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1. Introduction

There exist many interesting soliton hierarchies, which consist of commuting evo-
lution equations. Typical examples of soliton hierarchies, which fit into the zero
curvature formulation, include the Korteweg–de Vries hierarchy [1], the Ablowitz–
Kaup–Newell–Segur hierarchy [2], the Kaup–Newell hierarchy [3, 4], the Wadati–
Konno–Ichikawa hierarchy [5], the Boiti–Pempinelli–Tu hierarchy [6], the Dirac
hierarchy [7], and the coupled AKNS–Kaup–Newell hierarchy [8]. Those hierarchies
only contain dependent variables less than or equal to three, and soliton hierarchies
with more dependent variables are highly complicated, which require considerable
efforts in computations [9–11]. Integrable couplings associated with nonsemisimple
loop algebras present such examples of soliton hierarchies, which can possess many
dependent variables [12–15]. Spectral problems formulated using matrix Lie alge-
bras are a starting point in generating soliton hierarchies (see, e.g. [16–22] for more
details).

1650105-1

http://dx.doi.org/10.1142/S021988781650105X


July 14, 2016 9:43 WSPC/S0219-8878 IJGMMP-J043 1650105

W.-X. Ma & Y. Zhou

Very recently, the three-dimensional special orthogonal Lie algebra so(3,R) has
been used in constructing soliton hierarchies. The first few examples of soliton
hierarchies associated with so(3,R) are the Ablowitz–Kaup–Newell–Segur type soli-
ton hieiarchy [23], the Kaup–Newell type soliton hieiarchy [24], the Wadati–Konno–
Ichikawa type soliton hieiarchy [25], and the Heisenberg type soliton hieiarchy [26].
The Lie algebra so(3,R) is the counterpart of the Lie algebra sl(2,R), and they are
only the two three-dimensional real Lie algebras with a three-dimensional derived
algebra.

In this paper, we would like to consider two reduced D-Kaup–Newell spectral
problems possessing two dependent variables associated with sl(2,R) and so(3,R).
The two D-Kaup–Newell spectral problems associated with sl(2,R) and so(3,R)
are presented respectively in [19, 27], and both of them possess three dependent
variables.

A standard procedure for generating soliton hierarchies [29, 28] is stated as
follows. Let g̃ be the matrix loop algebra associated with a given matrix Lie algebra
g. We first introduce a spatial spectral problem

φx = Uφ, U = U(u, λ) ∈ g̃, (1.1)

where u denotes a column vector of dependent variables and λ is a spectral param-
eter. Then, we take a solution of the form

W = W (u, λ) =
∑
i≥0

W0,iλ
−i, W0,i ∈ g, i ≥ 0 (1.2)

to the stationary zero curvature equation

Wx = [U, W ]. (1.3)

Next, we try to determine the Lax matrices

V [m] = V [m](u, λ) = (λf(m)W )+ + ∆m ∈ g̃, m ≥ 0, (1.4)

(P )+ denoting the polynomial part of P in λ and f being an appropriate function
from N to N, to formulate the temporal spectral problems

φtm = V [m]φ, m ≥ 0. (1.5)

The modification terms ∆m ∈ g̃ should be selected, such that the corresponding
zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0, (1.6)

will produce a hierarchy of soliton equations:

utm = Km(u), m ≥ 0. (1.7)

A soliton hierarchy usually possesses Hamiltonian structures

utm = Km(u) = J
δHm

δu
, m ≥ 0, (1.8)

where δ
δu is the variational derivative, J is a Hamiltonian operator, and Hm, m ≥

0, are common conserved functionals. Such Hamiltonian structures can often be
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generated by applying the trace identity, where g is semisimple [28, 29]:

δ

δu

∫
tr

(
∂U

∂λ
W

)
dx = λ−γ ∂

∂λ
λγtr

(
∂U

∂u
W

)
, γ = −λ

2
d

dλ
ln |tr(W 2)| (1.9)

or the variational identity, where g is nonsemisimple [30, 31]:

δ

δu

∫ 〈
∂U

∂λ
, W

〉
dx = λ−γ ∂

∂λ
λγ

〈
∂U

∂u
, W

〉
, γ = −λ

2
d

dλ
ln |〈W, W 〉|, (1.10)

where 〈·, ·〉 is a nondegenerate, symmetric and ad-invariant bilinear form on the
underlying matrix loop algebra g̃.

The three-dimensional real special linear Lie algebra sl(2, R) has the basis

e1 =

[
1 0

0 −1

]
, e2 =

[
0 1

0 0

]
, e3 =

[
0 0

1 0

]
, (1.11)

whose commutators are

[e1, e2] = 2e2, [e2, e3] = e1, [e3, e1] = 2e3, (1.12)

whereas the special orthogonal Lie algebra so(3, R) has the basis

e1 =

0 0 −1

0 0 0

1 0 0

, e2 =

0 0 0

0 0 −1

0 1 0

, e3 =

0 −1 0

1 0 0

0 0 0

, (1.13)

whose commutators are

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (1.14)

We will adopt the following two matrix loop algebras associated with sl(2, R) and
so(3, R):

s̃l(2, R) =

∑
i≥0

Miλ
n−i | Mi ∈ sl(2, R), i ≥ 0 and n ∈ Z

, (1.15)

and

s̃o(3, R) =

∑
i≥0

Miλ
n−i | Mi ∈ so(3, R), i ≥ 0 and n ∈ Z

. (1.16)

Those are spaces of all Laurent series in λ with coefficients in sl(2, R) or so(3, R)
and with a finite regular part.

The rest of the paper is structured as follows. In Secs. 2 and 3, we will intro-
duce two reduced D-Kaup–Newell spectral problems associated with sl(2, R) and
so(3, R), and then generate the corresponding soliton hierarchies of bi-Hamiltonian
equations, respectively. In Sec. 4, we will give a conclusion and a few remarks.
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2. A Reduced D-Kaup–Newell Soliton Hierarchy from sl(2,R)

In this section, we will derive a soliton hierarchy from matrix loop algebra s̃l(2, R).
We begin with a spectral problem and let e1, e2, e3 be defined by (1.11).

2.1. Spectral problem

Let α be an arbitrary real constant. Let us introduce a spectral matrix

U = U(u, λ) = (λ2 + α)e1 + λpe2 + λqe3 =

[
λ2 + α λp

λq −λ2 − α

]
(2.1)

and consider the following isospectral problem

φx = Uφ =

[
λ2 + α λp

λq −λ2 − α

]
φ, u =

[
p

q

]
, φ =

[
φ1

φ2

]
, (2.2)

associated with sl(2,R).
It is known [19] that, the D-Kaup–Newell spectral problem associated with

sl(2,R) reads

φx = Uφ =

[
λ2 + r λp

λq −λ2 − r

]
φ, u =

 p

q

r

, φ =

[
φ1

φ2

]
,

which possess three potentials: p, q and r. The new spectral problem (2.2) is just
a reduced case of the above D-Kaup–Newell spectral problem under r = α. It is,
actually, also a generalization of the standard Kaup–Newell spectral problem [3],
which corresponds to the case of α = 0. There is another interesting reduction
r = αpq of the D-Kaup–Newell spectral problem associated with sl(2,R), which
generates an integrable hierarchy (see [19, 32] for details).

2.2. Soliton hierarchy

Define

W = ae1 + be2 + ce3 =

[
a b

c −a

]
∈ s̃l(2, R) (2.3)

and then, the stationary zero curvature equation Wx = [U, W ] becomes
ax = λ(pc − qb),

bx = 2(λ2 + α)b − 2λpa,

cx = 2λqa − 2(λ2 + α)c.

(2.4)

We further, assume that

a =
∑
i≥0

aiλ
−2i, b =

∑
i≥0

biλ
−2i−1, c =

∑
i≥0

ciλ
−2i−1 (2.5)
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and take the initial values

a0 = 1, b0 = p, c0 = q (2.6)

which are required by

a0,x = pc0 − qb0, b0 − pa0 = 0, qa0 − c0 = 0. (2.7)

Now based on (2.4), we have
ai,x = pci − qbi,

bi,x = 2αbi + 2bi+1 − 2pai+1,

ci,x = 2qai+1 − 2αci − 2ci+1.

i ≥ 0. (2.8)

From this, we can derive the recursion relations
ai+1,x = αqbi − αpci − q

2
bi,x − p

2
ci,x,

bi+1 =
1
2
bi,x − αbi + pai+1,

ci+1 = qai+1 − 1
2
ci,x − αci,

i ≥ 0, (2.9)

since (2.8) tells

ai+1,x = pci+1 − qbi+1

= p

(
qai+1 − 1

2
ci,x − αci

)
− q

(
1
2
bi,x − αbi + pai+1

)
= αqbi − αpci − q

2
bi,x − p

2
ci,x, i ≥ 0.

We impose the conditions for integration:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1 (2.10)

to determine the sequence of {ai, bi, ci|i ≥ 1} uniquely. We list the first two sets as
follows:

a1 = −1
2
pq,

b1 =
1
2
px − αp − 1

2
p2q,

c1 = −1
2
qx − αq − 1

2
pq2;

a2 = αpq +
1
4
(pqx − pxq) +

3
8
p2q2,

b2 = α2p − αpx +
1
4
pxx − 3

4
ppxq +

3
2
αp2q +

3
8
p3q2,

c2 = α2q + αqx +
1
4
qxx +

3
4
pqqx +

3
2
αpq2 +

3
8
p2q3.
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Based on the recursion relations (2.9), we can have[
ci+1

bi+1

]
= Ψ

[
ci

bi

]
, i ≥ 0, (2.11)

where

Ψ =

−α − 1
2
∂ − αq∂−1p − 1

2
q∂−1p∂ αq∂−1q − 1

2
q∂−1q∂

−αp∂−1p − 1
2
p∂−1p∂ −α +

1
2
∂ + αp∂−1q − 1

2
p∂−1q∂

 (2.12)

in which ∂ = ∂
∂x . We will see that all vectors (ci, bi)T , i ≥ 0, are gradient, and will

generate conserved functionals.
Now for each m ≥ 0, we introduce

V [m] = λ(λ2m+1W )+

= (λ2m+2W )+ − am+1e1

=
m∑

i=0

[aiλ
2(m−i)+2e1 + biλ

2(m−i)+1e2 + ciλ
2(m−i)+1e3] (2.13)

and the corresponding zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0 (2.14)

engender a hierarchy of solution equations

utm = Km =

[
bm,x − 2αbm

cm,x + 2αcm

]
= J

[
cm

bm

]
, m ≥ 0, (2.15)

where

J =

[
0 ∂ − 2α

∂ + 2α 0

]
. (2.16)

It is obvious that J is a Hamiltonian operator, since it is skew-adjoint and does not
depend on the potentials [33].

2.3. Bi-Hamiltonian structures

It is easy to compute that

∂U

∂λ
=

[
2λ p

q −2λ

]
,

∂U

∂p
=

[
0 λ

0 0

]
,

∂U

∂q
=

[
0 0

λ 0

]
and so, we have

tr
(

W
∂U

∂λ

)
= 4λa + qb + pc, tr

(
W

∂U

∂p

)
= λc, tr

(
W

∂U

∂q

)
= λb.

By the trace identity (1.9), we get

δ

δu

∫
(4λa + qb + pc)dx = λ−γ ∂

∂λ
λγ

[
λc

λb

]
.

1650105-6



July 14, 2016 9:43 WSPC/S0219-8878 IJGMMP-J043 1650105

Reduced D-KN hierarchies from sl(2, R) and so(3, R)

Balancing coefficients of all power of λ in above equality tells

δ

δu

∫
(4am+1 + qbm + pcm)dx = (γ − 2m)

[
cm

bm

]
, m ≥ 0.

Taking m = 1, we obtain γ = 0, and further, we arrive at

δ

δu

∫ (
−4am+1 + qbm + pcm

2m

)
dx =

[
cm

bm

]
, m ≥ 1. (2.17)

Therefore, we get Hamiltonian structures for the reduced D-Kaup–Newell soliton
hierarchy (2.15) associated with sl(2,R):

utm = Km = J

[
cm

bm

]
= J

δHm

δu
, m ≥ 0, (2.18)

where the Hamiltonian functionals are given by

H0 =
∫

pqdx,

Hm =
∫ (

−4am+1 + qbm + pcm

2m

)
dx, m ≥ 1.

(2.19)

Now, we introduce a second Hamiltonian operator

M = JΨ = Ψ†J =

[
M11 M12

M21 M22

]
, (2.20)

where all elements can be explicitly worked out:

M11 = 2α2p∂−1p + αp∂−1p∂ − α∂p∂−1p − 1
2
∂p∂−1p∂,

M12 =
1
2
∂2 − 2α∂ + 2α2 − 2α2p∂−1q + α∂p∂−1q + αp∂−1q∂

− 1
2
∂p∂−1q∂,

M21 = −1
2
∂2 − 2α∂ − 2α2 − 2α2q∂−1p − α∂q∂−1p − αq∂−1p∂

− 1
2
∂q∂−1p∂,

M22 = 2α2q∂−1q + α∂q∂−1q − αq∂−1q∂ − 1
2
∂q∂−1q∂.

(2.21)

It is easy to check that M is skew-adjoint. By a long and tedious computation
with Maple, we can verify that J and M constitute a Hamiltonian pair [34, 35], i.e.
any linear combination N of J and M is skew-symmetry and satisfies the Jacobi
identity: ∫

KT N ′(u)[NS]Tdx + cycle(K, S, T ) = 0

1650105-7
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for all vector fields K, S and T . Thus, the operator

Φ = Ψ† =

−α +
1
2
∂ + αp∂−1q − 1

2
∂p∂−1q αp∂−1p − 1

2
∂p∂−1p

−αq∂−1q − 1
2
∂q∂−1q −α − 1

2
∂ − αq∂−1p − 1

2
∂q∂−1p


(2.22)

is hereditary, that is, it satisfies that

Φ′(u)[ΦK]S − ΦΦ′(u)[K]S = Φ′(u)[ΦS]K − ΦΦ′(u)[S]K

for all vector fields K and S (see [36] for definition of hereditary operators). Here,
Φ′ denotes the Gateaux derivative of Φ as usual.

The above condition for the hereditary operators is equivalent to

LΦKΦ = ΦLKΦ (2.23)

for any vector field K. Here LKΦ is the Lie derivative defined by

(LKΦ)S := Φ[K, S] − [K, ΦS],

where [·, ·] is the Lie bracket of vector fields. Note that, for any autonomous operator
Ψ = Ψ(u, ux, . . .) is a recursion operator of a given evolution equation ut = K(u),
if and only if Φ satisfies

LKΦ = Φ′[K] − [K ′, Φ] = 0,

S′ denoting the Gateaux derivative operator of a vector field S (see [33] for more
details).

For the reduced D-Kaup–Newell hierarchy (2.15), it is direct to show that

LK0Φ = Φ′[K0] − [K ′
0, Φ] = 0. (2.24)

Thus, it follows now that the hierarchy (2.15) is bi-Hamiltonian:

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1 (2.25)

and Φ is a common hereditary recursion operator for the whole hierarchy (2.15). All
this implies that the reduced D-Kaup–Newell hierarchy (2.15) is Liouville integrable
[26]. We point out that no bi-Hamiltonian structure was presented for the D-Kaup–
Newell soliton hierarchy in [19], though the hierarchy was shown to have infinitely
many symmetries.

When m = 0, we get a linear system:

ut0 =

[
p

q

]
t0

= K0 =

[
px − 2αp

qx + 2αq

]
= J

δH0

δu
. (2.26)
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When m = 1, we have a nonlinear system of bi-Hamiltonian equations:

ut1 =

[
p

q

]
t1

= K1

=

 2α2p + αp2q +
1
2
pxx − 2αpx − 1

2
p2qx − pqpx

−2α2q − αpq2 − 2αqx − 1
2
qxx − pqqx − 1

2
pxq2


= J

δH1

δu
= M

δH0

δu
, (2.27)

where H1 can also be explicitly given by

H1 =
∫ [

−αpq − 1
4
p2q2 − 1

4
(pqx − pxq)

]
dx. (2.28)

3. A Reduced D-Kaup–Newell Soliton Hierarchy from so(3, R)

In this section, we will construct the second soliton hierarchy based on the three-
dimensional orthogonal Lie algebra so(3, R). The basis of so(3, R) consisting of
e1, e2, e3 is defined by (1.13).

3.1. Spectral problem

Let us introduce the second spectral matrix with an arbitrary real constant α:

U = U(u, λ) = (λ2 + α)e1 + λpe2 + λqe3

=


0 −λq −λ2 − α

λq 0 −λp

λ2 + α λp 0

 (3.1)

and consider the following isospectral problem

φx = Uφ =

 0 −λq −λ2 − α

λq 0 −λp

λ2 + α λp 0

φ,

u =

[
p

q

]
, φ =

φ1

φ2

φ3

,

(3.2)

associated with so(3, R).
The D-Kaup–Newell spectral problem associated with so(3,R) was studied

recently in [27]:

φx = Uφ =

 0 −λq −λ2 − r

λq 0 −λp

λ2 + r λp 0

φ, u =

 p

q

r

, φ =

φ1

φ2

φ3

,

1650105-9
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which possesses three potentials: p, q and r. The new spectral problem (3.2) is a
reduced case of the above D-Kaup–Newell spectral problem under r = α. In fact, it
is also a generalization of the standard Kaup–Newell spectral problem in [24], which
corresponds to the case of α = 0. Another interesting reduction r = α(p2 + q2) of
the D-Kaup–Newell type spectral problem associated with so(3,R), generating an
integrable hierarchy, has been proposed and studied in [37].

3.2. Soliton hierarchy

Define

W = ae1 + be2 + ce3 =

0 −c −a

c 0 −b

a b 0

 ∈ s̃o(3, R) (3.3)

and then, the stationary zero curvature equation Wx = [U, W ] becomes
ax = λ(pc − qb),

bx = λqa − (λ2 + α)c,

cx = (λ2 + α)b − λpa.

(3.4)

We further, assume that

a =
∑
i≥0

aiλ
−2i, b =

∑
i≥0

biλ
−2i−1, c =

∑
i≥0

ciλ
−2i−1 (3.5)

and take the initial values

a0 = 1, b0 = p, c0 = q (3.6)

which are required by

a0,x = pc0 − qb0, −c0 + qa0 = 0, −pa0 + b0 = 0. (3.7)

Now based on (3.4), we have
ai,x = pci − qbi,

bi,x = qai+1 − ci+1 − αci,

ci,x = bi+1 + αbi − pai+1.

i ≥ 0. (3.8)

From this, we can derive the recursion relations
ai+1,x = −pbi,x + αqbi − qci,x − αpci,

bi+1 = ci,x − αbi + pai+1,

ci+1 = −bi,x − αci + qai+1,

i ≥ 0, (3.9)

since (3.8) tells

ai+1,x = pci+1 − qbi+1

= p(−bi,x − αci + qai+1) − q(ci,x − αbi + pai+1)

= −pbi,x + αqbi − qci,x − αpci, i ≥ 0.

1650105-10
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We impose the conditions for integration:

ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1 (3.10)

to determine the sequence of {ai, bi, ci|i ≥ 1} uniquely. We list the first two sets as
follows:

a1 = −1
2
(p2 + q2),

b1 = qx − αp − 1
2
p(p2 + q2),

c1 = −px − αq − 1
2
q(p2 + q2);

a2 = α(p2 + q2) + pxq − pqx +
3
8
(p2 + q2)2,

b2 = −pxx − 2αqx + α2p +
3
2
(αp − qx)(p2 + q2) +

3
8
p(p2 + q2)2,

c2 = −qxx + 2αpx + α2q +
3
2
(αq + px)(p2 + q2) +

3
8
q(p2 + q2)2.

It follows directly from the recursion relations (3.9), that, we have[
bi+1

ci+1

]
= Ψ

[
bi

ci

]
, i ≥ 0, (3.11)

where

Ψ =

[−α − p∂−1p∂ + αp∂−1q ∂ − αp∂−1p − p∂−1q∂

−∂ − q∂−1p∂ + αq∂−1q −α − αq∂−1p − q∂−1q∂

]
. (3.12)

We will see that all vectors (bi, ci)T , i ≥ 0, above are gradient, and will generate
conserved functionals.

Now for each m ≥ 0, we introduce

V [m] = λ(λ2m+1W )+

= (λ2m+2W )+ − am+1e1

=
m∑

i=0

[aiλ
2(m−i)+2e1 + biλ

2(m−i)+1e2 + ciλ
2(m−i)+1e3] (3.13)

and the corresponding zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, m ≥ 0 (3.14)

engender a hierarchy of solution equations

utm = Km =

[
bm,x + αcm

cm,x − αbm

]
= J

[
bm

cm

]
, m ≥ 0, (3.15)
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with J being defined by

J =

[
∂ α

−α ∂

]
. (3.16)

It is direct to check that J is Hamiltonian.

3.3. Bi-Hamiltonian structures

It is easy to see that

∂U

∂λ
=

 0 −q −2λ

q 0 −p

2λ p 0

,
∂U

∂p
=

0 0 0

0 0 −1

0 1 0

,
∂U

∂q
=

0 −1 0

1 0 0

0 0 0

,

and so, we obtain

tr
(

W
∂U

∂λ

)
= −4λa − 2pb − 2qc, tr

(
W

∂U

∂p

)
= −2λb, tr

(
W

∂U

∂q

)
= −2λc.

By the trace identity (1.9), we get

δ

δu

∫
(2λa + pb + qc)dx = λ−γ ∂

∂λ
λγ

[
λb

λc

]
.

Balancing coefficients of all power of λ in above equality tells

δ

δu

∫
(2am+1 + pbm + qcm)dx = (γ − 2m)

[
bm

cm

]
, m ≥ 0.

Taking m = 1, we obtain γ = 0, and further, we have

δ

δu

∫ (
−2am+1 + pbm + qcm

2m

)
dx =

[
bm

cm

]
, m ≥ 1. (3.17)

This way, we obtain Hamiltonian structures for the reduced D-Kaup–Newell
hierarchy (3.15) associated with so(3,R):

utm = Km = J

[
bm

cm

]
= J

δHm

δu
, m ≥ 0, (3.18)

where the Hamiltonian functionals are given by

H0 =
∫

1
2
(p2 + q2)dx,

Hm =
∫ (

−2am+1 + pbm + qcm

2m

)
dx, m ≥ 1.

(3.19)

Introduce a second Hamiltonian operator

M = JΨ = Ψ†J =

[
M11 M12

M21 M22

]
, (3.20)
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where all elements can be explicitly worked out:

M11 = −2α∂ + α2q∂−1q + α∂p∂−1q − αq∂−1p∂ − ∂p∂−1p∂,

M12 = −α2 + ∂2 − α2q∂−1p − αq∂−1q∂ − α∂p∂−1p − ∂p∂−1q∂,

M21 = α2 − ∂2 − α2p∂−1q + α∂q∂−1q + αp∂−1p∂ − ∂q∂−1p∂,

M22 = −2α∂ + α2p∂−1p − α∂q∂−1p + αp∂−1q∂ − ∂q∂−1q∂.

(3.21)

A direct computation by Maple can show that J and M constitute a Hamiltonian
pair. Thus once proving LK0Φ = 0, we can show by the same argument as in the
previous section that the operator

Φ = Ψ† =

[
−α − ∂p∂−1p − αq∂−1p ∂ − ∂p∂−1q − αq∂−1q

−∂ + αp∂−1p − ∂q∂−1p −α + αp∂−1q − ∂q∂−1q

]
(3.22)

is a common hereditary recursion operator for the whole hierarchy (3.15), and the
hierarchy (3.15) is bi-Hamiltonian:

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1. (3.23)

All this shows that the reduced D-Kaup–Newell hierarchy (3.15) associated with
so(3,R) is Liouville integrable [26].

When m = 0, we get a linear system

ut0 =

[
p

q

]
t0

= K0 =

[
px + αq

−αp + qx

]
= J

δH0

δu
. (3.24)

When m = 1, we obtain a nonlinear system of bi-Hamiltonian equations:

ut1 =

[
p

q

]
t1

= K1

=

−α2q − 2αpx + qxx − 1
2
(αq + px)(p2 + q2) − p(ppx + qqx)

α2p − 2αqx − pxx +
1
2
(αp + qx)(p2 + q2) − q(ppx + qqx)


= J

δH1

δu
= M

δH0

δu
, (3.25)

where H1 can also be explicitly given by

H1 =
∫ [

1
2
(−αp2 − αq2 − pxq + pqx) − 1

8
(p2 + q2)2

]
dx. (3.26)

We point out that, no bi-Hamiltonian structure presented for the second non-
reduced D-Kaup–Newell soliton hierarchy associated with so(3,R) [27]. Only one
of the two differential operators in the recursive structure is Hamiltonian, and the
other is quasi-Hamiltonian for the non-reduced D-Kaup–Newell soliton hierarchy
in [27].
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4. Concluding Remarks

In this paper, we have introduced two reduced D-Kaup–Newell spectral prob-
lems associated with sl(2,R) and so(3,R) and generated their hierarchies of
bi-Hamiltonian equations via the zero curvature formulation. The Liouville inte-
grability of the resulting soliton hierarchies has been shown upon establishing bi-
Hamiltonian structures through the trace identity.

Compared to the D-Kaup–Newell soliton hierarchies [19, 27], our soliton hierar-
chies present different features such as bi-Hamiltonian structures, though our spec-
tral problems involve less potentials. Moreover, the newly presented Hamiltonian
pairs display different recursion operator structures from the known Kaup–Newell
recursion operators associated with sl(2,R) and so(3,R) [3, 24].

Different choices of spectral matrices from matrix loop algebras bring us various
soliton hierarchies with hereditary recursion operators, and any study on integrable
couplings will help in classifying multicomponent integrable systems associated with
nonsemisimple Lie algebras.
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