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1. Introduction

The Hirota formulation provides a direct approach to soliton equations [1]. The associated Hirota bilinear equations can
be solved by the Wronskian technique and the resulting solutions are called Wronskian solutions [2,3]. Solitons, positons and
complexitons are among typical Wronskian solutions [4,5]. Interaction solutions between two classes of such solutions are
another class of Wronskian solutions, describing more diverse nonlinear physical phenomena [3]. Moreover, upon taking
long wave limits, lump solutions, rationally localized solutions in all directions in space, can be computed from solitons
[6-9]. Recently lumps solutions are generated through symbolic computations [ 10-14] and this raises more questions about
interaction solutions. It is of current interest to study interaction solutions [3,15], particularly interaction solutions between
lumps and either solitons or kinks [16,17]. More generally, if we start with lumps generated from quadratic functions, what
interaction solutions can be formulated by combining other kinds of functions?

In this paper, we will focus on the (2+1)-dimensional Ito equation to show the diversity of such interaction solutions. The
(2+1)-dimensional Ito equation reads

Pro(ut, v) i= Uy + Uene + BUxly + ULy + SUgeve + auy: + Buy =0, (1L.1)

where « and B are two given constants and vy = u [18-20]. It is known (see, e.g., [ 16]) that the Ito equation above possesses
a Hirota bilinear form:

. 2 3
Bio(f) :== (D; + D;D; + aDyD; + BDyD:)f - f
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= z[fttf _ftz +fxxxtf - 3fxxtfx + 3fxtfxx _fxxxft

+ alfyf = fife) + BUuf _fxft)] =0, (1.2)
and the links are as follows:
2
u=2(Inf) = @ v=2(Inf)y = Zfo (1.3)

Such characteristic transformations have been adopted in Bell polynomial theories of soliton equations (see, e.g., [21,22]),
and a precise relation is

Blto(f):l
f2 X
Thus, if f solves the bilinear Ito equation (1.2), then u = 2(Inf)y and v = 2(Inf), will solve the (2+1)-dimensional Ito
equation (1.1).

A basic analysis with Maple symbolic computations can show that the (2+1)-dimensional bilinear Ito equation (1.2) has
a class of quadratic function solutions given by

Pyo(u, v) = [

f=(a1x+ ay + ast + as)* + (asx + agy + azt + as)* + ao, (1.4)
where the parameters need to satisfy
ﬂal +aay + a3 = 0, ,8(15 + aag +a; = 0, aias + asa; = 0. (15)

By the transformations in (1.3), this can generate a large class of lump solutions to the (2+1)-dimensional Ito equation (1.1).
The condition

a1as — dxas # 0, (1.6)

is necessary and sufficient for a function f by (1.4) to generate a lump solution through (1.3). Under this condition (1.6), we
can solve the polynomial system

S(x(t), ¥(£)) = 0, fy(x(t), y(t)) = 0, (1.7)
to get all critical points of the function f:
X(t) = (a2a7 — azag)t + (axag — (14(16)7 yt) = _(0107 — a3as)t + (arag — 0405), (1.8)
a10g — ayds a10¢ — dyas

at a fixed time t. Obviously, the sum of two squares, f — ag, vanishes at this set of critical points, and so f > 0 if and only if
ag > 0. This way, u and v defined by (1.3) are analytical if and only if ag > 0. At any given time ¢, (x(t), y(t)) determined by
(1.8)is also a critical point in the (x, y)-plane for the function u = 2(In f ). Thus, based on the second partial derivative test,
the lump solution u has a peak at the critical point (x(t), y(t)), because we have

24(a% + a5?)? 5 192(as? + as?)*(a1a6 — a20a5)?

Uy = —————— < 0, Uylyy — Uy = >0
(192 vy y (194

at the critical point (x(t), y(t)). The traveling speeds of the peak in the x- and y-directions, which can be computed from (1.8),
are constant.

The resulting lump solutions above cover the two classes of lump solutions previously presented by symbolic computa-
tions in [16]:

u = , V1 = ,

fl f12 fl

_4as®  8as’(asx — By + ag) 4as(asx — LBy + ag)

where

a a
fi= (—53’ + a3t + aq)* + (asx — %y + ag)* + ag;

and
20,2 2 2 2 2 2
40:%(a2 + a;2)  8ar*[ai(as® + a;?)(ax — BY) — o a7(a3as — a4a7)]
U = 2 - TS s
a;*f, o a%f,
oy — 4ay[ar(as® + a;*)ax — By) — a az(azas — a4a7)]
? o asf '
where
a;+a aa aaz — a;?
fr=(aix— %y +ast+ag)’ + (—;—3x + ﬁlofiaw +ast +a5)° + do.
7 7
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In this paper, we would like to analyze interaction solutions between lump solutions and other kinds of solutions
to the (2+1)-dimensional Ito equation, and present two general classes of interaction solutions through Maple symbolic
computations, which could exhibit diverse nonlinear phenomena. We will begin with the Hirota bilinear form of the (2+1)-
dimensional Ito equation, and test if combinations of quadratic functions with other kinds of functions can solve the bilinear
Ito equation. In the first class of the resulting interaction solutions, there is an arbitrary function involved, and in the second
class of the resulting interaction solutions, the other function only needs to satisfy a linear third-order ordinary differential
equation. All this shows the diversity of interaction solutions to the (2+1)-dimensional Ito equation. A few of concluding
remarks will be finally given in the last section.

2. Abundant interaction solutions

Basic approaches to soliton solutions and dromion-type solutions include the Hirota perturbation technique and
symmetry reductions and constraints (see, e.g., [23-27]). Recently, the multiple exp-function algorithm has also been used to
compute multiple wave solutions to both integrable and non-integrable equations (see, e.g., [20,28,29]). We aim to present
interaction solutions between lump solutions and other kinds of solutions to the (2+1)-dimensional Ito equation (1.1), by
determining when combined functions of quadratic functions and other kinds of functions will solve the (2+1)-dimensional
Ito equation (1.2).

Through Maple symbolic computations, we look for combined solutions to the bilinear Ito equation (1.2). We start from
an ansatz

f=6"+&"+w&) + a3, (2.1)
where w is a function and three linear wave variables are
&1 = a1x + axy + ast + ay,
{52 = asX + agy + ayt + ag, (2.2)
&3 = aoX + ayoy + ant + an.
The parameters a;, 1 < i < 13, are all real constants to be determined. With the help of Maple symbolic computations,

we can determine the possibilities for the function w and the parameters a;’s, when we impose the conditions (1.5). This is
stated in the following two theorems.

Theorem 2.1. If we take the following choice for the parameters:

Bai +aa; +a3 =0,
Bas + aas + a; = 0,
ajasz + asa; = 0,

ag =0, aay +a;; =0,

(2.3)

then the function f determined by (2.1) with an arbitrary function w solves the bilinear Ito equation (1.2).

Theorem 2.2. If we take the following choice for the parameters:

Bai +aa; + a3 =0,

Bas + aas + a; = 0,

aias +asa; =0,

ad + Pag +as® =0, a;; =0,

then the function f determined by (2.1) with a function w satisfying w”’(z) = w’(z) solves the bilinear Ito equation (1.2).

(2.4)

The proof is direct by applying Maple in resolution theorem proving. These sets of solutions for the parameters generate
two classes of combined solutions f; and f, to the bilinear Ito equation (1.2), defined by (2.1) and (2.2) with (2.3) or (2.4),
and then the resulting combined solutions present two classes of interaction solutions u; and u; to the (2+1)-dimensional
Ito equation (1.1), under the transformations in (1.3). The analyticity of the interactions solutions will be guaranteed, if we
require w(&s) + a;3 > 0, which can be easily achieved. These interaction solutions reduce to the lump solutions [ 16] when
the function w disappears, and the soliton solutions [19] when w is taken to be the hyperbolic cosine and the quadratic
function disappears. Special choices for w generate some interesting interaction solutions, for example, lump-like solutions
with periodic perturbations.

An interesting characteristic is the involvement of an arbitrary function w in the first class of the resulting interaction
solutions, but the function w has to be

w(z) = ci1e” + e +cs, (2.5)

where c1, ¢; and c3 are arbitrary constants, in the second class of the resulting interaction solutions.
To illustrate the resulting interaction solutions, we take the following two special choices for the parameters:

{a:—l,ﬂ:Z, m=2a6=106=-3 a=—1,a=—-2,

g =—7,a;=-3,a3=1,a9=0,a;0=1, a1 =1, ap =2, a3 =2, (2:6)
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Fig. 1. Profiles of u; in (2.8) with t = 0, 1, 2: 3d plots (top) and contour plots (bottom).

and

{a:—z,ﬂzl, a=-1,a=2,a=5, as=—1, as =5, 27)

s =3,a7=1,a3=3,a9=1,a;9=1, a;1 =0, ap=-2, az = 1.

When we require w(&3) + a;3 > 0 in these two cases, the analyticity is guaranteed for the two corresponding specific
interaction solutions. Upon taking w(z) = sin(z) and w(z) = e* + %e*Z respectively, both of which satisfy w(&3) + a;3 > 0
indeed, it is direct to work out these two interaction solutions:

32 2(16x+ 32y — 8)? 2(16x +32y — 8)
U =— — zy , U1 = y > (2.8)
81 &1 &1
with
g1 =(-3t+2x+y— 12+ (-3t —-2x—Ty+ 12 +sin(t +y —2)+2,
and
2(52+ef +1e)  2(52x+26y+32+e3 — 1e )2
Uy = — N
2 &2 £?
; (2.9)
2(52x+26y+32+e5 — Je™®)
vy = s
? &
with

1
gz=(5t—x+2y—1)2+(t+5x+3y+3)2+e53+5e*53+1, E3=x+y—2.

Three 3-dimensional plots and contour plots of the solutions u; and v att = 0, 1, 2 are shown in Figs. 1 and 2, respectively.
Similarly, three 3-dimensional plots and contour plots of the solutions u, and v, att = 0, 1, 2 are shown in Figs. 3 and 4,
respectively.

3. Concluding remarks
Based on the Hirota bilinear form of the (2+1)-dimensional Ito equation, we presented two classes of interaction solutions

between lumps and other kinds of solutions to the (2+1)-dimensional Ito equation through Maple symbolic computations.
The first class of the resulting interaction solutions contains an arbitrary function, and the second class of the resulting
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Fig. 3. Profiles of u, in (2.9) with t = 0, 1, 2: 3d plots (top) and contour plots (bottom).

interaction solutions requires a function satisfying a linear third-order ordinary differential equation. All this provides
abundant interaction solutions, supplementing existing lump and soliton solutions.

We remark that under the conditions in (1.5), we can also show that the function f determined by (2.1) solves the bilinear
Ito equation (1.2) for any function w if and only if the fourth condition in (2.3) is satisfied, and the function f determined by
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Fig. 4. Profiles of v, in (2.9) with t = 0, 1, 2: 3d plots (top) and contour plots (bottom).

(2.1) solves the bilinear Ito equation (1.2) for any function w with w”’(z) = w’(z) if and only if the fourth condition in (2.4)
is satisfied. Moreover, even if the fourth condition in (2.4) holds, the functions

f=&"+&>+sin& + a3, f =67+ & +cosé&s + ars,

do not solve the bilinear Ito equation (1.2).
It should be interesting to consider the generalized bilinear Ito-like equations

(Dﬁ,t + D§,XD3,[ +aD3yD3 + BD3xD3)f - f =0,

(Dﬁ,t + D2 ,Ds + aDsyDs ¢ + BDs xDs . )f - f =0,

where D3, and Ds , are two kinds of generalized bilinear derivatives [30]. All previous computations would be different in
those two cases, but lump solutions generated from quadratic functions remain the same. It is also interesting to determine
combined solutions for other generalized bilinear and tri-linear differential equations or if they can be generated from
symmetry constraints [24-27]. This kind of interaction solutions is quite different from resonant solutions formulated by
the linear superposition principle [31,32] and could bring insights to help solve nonlinear problems we face today.
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