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a b s t r a c t

Beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish
a scheme for constructing nonlinear discrete integrable couplings. Discrete variational
identities over the associated loop algebras are used to build Hamiltonian structures for the
resulting integrable couplings. We illustrate the application of the scheme by means of an
enlargedVolterra spectral problemandpresent an example of nonlinear discrete integrable
Hamiltonian couplings for the Volterra lattice equations.
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1. Introduction

Let E be a shift operator and define

f (m)(n) = (Emf )(n) = f (n + m), m ∈ Z. (1.1)

We consider a pair of matrix discrete spectral problems
Eφ = Uφ = U(u, λ)φ,

φt = Vφ = V (u, Eu, E−1u, . . . ; λ)φ,
(1.2)

where u = u(n, t) is the potential, φt denotes the derivative with respect to t,U and V , called a Lax pair, belong to a given
matrix Lie algebra g , and λ is a spectral parameter. Assume that the compatibility condition of (1.2) (i.e., the discrete zero-
curvature equation)

Ut = (EV )U − VU (1.3)

determines a discrete soliton equation (see, e.g., [1–3]):

ut = K = K(n, t, u, Eu, E−1u, . . .). (1.4)

That is to say, a triple (U, V , K ) satisfies

U ′
[K ] = (EV )U − VU,

where U ′
[K ] denotes the Gateaux derivative of U with respect to u in a direction K :

U ′
[K ] =

∂

∂ε


ε=0

U(u + εK).
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The Lie algebraic structure for such triples was analyzed in [4] and can be applied to the study of non-isospectral flows in
both 1 + 1 dimensions [5] and 2 + 1 dimensions [6].

To generate integrable couplings [7,8] of Eq. (1.4), we have to take semi-direct sums of g with other matrix loop algebras
gc (see [9,10]):

ḡ = g A gc .

The notion of semi-direct sums implies that g and gc satisfy [g, gc] ⊆ gc , where [g, gc] = {[A, B] | A ∈ g, B ∈ gc}.
Variational identities on non-semisimple Lie algebras provide tools for generating Hamiltonian structures of the resulting
integrable couplings [11,12]. It is known that most of the integrable couplings presented in the literature are linear with
respect to the supplementary variables (see, e.g., [7,8,13–20]). For example, the spectral matrices of the perturbation form

Ū =

[
U(u) U ′

[v]

0 U(u)

]
(1.5)

lead to special dark equations—the perturbation equations [7,21,22]. In such integrable couplings, the equation for the
supplementary variable v is linear with respect to v.

Definition 1.1. If the second equation of an integrable coupling

ut = K(u), vt = S(u, v),

defines a nonlinear equation for v, then the whole system is called a nonlinear integrable coupling of ut = K(u).

Linear integrable couplings contain extensions of symmetry equations [7,13] and are important in classifying integrable
lattice equations. But naturally, nonlinear ones have much richer structures. There are a few systematic approaches for
constructing linear discrete integrable couplings, starting from the perturbed spectral matrices [8,13], defined as before, or
the amended spectral matrices [14,17]:

Ū =

[
U(u) Ua(v)
0 0

]
, (1.6)

where Ua might not be square. However, there is no feasible way which allows us to construct nonlinear discrete integrable
couplings as yet.

In this paper, we would like to present a kind of Lie algebras which can generate nonlinear discrete integrable couplings.
More specifically, we would like to show that the following choice of spectral matrices:

Ū =

[
U(u) Ua(v)
0 U(u) + Ua(v)

]
, (1.7)

can engender nonlinear discrete integrable couplings. The set of all matrices above is closed under the matrix product, and
thus it constitutes a matrix Lie algebra under the matrix commutator. The resulting Lie algebras are non-semisimple, since
they have a non-trivial ideal Lie sub-algebra consisting of matrices of the form[

0 Ua
0 Ua

]
. (1.8)

The variational identities over this kind of Lie algebras can furnish Hamiltonian structures for the associated discrete
integrable couplings. We will illustrate such an idea for generating nonlinear discrete integrable Hamiltonian couplings
by means of the Volterra lattice hierarchy.

2. A scheme for constructing nonlinear integrable couplings

2.1. The general scheme

Assume that an integrable equation (1.4) has a discrete zero-curvature representation (1.3), where two Lax matrices U
and V usually belong to a semisimple matrix Lie algebra g . Let us introduce an enlarged spectral matrix

Ū = Ū(ū) =

[
U(u) Ua(v)
0 U(u) + Ua(v)

]
, (2.1)

where the new dependent variable ū consists of the original one u and the supplementary one v. Now, upon choosing

V̄ = V̄ (ū) =

[
V (u) Va(ū)
0 V (u) + Va(ū)

]
, (2.2)
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an enlarged discrete zero-curvature equation

Ūt = (EV̄ )Ū − Ū V̄ (2.3)

yields 
Ut = (EV )U − UV ,
Ua,t = (EV )Ua − UaV + (EVa)U − UVa + (EVa)Ua − UaVa.

(2.4)

This is an integrable coupling of the Eq. (1.4) due to the assumption (1.3), and it is normally a nonlinear integrable coupling
because the matrix (EVa)Ua − UaVa often produces nonlinear terms.

Let us further take a solution W̄ to the enlarged stationary discrete zero-curvature equation

(EW̄ )(EŪ) − ŪW̄ = 0. (2.5)

Then, we use the corresponding discrete variational identity [23]:

δ

δū

−
n∈Z

⟨W̄ , Ūλ⟩ = λ−γ ∂

∂λ
λγ

⟨W̄ , Ūū⟩, γ = const., (2.6)

to furnish Hamiltonian structures for the discrete integrable couplings described above. In the variational identity (2.6), ⟨·, ·⟩
is a non-degenerate, symmetric and invariant bilinear form (see [11,23,19] for detailed discussion), over the non-semisimple
Lie algebra:

ḡ =

[
A B
0 A + B

] A, B ∈ g


. (2.7)

In what follows, we will make an application of this general scheme to the Volterra lattice hierarchy.

2.2. An application to the Volterra lattice hierarchy

2.2.1. The Volterra hierarchy
The Volterra lattice hierarchy can be associated with the following discrete spectral problem (see, e.g., [4]):

Eφ = Uφ, U = U(u, λ) =

[
1 u

λ−1 0

]
, φ =

[
φ1
φ2

]
. (2.8)

Upon setting

Γ =

[
a b
c −a

]
=

−
i≥0

Γiλ
−i, Γi =

[
ai bi
ci −ai

]
, i ≥ 0, (2.9)

the stationary discrete zero-curvature equation

(EΓ )U − UΓ = 0 (2.10)

equivalently generates
b = u(a(1)

+ a), c = λ−1(a + a(−1)),

a(1)
− a = −λ−1

[u(1)(a(2)
+ a(1)) − u(a + a(−1))].

(2.11)

The last equation above uniquely determines all functions ai, i ≥ 1, if we take

a0 =
1
2
, ai|u=0 = 0, i ≥ 1. (2.12)

The first two equations automatically give all functions of bi and ci, i ≥ 0. In particular, the first two sets of ai, bi and ci are

a0 =
1
2
, b0 = u, c0 = 0;

a1 = −u, b1 = −u(u(1)
+ u), c1 = 1.

The compatibility conditions of the matrix discrete spectral problems

Eφ = Uφ, φt = V [m]φ, V [m]
= (λm+1Γ )+ + ∆m, ∆m =

[
0 −bm+1

0 am+1 + a(−1)
m+1

]
, m ≥ 0, (2.13)



2604 W.X. Ma, Z.N. Zhu / Computers and Mathematics with Applications 60 (2010) 2601–2608

where (P)+ denotes the polynomial part of P in λ, determine (see, e.g., [4]) the Volterra lattice hierarchy of soliton equations

utm = Km = ΦmK0 = u(a(1)
m+1 − a(−1)

m+1), m ≥ 0, (2.14)

where the hereditary recursion operator Φ reads

Φ = Φ(u) = u(1 + E−1)(−u(1)E2
+ u)(E − 1)−1u−1. (2.15)

The first equation in (2.14) is the Volterra lattice equation

ut0 = K0 = u(u(−1)
− u(1)). (2.16)

Because of

⟨V ,Uλ⟩ = tr(VUλ) = λ−1a(1), ⟨V ,Uu⟩ = tr(VUu) = −
a
u
,

where V = Γ U−1, an application of the trace identity with γ = 0 in [1] yields the Hamiltonian structures of the Volterra
lattice hierarchy:

utm = Km = J
δHm

δu
, J = u(E−1

− E)u, Hm =

−
n∈Z


−

am+1

m + 1


, m ≥ 0. (2.17)

2.2.2. Integrable couplings
Let us now begin with an enlarged spectral matrix:

Ū = Ū(ū, λ) =

[
U Ua
0 U + Ua

]
, ū =

[
u
v

]
, (2.18)

where U is defined as in (2.8) and the supplementary matrix Ua is taken as

Ua = Ua(v) =

[
0 v
0 0

]
. (2.19)

For the enlarged stationary discrete zero-curvature equation

(EΓ̄ )Ū − ŪΓ̄ = 0, (2.20)

we look for a solution

Γ̄ =

[
Γ Γa
0 Γ + Γa

]
, Γa = Γa(ū, λ) =

[
e f
g −e

]
, (2.21)

where Γ , defined by (2.9), solves the stationary discrete zero-curvature equation (2.10). Then, Eq. (2.20) requires

(EΓ )Ua − UaΓ + (EΓa)U − UΓa + (EΓa)Ua − UaΓa = 0, (2.22)

which implies
e(1)

− e + λ−1f (1)
− ug − v(c + g) = 0,

u(e(1)
+ e) − f + v(a(1)

+ a + e(1)
+ e) = 0,

g(1)
− λ−1(e(1)

+ e) = 0,
ug(1)

− λ−1f + v(c(1)
+ g(1)) = 0.

(2.23)

Noting the system (2.11) for defining a, b and c , the above system equivalently gives
f = u(e(1)

+ e) + v(a(1)
+ a + e(1)

+ e), g = λ−1(e + e(−1)),

λ(e(1)
− e) = −u(1)(e(2)

+ e(1)) + u(e + e(−1)) − v(1)(a(2)
+ a(1)

+ e(2)
+ e(1)) + v(a + a(−1)

+ e + e(−1)).
(2.24)

Trying a formal series solution

e =

∞−
i=0

eiλ−i, f =

∞−
i=0

fiλ−i, g =

∞−
i=0

giλ−i, (2.25)

we obtain a recursion relation for ei:

ei+1 = −(E − 1)−1
[u(1)(e(2)

i + e(1)
i ) − u(ei + e(−1)

i )

+ v(1)(a(2)
i + a(1)

i + e(2)
i + e(1)

i ) − v(ai + a(−1)
i + ei + e(−1)

i )], i ≥ 0. (2.26)
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Upon taking

e0 =
1
2
, ei|ū=0 = 0, i ≥ 1, (2.27)

the recursion relation (2.26) uniquely determines the sequence of ei, i ≥ 1, and subsequently, the system (2.24) defines the
sequences of fi and gi, i ≥ 0. The first two sets are listed as follows:

e0 =
1
2
, f0 = u + 2v, g0 = 0;

e1 = −u − 2v, f1 = −u(u(1)
+ 2v(1)

+ u + 2v) − 2v(u(1)
+ v(1)

+ u + v), g1 = 1.

For each integerm ≥ 0, let us introduce

V̄ [m]
=

[
V [m] V [m]

a
0 V [m]

+ V [m]

a

]
, (2.28)

where V [m] is defined as in (2.13), and

V [m]

a = (λm+1Γa)+ + ∆m,a, ∆m,a =

[
0 −fm+1

0 em+1 + e(−1)
m+1

]
. (2.29)

Then, the enlarged discrete zero-curvature equation

Ūtm = (EV̄ [m])Ū − Ū V̄ [m] (2.30)

yields

Ua,tm = (EV [m])Ua − UaV [m]
+ (EV [m]

a )U − UV [m]

a + (EV [m]

a )Ua − UaV [m]

a ,

together with them-th Volterra lattice equation in (2.14). This equation leads to

vtm = Sm = Sm(u, v) = u(e(1)
m+1 − e(−1)

m+1) + v(a(1)
m+1 − a(−1)

m+1 + e(1)
m+1 − e(−1)

m+1), m ≥ 0.

Therefore, the hierarchy of enlarged discrete zero-curvature equations generates a hierarchy of discrete integrable couplings

ūtm =

[
u
v

]
tm

= K̄m(ū) =

[
Km(u)

Sm(u, v)

]

=

[
u(a(1)

m+1 − a(−1)
m+1)

u(e(1)
m+1 − e(−1)

m+1) + v(a(1)
m+1 − a(−1)

m+1 + e(1)
m+1 − e(−1)

m+1)

]
, m ≥ 0, (2.31)

for the Volterra lattice hierarchy (2.14). All discrete integrable couplings above are nonlinear due to the term v(e(1)
m+1−e(−1)

m+1).
The first one reads

ut0 = u(u(−1)
− u(1)),

vt0 = u(u(−1)
+ 2v(−1)

− u(1)
− 2v(1)) + 2v(u(−1)

− u(1)
+ v(−1)

− v(1)).
(2.32)

Obviously, the supplementary evolution equation of v is nonlinear with respect to v itself, and so (2.32) gives a nonlinear
discrete integrable coupling of the Volterra lattice equation (2.16).

2.2.3. Invariant bilinear forms
To construct Hamiltonian structures of the integrable couplings obtained, we need to compute non-degenerate,

symmetric and invariant bilinear forms on the following Lie algebra:

ḡ =

[
A B
0 A + B

] A, B ∈ gl(2)


. (2.33)

For brevity, we transform this Lie algebra ḡ into a vector form through the mapping

δ : ḡ → R8, A → (a1, a2, . . . , a8)T , A =

a1 a2 a5 a6
a3 a4 a7 a8
0 0 a1 + a5 a2 + a6
0 0 a3 + a7 a4 + a8

 ∈ ḡ. (2.34)

The mapping δ induces a Lie algebraic structure on R8, isomorphic to the matrix Lie algebra ḡ above. It is easy to see that
the corresponding commutator [·, ·] on R8 is given by

[a, b]T = aTR(b), a = (a1, a2, . . . , a8)T , b = (b1, b2, . . . , b8)T ∈ R8, (2.35)
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where

R(b) =



0 b2 −b3 0 0 b6 −b7 0
b3 −b1 + b4 0 −b3 b7 −b5 + b8 0 −b7

−b2 0 b1 − b4 b2 −b6 0 b5 − b8 b6
0 −b2 b3 0 0 −b6 b7 0
0 0 0 0 0 b2 + b6 −b3 − b7 0
0 0 0 0 b3 + b7 b8 − b1 − b5 + b4 0 −b3 − b7
0 0 0 0 −b2 − b6 0 −b8 + b1 + b5 − b4 b2 + b6
0 0 0 0 0 −b2 − b6 b3 + b7 0


.

Define a bilinear form on R8 as follows:

⟨a, b⟩ = aT Fb, (2.36)

where F is a constantmatrix. Then, the symmetric property ⟨a, b⟩ = ⟨b, a⟩ and the invariance property under the Lie product
⟨a, [b, c]⟩ = ⟨[a, b], c⟩ requires that F T

= F and

(R(b)F)T = −R(b)F for all b ∈ R6.

This matrix equation leads to a system of linear equations in the elements of F . Solving the resulting system yields

F =



η1 0 0 η2 η3 0 0 η3 − η4 + η5
0 0 η1 − η2 0 0 0 η4 − η5 0
0 η1 − η2 0 0 0 η4 − η5 0 0
η2 0 0 η1 η3 − η4 + η5 0 0 η3
η3 0 0 η3 − η4 + η5 η4 0 0 η5
0 0 η4 − η5 0 0 0 η4 − η5 0
0 η4 − η5 0 0 0 η4 − η5 0 0

η3 − η4 + η5 0 0 η3 η5 0 0 η4


,

where ηi, 1 ≤ i ≤ 5, are arbitrary constants.
Therefore, a bilinear form on the underlying Lie algebra ḡ in (2.33) is given by

⟨A, B⟩ḡ = ⟨δ−1(A), δ−1(B)⟩R8 = (a1, a2, . . . , a8)F(b1, b2, . . . , b8)T

= η1(a1b1 + a2b3 + a3b2 + a4b4) + η2(a1b4 − a2b3 − a3b2 + a4b1)
+ η3[(a1 + a4)(b5 + b8) + (a5 + a8)(b1 + b4)]
+ η4[−a1b8 + a2b7 + a3b6 − a4b5 − a5(b4 − b5) + a6(b3 + b7)
+ a7(b2 + b6) − a8(b1 − b8)] + η5[a1b8 − a2b7 − a3b6 + a4b5
+ a5(b4 + b8) − a6(b3 + b7) − a7(b2 + b6) + a8(b1 + b5)], (2.37)

where

A =

a1 a2 a5 a6
a3 a4 a7 a8
0 0 a1 + a5 a2 + a6
0 0 a3 + a7 a4 + a8

 , B =

b1 b2 b5 b6
b3 b4 b7 b8
0 0 b1 + b5 b2 + b6
0 0 b3 + b7 b4 + b8

 .

This bilinear form (2.37) is symmetric and invariant under the Lie product:

⟨A, B⟩ = ⟨B, A⟩, ⟨A, [B, C]⟩ = ⟨[A, B], C⟩, A, B, C ∈ ḡ. (2.38)

The bilinear form is invariant under the matrix product:

⟨A, BC⟩ = ⟨AB, C⟩, A, B, C ∈ ḡ, (2.39)

if and only if

η2 = η5 = 0, η3 = η4, (2.40)

which can be obtained by checking the coefficients of a1b1 and a1b5 in ⟨A, BC⟩ − ⟨AB, C⟩. It is non-degenerate if and only if
det F ≠ 0, i.e.,

η4 − η5 ≠ 0, η1 − η2 − η4 + η5 ≠ 0,
η2
4 − η1η4 − η2η4 − 2η4η5 − 4η3η4 + 4η3η5 + 4η2

3 + η2
5 − η1η5 − η2η5 ≠ 0. (2.41)



W.X. Ma, Z.N. Zhu / Computers and Mathematics with Applications 60 (2010) 2601–2608 2607

2.2.4. Hamiltonian structures
Let us now choose that

η1 = 0, η2 = 0, η3 = 1, η4 = 1, η5 = 0, (2.42)

to guarantee that the corresponding bilinear form (2.37) is non-degenerate and invariant under the matrix product. Then,
it is directly computed that

⟨W̄ , Ūλ⟩ = −
u2e + uve + vb − uf

λu(u + v)
= λ−1e(1),

⟨W̄ , Ūū⟩ =


va − ue
u(u + v)

, −
a + e
u + v

T

,

where W̄ = Γ̄ Ū−1, Γ̄ being defined by (2.21). Thus, the discrete variational identity (2.6) with γ = −
λ
2

d
dλ ln |⟨Γ̄ , Γ̄ ⟩| = 0

generates

δ

δū

−
n∈Z


−

em+1

m + 1


=


vam+1 − uem+1

u(u + v)
, −

am+1 + em+1

u + v

T

, m ≥ 0. (2.43)

It follows from this that the Volterra integrable couplings (2.31) possess the following Hamiltonian structures:

ūtm = K̄m(ū) = J̄
δH̄m

δū
, m ≥ 0, (2.44)

where the Hamiltonian operator is given by

J̄ =

[
−u(E−1

− E)u u(E−1
− E)u

u(E−1
− E)u (u + v)(E−1

− E)(u + v) − u(E−1
− E)u

]
, (2.45)

and the Hamiltonian functionals, by

H̄m =

−
n∈Z


−

em+1

m + 1


, m ≥ 0. (2.46)

Noting that the recursion relation for ai + ei has the same format as for ai, we obtain

K̄m+1 = Φ̄K̄m, Φ̄ =

[
Φ(u) 0
Φa(ū) Φ(u) + Φa(ū)

]
, m ≥ 0,

where Φ is defined as in (2.15) and

Φa(ū) = (u + v)(1 + E−1)[−(u(1)
+ v(1))E2

+ u + v](E − 1)−1(u + v)−1
− Φ(u). (2.47)

It is straightforward to check J̄Φ̄Ď
= Φ̄ J̄ , where Φ̄Ď is the adjoint operator of Φ̄ . Then, it follows immediately that all discrete

integrable couplings (2.31) commute with each other, and so do all conserved functionals (2.46), that is to say,

[K̄k, K̄l] = 0, {H̄k, H̄l} = 0, k, l ≥ 0. (2.48)

It is also not difficult to verify that J̄ and Φ̄ J̄ constitute a Hamiltonian pair and Φ̄ is a hereditary recursion operator for the
hierarchy of discrete integrable couplings (2.31).

3. Concluding remarks

We introduced a class of specific non-semisimple Lie algebras which generate nonlinear discrete integrable couplings.
The variational identities on the Lie algebras considered were used to furnish Hamiltonian structures for the resulting
discrete integrable couplings. An application to the Volterra lattice hierarchy yielded a hierarchy of nonlinear discrete
integrable Hamiltonian couplings. The results obtained provide a supplement to the existing theories on the perturbation
equations and linear integrable couplings [7,11,14].

We remark that vertex operator representations of polynomial Lie algebras are used to study coupled integrable systems
and their soliton solutions andBäcklund transformations [24,25], and component-trace identities are applied toHamiltonian
structures of multi-component integrable couplings [26]. We also point out that using the block type matrix algebras will
lead to other classes of integrable couplings with more supplementary equations. Furthermore, combining different forms
of spectral matrices will generate more diverse discrete integrable couplings, both linear and nonlinear (see, e.g., [17,27,28]
for other forms). For example,U 0 Ua

0 U Ub
0 0 U + Ua


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will yield a new kind of integrable couplings—integrable bi-couplings [28]. The discrete integrable couplings presented can
also have other integrable properties, for instance, Hirota bilinear forms [29]. Such studies will enrich the theory of multi-
component integrable equations (see [30–32] for examples of higher-ordermatrix spectral problems), andwe hope that our
results will help explore diverse algebraic and geometric structures of integrable couplings, particularly integrable multi-
couplings.
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