ and Htll in Theorem 2.1 can be easily expressed as

n n
—k; &, Hi= —k; B (5.12

where the&,’s are defined by5.11).

Likewise, in the 2+ 1 dimensional case, we hame=n+1, C;= 9

i, 1lsjs=n+1. Hence

1 1
§- <A<I>,,B\If>+2 55 () BB BY )+ 5 () BV )0 BY ),
k J
1<j=n, (5.13
! 1
En+1= <A<I>n+1,B\I’n+1>+E 5—<q)n+1,B‘I’k><q)k,Bq’n+1>- (5.14

n+1

The HamiltoniangH%, H% andH), in Theorem 3.1 can be expressed as

n

n n
— > &, HY=—2 J&, HL=—2 K&, (5.15
k=1 k=1 k=1

where theg,’s are defined by5.13.
Therefore,H’ and Htl1 are linear combinations d&;(y,...,yn), 1<i=n, =12, and
X, HY andH}, are linear combinations &;(6;,...,6,6041), 1<i=n+1, 1=1,2. It fol-
lows from Theorem 4.4 thatiX andH}! are in involution, andH’, HY andH} are in involution
in pair, too. The proof is finished. |
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We remark that a direct computation can also give a proof for the involutive property of the
Hamiltonians of the constrained flows in botht1l and 2+1 dimensions. Only a new set of
equalities

aj_ai bk_bi ax— q; b] b .

— +cyc|e(| i,k)=0, 1<i,j,k=n,

Cj_ci Ck—C; Ck—C; C] Ci
has to be utilized, whera; , b;, andc;, 1<i<n, are arbitrary constants. This just needs a direct
check, too. However, the proof of Theorem 5.5 also gives rise to the explicit expressions for all
Hamiltonians of the constrained flows in both-1 and 2+ 1 dimensions, in terms of the integrals
of motion E;s .

Now if we denote the Hamiltonian flows of the spatial constrained w3 and the tem-

X 4
poral constrained flow2.44) by g)'jl and g?l , respectively, then the above theorems present a
kind of involutive solution to the +1 dimensionalV-wave interaction equation®.22):

@@ X HL HX H1
Ui (X,ty) = ﬁ@lxlgt 100,919, 1 BW o)
J

i
Wt t
a;— 1 1H

e y<g 1g"iDy0,0M gl B ), 1=i#j=n, (5.16

where the initial valuesb,; and ¥, of &; and ¥; can be taken to be any arbitrary constant
vectors of the Euclidean spad®'. Similarly, if we denote the Hamiltonian flows of the con-

X y t
strained flowq3.23—-(3.25 by g)'jz, g;'Z, andg?z, respectively, then the above theorems present
a kind of involutive solutions to the 21 dimensional\V-wave interaction equation8.4):

Ji—J; Ha oMY Hag H H>
Pij (%)= 5—5(0,%9,°9, .og g °9, B‘P,o>
i Y

Ji—J; HY HS H} HY HL HE o =
= 539,79, 79, %P 10,9, 9, g, BV jo)
i 9
Ji=Jdj W W Ry HY HY
= S Lglag g e 0,072 gl iR )
i 9
=- l$i¢j$l’l, (5.17)

Hy HY H3 HY HS

q.,(xt)—(S 5(9 0o} ,0,010) %0} B )

Ki=Kj WY WY WA= WY WY R —
= ﬁw;gt 29,2®i0,0,°g, 20, 2BV jo)

K=K W wE Ry Hy HYo o
= 19,0, %0, * P10, ngzgyqu,J0>

=, 1I<i#j=n, (5.18

where the initial value®;, and¥;, of ®; andW¥; can also be taken to be any arbitrary constant
vectors of the Euclidean spade'.

Note that all constrained flows in both+1l and 2+1 dimensions are Liouville integrable,
and that the initial values ab; andV;, 1<i=<n, can be arbitrarily chosen. Therefore, together
with Theorems 5.1 and 5.2, the above involutive solutions also show us the richness of solutions
and the integrability by quadratures for théwave interaction equations in both+1l and 2
+1 dimensions. Of importance is of course that binary symmetry constraints decompose the
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N-wave interaction equations in botht1l and 2+1 dimensions into finite-dimensional Liouville
integrable Hamiltonian systems, and the resulting involutive solutions present ¢kkiBe trans-
formations between thé/-wave interaction equations in both+-1l and 2+1 dimensions and
these finite-dimensional Liouville integrable Hamiltonian systems.

VI. CONCLUSIONS AND REMARKS

We have introduced a class of special symmetry constrgi2t3g in the 1+ 1 dimensional
case, and3.19 and(3.20 in the 2+ 1 dimensional case, for th&-wave interaction equations in
both 1+1 and 2+1 dimensions. These symmetry constraints nonlinearizentke spectral
problem and adjoint spectral proble(2,34) and(2.35, and the oi+1) X (n+ 1) spectral problem
and adjoint spectral problert8.11) and(3.12), into finite-dimensional Liouville integrable Hamil-
tonian systems, and decompose Mfavave interaction equations in botht1l and 2+1 dimen-
sions into these finite-dimensional Liouville integrable Hamiltonian systems. A general involutive
and functionally independent system of the polynomial functibngc,,...,.Ccy,), 1<i=m, 1
<s=<N, or alternativelyE;s(c,,...,C), 1=i=m, 1<s<N, associated with an arbitrarily higher-
order matrix Lax operator, was presented and used to show the Liouville integrability of the
resulting constrained flows. The nonlinear constraints on the potentials, resulting from the sym-
metry constraints, also provide us with a class otiBand transformations from thé&/~wave
interaction equations to the obtained finite-dimensional Liouville integrable systems. The involu-
tive solutions to the\N-wave interaction equations are given through the constrained flows, and
thus the integrability by quadratures has been exhibited fo\iveave interaction equations. The
special case with'=W,, i.e., diagf;,...,yn)=diagB,...,8,) of two reductions om=3 andn
=4 in 1+ 1 dimensions presents all results established in Refs. 31 and 32.

We point out that for a more general matrix Lax operdterC+ D with any constant matrix
C=(Cjj)mxm and the matrixD defined by(4.2), the r-matrix formulation (4.13 still holds.
Therefore, an involutive system of polynomial functions can be generated, but we do not know
what conditions on the matri® can ensure the functional independence of that involutive system.
We are also curious about other examples of higher-order matrix Lax operators which lead to
involutive and functionally independent systems. Our crucial techniques to present the involutive
and functionally independent systefy,, 1<i=m, 1<s=<N, are ther-matrix formulation,
Newton’s identities on elementary symmetric polynomials, and the determinant property of tensor
products of matrices; and the whole process of their applications provides an efficient way to show
the involutive property and the functional independence.

Of course, one of the important results in binary nonlinearization is the integrability of soliton
equations by quadratures, which implies that one can integrate soliton equations themselves by
quadratures. However, the potentials obtained by symmetry constraints can be proved to belong to
a kind of finite-gap-type solutions containing multi-soliton solutions, and thus they may not
present solutions to given initial value and/or boundary problems of soliton equations. It is a
challenging problem to establish a general theory of complete integrability for nonlinear differen-
tial and differential-difference equations, which should state what mathematical properties the
equations must possess so that their solutions to initial value and/or boundary problems can also
be determined by quadratures.

Symmetry constraints yield nonlinear constraints on potentials of soliton equations, and put
linear spectral problem@inear with respect to eigenfunctionsito nonlinear constrained flows
(nonlinear again with respect to eigenfunctipnghich makes it more complicated to solve soliton
equations. However, since spectral problems are overdetermined, one needs additional conditions
(compatability conditionsto guarantee the existence of eigenfunctions of spectral problems. The
symmetry property brings us the Liouville integrability for nonlinear constrained flows. Thus,
symmetry constraints make up for the disadvantage of nonlinearization in manipulating binary
nonlinearization. Of special interest in the study of symmetry constraints are creating new classical
integrable systent®,which supplement the known class of integrable syst¥rasd exposing the
integrability by quadratures for soliton equations by using constrained ffows.
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The idea of binary nonlinearization is quite similar to that of using adjoint symmetries to
generate conservation laws for differential equations, both Lagrangian and non-Lagrdrgian.
binary nonlinearization, we adopt adjoint spectral problems to formulate Hamiltonian structures
for constrained flows so that finite-dimensional Liouville integrable systems result. Note that there
exist also some special symmetry constraints which do not yield Hamiltonian structures with
constant coefficient symplectic forms, including both canonical and noncanonical ones, for con-
strained flow$® Therefore, it will be particularly interesting and important to classify symmetry
constraints which exhibit Hamiltonian structures with constant and variable coefficient symplectic
forms for constrained flows.
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APPENDIX A: NON-LIE SYMMETRIES
Proposition A.1: If¢(® and 9, 1<s<N, satisfy (2.34) and (2.35), then the vector field

AU (U,\g) (5_
¢ —p<

N N
zo=JS§1 psp ST uo,;1 s WTD (A1)

is a symmetry of thé+ 1 dimensional\V-wave interaction equations (2.22)
Proof: It is required to show that

N N
(8P,5Q) = ( Uo, 2, 156" WT} | Wo, 2, s WT} ) (A2)

satisfies the linearized systei®.25. By using(2.34) and(2.35, we can first compute that

N N N
S, s | =3 b0 S, g
s=1 s=1 1 s=1 1

4

N N
E V(U N O YIT— 2 P CCLV TR

N
2 md VUL, ¢FyOT]

z

N
ZSEl N Wo, ¢ ¢ 9T]+ Wl,;::l qub(s)w(sﬁ},

and, similarly, we can have

521 Ms¢(s)¢,(s)T) =szl )\sﬂs[onﬁb(s)lﬂ(s)T]"’ Ul’szl quﬁ(s)‘ff(s)-r}
X

Thus, noting the Jacobi identity, it follows that
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N

(8P)y,~ (8Q)x=

X

N
4

N
:Szl Nsits([Uo, [Wo, ¢ ¢ T]] = [Wo, [Ug, ¢ 9T))

N
+| Uy, —{Wo.{ulazl ;U«s¢(s)¢(s)TH

N
wl,szl s w‘sﬁ}

N N
:[UO,{WLE ,U«scﬁ(s)lﬁ(s)T} _[WO{ULE Ms¢>(s)¢(s)TH.
s=1 s=1
where 5P and 5Q are defined byA2). Then, again noting the Jacobi identity, we can have

(6P)y, = (6Q)x+[U1,6Q]+[ 6P, W]

=0,

N N
521 psd® e/f“”,[uo,wl]} —LEl psd©POT [ Wy, U4 ]

in the last step of which we have uspdq,W;]=[W,,U;]. The proof is finished. |
All of the symmetries presented in this proposition are not Lie point, contact, okl@zd
symmetries, since they cannot be written in terms of the potentjaénd their spatial derivatives.

APPENDIX B: FORMULAS FOR COMPUTING .’F&k)
Immediately from the expressions m‘ﬁ in (4.22, we can obtain the following more con-
crete formulas for computing{ :

HI=3, (0 +Qu),

i ij

2) ii i Qv Qx
FP= 2 CCFCQFCQt| i ;
I<i<j=m
Qv Qi
i i Kk
3
7= E (cicjctcickQy+¢jcQ, +¢icjQy)
I<i<j<k=sm
TTR
ik i ik i Qx Qy Qi
Qx Qu Qx Qy Qx Qx i Qi jk
+1<i<j2<k ol Gk FCil i wk | TCk| i g | T Qn Qr Qi ;
Qx Q Qx Qy Qx Qx ki ki kk
Qx Qx Qu
Jidiy Jigi,
k k Kk Jili k Q, Q.
K _
o= 2 Mo +21Te u+ 2 11 o5 i
1<j1<jo<..<j=m =1 P i=1 P 1<i;<i,=<k L I P R PP
152 K p p=1 1<I2 p=
p#i p#ig.ip Q\ Q.
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+

1s<ji<jo<..<jks=m 1=i;<ip<igsk

+
1<j1<j
m
=TI

p=1

jaa
Q.
Jai1
Q.
2<..<jg=m :

Jkd1

m

m ii
Cp+2 I1 CoQut
=1 1

Binary symmetry constraints of A-wave . . .

Bidiy didi, i
Qyx Qx Q.
K i, i, iy
11 Cpl Qn Qx Q.
p=1 o o .
P#ig.iz.i3 Jighy, g, Jighis
Qyx Qx Q.
jai2 Jabk
Q. Q.
J2j2 J2jk
Q. Q.
Jk2 ik
Q. Q.
i ij
ﬁ Qv Qi
Cal .. .
<i<j<m -1 P 6 6
#i,] A A
1 12
ii ij ik Q, O
A A
Qv Qv Q
21 22
ik Q, Q
A A
Qv Qv Qf *--oF
ki ki kk
Qv Qv Q moo2
Qx Qi

APPENDIX C: THE DETERMINANT OF Q,,

The following proposition has been used while showing the functional independence of the
1=s=<N, which is of interest itself.

polynomial functions=s(cq,..
.,.Cmy be constants. Then

Proposition C.1: Let re 2, and ¢;,Co,..

.Cm)»

1<sism,

im
Qx

2r

Qx

mm

Q.

4377

m

1 2 Ci P CiC]‘ . 2 CiCjCk H Cj
i=2 2<i<j=m 2<i<j<k=m i=2
m m

1 X < GiC > CiCjCk I
de(Q ): i=1 Isi<jsm I<i<j<ks=m i=1
m i#2 ihj#2 ij,k#2 i#2
m—1 m—1

1 C; CiCi CiCiCy Ci

Z‘l Fo<iSEme1r ) a<iciSemer ! .111 :

= (ci—c¢j) (CD
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Proof: We prove this proposition by the principle of mathematical induction. It is obvious that

W.-X. Ma and Z. Zhou

(C1) is true wherm= 2. Suppose thalCl) is true whenm=1. Let us verify that(C1) is also true

whenm=1+1. Note that

Ci.Ci...C; — Ci.Cj. ..
1sig<ip<..<ig=sl+1 12 K q<ij<i <l <igsle1l 12
il’iZ ..... ik:ﬁj il |2 ..... ik¢|
=(ci—c¢j) Ci.Ci....C;
Misij<ip< i =141 1277 ke
RPN TN
1<i,j=I+1, 1=sk=lI.

For each 2j<I+1, we subtract

I+1

2<ig<ip<..<ij_psI+1

from the jth column of det(}, ), and then we have

dei(Q,,,)
1 0 0 0
I+1
1 c;—c c,—C ¢ (c1=¢Cp) CiCi
17 L2 (C1 2)23 I Lo 3si<jsI+1 H
I+1
1 c¢;—cg (< 3)22 i 1 32si_<_js|+1 "
i#3 hi#3
[
1 Ci=Cuy (c—¢y)2 ¢ (C1=Cia) 2 CiC
= 2<i<j=I
I+1 I+1
1 Xc 2 G 11 c
i=3 3=i<j=I+1 =3
I+1 I+1
I+1 1 2 ¢ CiCj Il
=TI (cy—cp| (52 2=iifE)ee P
j=2 I i+3 ihj#3 i#3 1=i<j=
| [
1 e X cg 11
= 2<i<j<I i=2

.Ci

k

Ci,Ci,- .cij_lxthe first column of d€t, , ;)

0

111
(Cl—Cz)iL_[3 Ci

141
(c1—<:3>__H2 Ci

123

|
(C1—0|+1)i1;[2 Ci

in the last step of which we have used the inductive assumption. This meai€ihi also true
whenm=1+1, i.e., the inductive step is satisfied. Therefore, the fornd@B is always true by

the principle of mathematical induction. The proof is finished.

APPENDIX D: TWO IDENTITIES ON SYMMETRIC POLYNOMIALS

Let thes;’s be symmetric polynomials defined 1§%.27).

Proposition D.1: For any integers r and i withsir =1, and any numbers...,c,, we have
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o 1, ifi=r,

]Z,O (—1)s(cy,....) cl..clr= (D1)

I+ A =i —] 10, ifi>r.

I1,...1;,=0

Proof: Use the principle of mathematical induction onWhenr =1 andi =1, the left-hand
side of(D1) is 1. Whenr=1 andi>1, the left-hand side ofD1) is 0. Hence(D1) holds when
r=1.

Now suppose thatD1) holds whenr =Kk, i.e.,

‘i" j 5 Lo |1 =k o2
(—1)'si(cq,..-,C) cl...cl= . D2
=0 A Wik Tk o, if ik
I, =0
Then, wherr =k+ 1, the left-hand side ofD1) is
i—k—1
- [ |
> (—Dsi(Cyren Cirn) > ekt (D3)
j=0 li+- o Flgp=i—k=j—1
Iy, =0
By using (4.28), it equals
i—k-1 i—k—j-1
S Y ks ey, ) D il
1=0 1= lptetl=i—k=j=1-l g
I1,.. =0
i—k—1 i—k-j-1
- [ | [
+ 2 (-1 X giisi(cr0) > ool
j=0 I 41=0 [t Fl=i—k—j—1-l 14
Iy, 1,=0
i—k—1 i—k—=lxy1—2
_ | +1 i1 | |
=2 ot X (D sl 0 > chl g
re1= j=0 Iyt l=i—k—j—l -2
l1, .1, =0
i—k-1 i—k—lq—1
[ - [ |
+|E_ ¢t 2 (—DIsi(er,c) > cleeck, (D4
r+1=0 Jj=0 1+l e=i—k=j—l—1
Iy, =0

where an empty sum is understood to be zero.
Wheni=k+1, it is easy to see thdD4) equals 1. Ifi>k+1, then by(D2), the first sum
equals

| +1 _ i—k—1
=1 Tl =i—k-2=—Cis1 (D5)

and again, byD2), the second sum equals

| _ k-1
el =i-k-1=Cis1 - (D6)

Hence(D4) equals 0 ifi>k+ 1, which implies thatD1) holds whenr =k+ 1. Therefore,(D1)
always holds by the principle of mathematical induction. The proposition is proved. |

Proposition D.2: For any integers mr, i with i=r+1=2, m numbers ¢,....c,, and r
integers j,...,j, with 1<j;<...<j,<m, we have
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i—r

i—r—j |
D e i e R R > Cp " "Cp_. (D7)
j=0 g+l =i-r—j 1 rolspi<--<pj_,<=m
I1,...l;=0 po*ipforall a,p

Proof: Without loss of generality, suppose thati wheni=1,...r, since eacls;(c,,...,.Cn)
is symmetric with respect to,,...,c,. Then,(D7) becomes

i—r
irei PR
> (=1 s(Cqy C) > cleg= > Cp, "Cp_ - (DY)
=0 I+l =i-r—j r+1<p)<--<pj_,<m
Iy, 0,=0

Obviously, for any fixed with r+1<j<m, both sides ofD8) are linear with respect to; .
We use the principle of mathematical inductionici® prove(D8). Wheni=r + 1, both sides
of (D8) equalc, 1+ +cCp.
Suppose thatD8) holds wheni =k (k>r). Then, when =k+ 1, the left-hand side ofD8)
reads as

k+1-r
Re= 2 (=1 Isi(cy,... Co) > cit el
j=0 I+l =k+1-r—j
I, ,1,=0
k—r
=2 (=1 s (e, Cm) > kel (D9)
=1 [t =k—r—j '
I, ,1,=0
Then by(4.28, we have
k—r
JR .
— =2 (-1 g(cq, 1) > cieecl. (D10)
dCm j=0 [+t =k—r—] r
l1,,1,=0
By the inductive assumption, it becomes
R > (D11)
—_—— C ...C .
Cm  r+l=py<.=p_,=m-1 1 Pk
Hence we obtain
R= > Cp " Cp Cmt R1(Cr,eee G 1), (D12)

r+1<p;<--<pg_,<m-1

whereR; is a polynomial. Sinc& is symmetric with respect to,, 1,...,C,, We have

R= C,  C +Ro(Cq,...,Cr), D13
r+1SP1<'2Pk+1—rsm P1 Pr+1—r 0( 1 r) ( )
where by setting,, ;=---=c,=0 in (D9), Ry is determined to be

k+1-r

—r—i | |
Ro(Cy,ee €)= 2, (—1)* 1 si(cy,... ) > ¢’ (D14)
j=0 I+ 4l =k+1-r—j
I1,.0,=0

By Proposition D.1Ry=0 sincek+1=i>r. Hence
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R= 2 C

r+1<pi<--<pgi1_r=<m

: (D15)

.. .C
P1 Pr+1-r

which implies tha{D8) holds when =k+ 1. Therefore(D8) holds for alli>r by the principle of
mathematical induction. The proof is completed. |

The identity(D7) is needed in presenting an alternative involutive sysieyis to theF¢’'s in
Sec. IVC.
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