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We analyze soliton solutions and verify the Hirota N-soliton condition for the B-
type Kadomtsev–Petviashvili equation, within the Hirota bilinear formulation. A weight
number is used in an algorithm to check the Hirota condition while transforming the
Hirota function in N wave vectors to a homogeneous polynomial. Soliton solutions are
presented under general dispersion relations.
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1. Introduction

In mathematical physics, N-soliton solutions are very helpful in exploring nonlinear wave phenomena [1,2]. Within
the Hirota bilinear formulation, we can present N-soliton solutions in a closed form [3,4]. Breather, complexiton, lump
and rogue wave solutions are all special cases of N-soliton solutions.

Let us start by delineating the Hirota bilinear form. We focus on the (2 + 1)-dimensional case and denote the spatial
variables by x and y, and the temporal variable by t . Hirota bilinear derivatives are defined by [5]:

Dm
x f · g =

m∑
i=0

(−1)m−i
(
m
i

)
(∂ i

xf )(∂
m−i
x g), m ≥ 1, (1.1)

and more generally, bilinear partial derivatives are similarly defined by

(Dm
x D

n
t f · g)(x, t) = (∂x − ∂x′ )m(∂t − ∂t ′ )nf (x, t)g(x′, t ′)|x′=x,t ′=t , m, n ≥ 0, m + n ≥ 1. (1.2)
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aking f = g , we obtain Hirota bilinear expressions:

Dm
x f · f =

m∑
i=0

(−1)m−i
(
m
i

)
(∂ i

xf )(∂
m−i
x f ), m ≥ 1, (1.3)

nd similarly, bilinear partial derivative expressions:

Dm
x D

n
t f · f =

m∑
i=0

n∑
j=0

(−1)m+n−i−j
(
m
i

)(
n
j

)
(∂ i

x∂
j
t f )(∂

m−i
x ∂

n−j
t f ), m, n ≥ 0, m + n ≥ 1. (1.4)

bviously, any Hirota bilinear expression of odd order is zero, for example,

Dxf · f = 0, D2
xDt f · f = 0.

nly Hirota bilinear expressions of even orders make sense, and particularly, we have

D2
x f · f = 2(fxxf − f 2x ), D3

xDt f · f = 2(f3x,t f − 3fxxt fx + 3fxt fxx − ft f3x).

ow, in terms of Hirota bilinear expressions, we can define Hirota bilinear equations. Take an even polynomial P(x, y, t)
n x, y and t with P(0, 0, 0) = 0. The corresponding Hirota bilinear equation is defined as follows:

P(Dx,Dy,Dt )f · f = 0, (1.5)

ll terms of which are Hirota bilinear expressions. If a given nonlinear partial differential equation can be transformed
nto a Hirota bilinear equation, we say that the equation possesses a Hirota bilinear form.

Among important integrable equations in (2+1)-dimensions is the Kadomtsev–Petviashvili equation [6]:

N(u) := (ut + 6uux + uxxx)x − uyy = 0, (1.6)

nd its bilinear form reads
B(f ) := (D4

x + DxDt − D2
y)f · f

= 2(fxxxxf − 4fxxxfx + 3f 2xx + fxt f − fxft − fyyf + f 2y ) = 0. (1.7)

nder the logarithmic derivative transformation u = 2(ln f )xx, the two equations are linked together: N(u) = (B(f )/f 2)xx.
he Kadomtsev–Petviashvili equation is associated with the A-type infinite dimensional Lie algebra gl(∞) and has
-soliton solutions [7].
Another important example is the B-type Kadomtsev–Petviashvili (BKP) equation associated with the B-type infinite

imensional Lie algebra o(∞) [8,9]:

N(u) := (15u3
x + 15uxu3x + u5x)x + 5[u3x,y + 3(uxuy)x] + uxt − 5uyy = 0, (1.8)

nd its Hirota bilinear form is

B(f ) := (D6
x + 5D3

xDy + DxDt − 5D2
y)f · f = 2[f6xf − 6f5xfx + 15f4xfxx − 10f 23x

+ 5(f3x,yf − 3fxxyfx + 3fxyfxx − fyf3x) + fxt f − fxft − 5(fyyf − f 2y )] = 0. (1.9)

his is equivalent to the above BKP equation, under the logarithmic derivative transformation u = 2(ln f )x, and the link
s N(u) = (B(f )/f 2)x. Soliton solutions are formulated for the BKP equation via the τ -function [9] and the Pfaffian [10].

We would like to analyze a general class of N-soliton solutions and verify the corresponding Hirota condition for
he BKP equation, within the Hirota bilinear formulation. By applying an algorithm using a weight to check the Hirota
-soliton condition, a verification of the Hirota N-soliton condition will be given for the BKP equation, and thus, N-soliton
olitons will be presented explicitly, under more general dispersion relations than the ones chosen in the τ -function and
faffian theories.

. Formulation of soliton solutions

We express N wave vectors as follows:

ki = (ki, li, −ωi), 1 ≤ i ≤ N. (2.1)

et P(x, y, t) be an even polynomial in x, y and t , satisfying P(0, 0, 0) = 0. An N-soliton solution to a Hirota bilinear
quation

P(Dx,Dy,Dt )f · f = 0 (2.2)

s given by [11]:

f =

∑
exp(

N∑
µiηi +

∑
aijµiµj), (2.3)
µ=0,1 i=1 i<j

2
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here µ = (µ1, µ2, . . . , µN ), µ = 0, 1 means that each µi takes 0 or 1, and

ηi = kix + liy − ωit + ηi,0, 1 ≤ i ≤ N, (2.4)

eaij = Aij := −
P(ki − kj)
P(ki + kj)

, 1 ≤ i < j ≤ N, (2.5)

ηi,0’s being arbitrary constant phase shifts.
Let us check what conditions an N-soliton solution should satisfy. Introduce

H(ki1 , . . . ,kin ) =

∑
σ=±1

P(
n∑

r=1

σrkir )
∏

1≤r<s≤n

P(σrkir − σskis )σrσs, 1 ≤ n ≤ N, (2.6)

here 1 ≤ i1 < · · · < in ≤ N , σ = (σ1, σ2, . . . , σn), and σ = ±1 means that each σi takes 1 or −1. Particularly, we have
(k1) = P(k1) + P(−k1) = 2P(k1). We call these functions the Hirota functions.
Applying the basic properties

P(Dx,Dy,Dt )eηi · eηj = P(ki − kj)eηi+ηj , (2.7)

nd

P(Dx,Dy,Dt )eηn f · eηng = e2ηnP(Dx,Dy,Dt )f · g, (2.8)

here ηi, ηj and ηn are arbitrary linear functions, we can formulate the following expression [12,13].

heorem 2.1. Let f be defined by (2.3), and ξ̂ mean that no ξ is involved. Then we have

P(Dx,Dy,Dt )f · f

= (−1)
1
2N(N−1) H(k1, k2, . . . ,kN )∏

1≤i<j≤NP(ki + kj)
eη1+η2+···+ηN

+

N−1∑
n=1

(−1)
1
2 (N−n)(N−n−1)

∑
1≤i1<···<in≤N

H(k1, . . . , k̂i1 , . . . , k̂in , . . . ,kN )∏
1≤i<j≤N

i,j̸∈{i1,...,in}

P(ki + kj)
eη1+···+η̂i1+···+η̂in+···+ηN

+

N−1∑
n=1

∑
1≤i1<···<in≤N

e2(ηi1+···+ηin+
∑

1≤r<s≤n air is )P(Dx1 , . . . ,DxM )f̃i1···in · f̃i1···in

ith

f̃i1···in =

∑
µ̃i1 ···in=0,1

exp(
∑
1≤i≤N

i̸∈{i1,...,in}

µiη̃i +
∑

1≤i<j≤N
i,j̸∈{i1,...,in}

aijµiµj), η̃i = ηi +

n∑
r=1

aiir ,

here µ̃i1···in = (µ1, . . . , µ̂i1 · · · , µ̂in , . . . , µN ) and µ̃i1···in = 0, 1 means that each µi in µ̃i1···in takes 0 or 1.

Following this basic theorem, we can find by a recursive procedure that a Hirota bilinear equation (2.2) possesses an
N-soliton solution (2.3) if and only if the condition

H(ki1 , . . . ,kin ) = 0, 1 ≤ i1 < · · · , < in ≤ N, 1 ≤ n ≤ N, (2.9)

is satisfied. This is called the Hirota condition for an N-soliton solution, or simply, the N-soliton condition [14,15]. The
case of n = 1 leads to the dispersion relations

P(ki) = P(ki, li, −ωi) = 0, 1 ≤ i ≤ N. (2.10)

Few studies are available in the literature on the Hirota N-soliton condition, due to its high complexity [14].

Examples: The one-soliton condition is just the dispersion relation: P(k1) = 0, which means that f = 1+eη1 is a solution.
Besides the dispersion relations, the two-soliton condition requires

2(P(k1 + k2)P(k1 − k2) − P(k1 − k2)P(k1 + k2)) = 0, (2.11)

which is automatically satisfied. Therefore, we always have a two-soliton solution:

f = 1 + eη1 + eη2 + A eη1+η2 (2.12)
12
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o a Hirota bilinear equation. Taking N = 3, we see that in addition to the dispersion relations, the three-soliton condition
requires [16]:∑

σ1,σ2,σ3=±1

P(σ1k1 + σ2k2 + σ3k3)P(σ1k1 − σ2k2)

× P(σ2k2 − σ3k3)P(σ1k1 − σ3k3) = 0,

which is equivalent to∑
(σ1,σ2,σ3)∈S

P(σ1k1 + σ2k2 + σ3k3)P(σ1k1 − σ2k2)

× P(σ2k2 − σ3k3)P(σ1k1 − σ3k3) = 0, (2.13)

where S = {(1, 1, 1), (1, 1, −1), (1, −1, 1), (−1, 1, 1)}. The three-soliton solution reads

f = 1 + eη1 + eη2 + eη3 + A12eη1+η2 + A13eη1+η3

+ A23eη2+η3 + A123eη1+η2+η3 , A123 = A12A13A23. (2.14)

It is generally agreed that the three-soliton condition implies the N-soliton condition, but no proof of its accuracy has yet
been given.

If we require a sufficient Hirota N-soliton condition [17]:

P(ki − kj) = 0, 1 ≤ i < j ≤ N, (2.15)

we obtain the resonant N-soliton solution:

f = 1 + c1eη1 + c2eη2 + · · · + cNeηN , (2.16)

where ci’s are arbitrary constants. Those wave vectors ki’s associated with resonant solutions constitute an affine space
in R3 [18].

Directly from the definition, we can see the following properties of the Hirota functions.

Theorem 2.2. The Hirota functions defined by (2.6) are symmetric and even functions in the involved wave vectors.

Taking k2 = ±k1, we have

P(σiki − k2)P(σiki ± k1) = P(ki − k1)P(ki + k1) (2.17)

in both cases of σi = ±1, owing to the even property of the polynomial P . Applying this property, we can explore the
following consequence [12,13].

Theorem 2.3. If k2 = ±k1, then we have

H(k1, . . . ,kN ) = 2H(k3, . . . ,kN )P(2k1)
N∏
i=3

P(ki − k1)P(ki + k1). (2.18)

This result will be used to factor out as more common factors out of the Hirota function H(k1, . . . ,kN ) as possible,
while verifying the Hirota condition.

3. Verifying the hirota N-soliton condition

Note that the dispersion relations (2.10) determine all frequencies ωi = ω(ki, li), 1 ≤ i ≤ N . Therefore, P(σiki − σjkj)
are, actually, functions of ki, li and kj, lj,

On one hand, we assume that under the substitution

li = likw
i , 1 ≤ i ≤ N, (3.1)

for some integer weight w, P(σiki − σjkj) and P(σ1k1 + · · · + σNkN ) can be simplified into rational functions as follows:

P(σiki − σjkj) =
σiσjkikjQ1(ki, li, kj, lj, σi, σj)

Q2(ki, li, kj, lj)
, (3.2)

here Q1 and Q2 are polynomial functions, and

P(σ1k1 + · · · + σNkN ) =
Q3(k1, l1, . . . , kN , lN , σ1, . . . , σN )

Q4(k1, l1, . . . , kN , lN )
, (3.3)

here Q3 and Q4 are polynomial functions. The factor of kikj in P(σiki − σjkj) is a characteristic condition for existence of
-soliton solutions.
4
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On the other hand, Theorem 2.3 tells that under the induction assumption, the Hirota function H(k1, . . . ,kN ) will be
ero, if two of the wave vectors are equal. Applying the symmetric property in Theorem 2.2, we know that under the
ransforms in (3.1), H(k1, . . . ,kN ) will still be even with respect to ki, li 1 ≤ i ≤ N , when w is even, but H(k1, . . . ,kN )
ill be even only with respect to ki, 1 ≤ i ≤ N , when w is odd. However, in each case, we can have the simplified form

H(k1, . . . ,kN ) = (k2i − k2j )
2gij + (li − lj)2hij, for 1 ≤ i < j ≤ N,

here gij and hij are rational functions of kn, ln, 1 ≤ n ≤ N .
Further using (3.2) and (3.3), we see that the Hirota function H(k1, . . . ,kN ) can be written as

H(k1, . . . ,kN ) =

∏
1≤i<j≤N k2i k

2
j [

∏
1≤i<j≤N (k

2
i − k2j )

2g +
∏

1≤i<j≤N (li − lj)2h]

Q4(k1, l1, . . . , kN , lN )
∏

1≤i<j≤N Q2(ki, li, kj, lj)
(3.4)

nder (3.1), where g and h are homogeneous polynomials of kn, ln, 1 ≤ n ≤ N . If H(k1, . . . ,kN ) ̸= 0, then we can have a
onzero function g at least. Define the homogeneous polynomial

H̃(k1, . . . ,kN ) = H(k1, . . . ,kN )Q4(k1, l1, . . . , kN , lN )
∏

1≤i<j≤N

Q2(ki, li, kj, lj). (3.5)

hen, since

H̃(k1, . . . ,kN ) =

∏
1≤i<j≤N

k2i k
2
j [

∏
1≤i<j≤N

(k2i − k2j )
2g +

∏
1≤i<j≤N

(li − lj)2h],

e can find that if H(k1, . . . ,kN ) ̸= 0 and so H̃(k1, . . . ,kN ) ̸= 0, then the degree of H̃(k1, . . . ,kN ) is at least
N(N − 1) + 2N(N − 1) = 4N(N − 1). In other words, if the degree of H̃(k1, . . . ,kN ) is less than 4N(N − 1), then
(k1, . . . ,kN ) = 0, which is what we need to prove. Therefore, based on

H̃(k1, . . . ,kN )

=

∑
σ=±1

Q3(k1, l1, . . . , kN , lN , σ1, . . . , σN )
∏

1≤i<j≤N

σiσjkikjQ1(ki, li, kj, lj, σi, σj), (3.6)

final proof task is to compute Q1 and Q3 to check if the degree of H̃(k1, . . . ,kN ) is less than 4N(N − 1).
Let us recall that the BKP equation is associated with

P(x, y, t) = x6 + 5x3y + xt − 5y2, (3.7)

hich gives the bilinear BKP equation:

B(f ) := (D6
x + 5D3

xDy + DxDt − 5D2
y)f · f = 2[f6xf − 6f5xfx + 15f4xfxx − 10f 23x

+ 5(f3x,yf − 3fxxyfx + 3fxyfxx − fyf3x) + fxt f − fxft − 5(fyyf − f 2y )] = 0. (3.8)

his is equivalent to the BKP equation:

N(u) := (15u3
x + 15uxu3x + u5x)x + 5[u3x,y + 3(uxuy)x] + uxt − 5uyy = 0, (3.9)

ince we have N(u) = (B(f )/f 2)x under u = 2(ln f )x.
It is easy to evaluate that

ωi =
k6i + 5k3i li − 5l2i

ki
, 1 ≤ i ≤ N, (3.10)

nd ⎧⎨⎩ Q1 = −5[k4i − 3σiσjk3i kj + 4k2i k
2
j − 3σiσjkik3j + k4j

−3σiσj(li + lj)kikj + (2li + lj)k2i + (li + 2lj)k2j + (li − lj)2],
degQ3 = 6, Q2 = 1, Q4 = 1,

(3.11)

under the substitution (3.1) with w = 1. Now if H(k1, . . . ,kN ) ̸= 0, then based on (3.6), the degree of the polynomial
H̃(k1, . . . ,kN ) is 3N(N − 1) + 6, which could not be greater than 4N(N − 1) when N ≥ 4. A direct check by symbolic
omputation can show H(k1, k2, k3) = 0. Therefore, we obtain H(k1, . . . ,kN ) = 0, N ≥ 1, which completes the proof.
Note that soliton solutions of the BKP equation has also been formulated by τ -functions and Pfaffians in [9,10],

espectively. However, the dispersion relations chosen in [9,10] are all special cases of (2.10) (or more specifically, (3.10)
n the above BKP case), since we have

ki = pi − qi, li = q3i − p3i , ωi = 9(q5i − p5i ), 1 ≤ i ≤ N, (3.12)

roduced by the τ -function and Pfaffian techniques. This is not a one-to-one correspondence between (ki, li) and (pi, qi)
n R2, and so the dispersion relations in (3.10) are more general. Additionally, lump solutions [19,20], lump-soliton
olutions [21], rogue wave solutions [22], and special N-soliton solutions [23] have been presented for the BKP equation.
hose are specific reductions of the N-soliton solutions in Section 2 as well.
5
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. Concluding remarks

We have verified the Hirota N-soliton condition for the BKP equation, and therefore, presented soliton solutions
xplicitly, under general dispersion relations. From the general N-soliton solutions, we can work out many other special
inds of closed form solutions, such as lump, breather, rogue wave and interactions solutions.
It would be interesting to search for other bilinear equations in (2+1)-dimensions, which possess N-soliton solutions.

ne more interesting question is to explore bilinear equations in (3+1)-dimensions or higher dimensions, to which there
xist N-soliton solutions. Symbolic computations and theoretical proofs could be used together to determine new such
quations in higher dimensional cases.
Another direction for further research is to check generalized bilinear equations, which is certainly more challenging.

et us briefly state the generalized bilinear formulation.
Let p be a natural number. The Dp,x-operators are defined as follows [24]:

Dm
p,xD

n
p,t f · g =

m∑
i=0

n∑
j=0

(
m
i

)(
n
j

)
αi+j
p (∂m−i

x ∂
n−j
t f )(∂ i

x∂
j
tg), m, n ≥ 0, m + n ≥ 1, (4.1)

here the powers of αp are determined by

αi
p = (−1)r(i), i = r(i) mod p, i ≥ 0, (4.2)

ith 0 ≤ r(i) < p. The patterns of those powers for i = 1, 2, 3, . . . read

p = 3 : −, +, +, −, +, +, . . . ;

p = 5 : −, +, −, +, +, −, +, −, +, +, . . . ;

p = 7 : −, +, −, +, −, +, +, −, +, −, +, −, +, +, . . . .

or example, we can have D3,x and D5,x associated with the two smallest odd prime numbers: p = 3, 5. The cases of
p = 2k, k ∈ N, just present the Hirota bilinear derivatives. The corresponding generalized bilinear expressions exhibit
new characteristics. For instance, we have

D3
3,xf · f = 2fxxxf , D4

3,xf · f = 6f 2xx, (4.3)

hich amend the Hirota case, since the Hirota bilinear formulation only works with bilinear differential equations
onsisting of even-order differential terms. Other generalized bilinear derivatives such as D6,x and D9,x should exhibit
more interesting phenomena.

We are particularly interested in knowing any example of generalized bilinear equations, which has N-soliton solutions.
Focus on the (2+1)-dimensional case again. It is known that a generalized bilinear equation

P(Dp,x,Dp,y,Dp,t )f · f = 0 (4.4)

can possess a resonant N-soliton solution [25]:

f = 1 + c1eη1 + c2eη2 + · · · + cNeηN (4.5)

where ci’s are arbitrary constants and ηi = kix + liy − ωit + ηi,0, 1 ≤ i ≤ N , if and only if

P(ki + αpkj) + P(kj + αpki) = 0, 1 ≤ i ≤ j ≤ N, (4.6)

where ki = (ki, li, −ωi), 1 ≤ i ≤ N . What is a generalized N-soliton condition, i.e., an N-soliton condition for a generalized
bilinear equation? How can one find generalized bilinear equations, for instance,

P(D3,x,D3,t ) = 0 or P(D3,x,D3,y,D3,t ) = 0, (4.7)

where p = 3, which possess N-soliton solutions? These are basic questions one needs to answer to establish a more
general bilinear theory on soliton equations, even lump, breather and rogue wave solutions (see, e.g., [26–28]).
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