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SOLVING THE KORTEWEG-DE VRIES EQUATION
BY ITS BILINEAR FORM: WRONSKIAN SOLUTIONS

WEN-XIU MA AND YUNCHENG YOU

ABSTRACT. A broad set of sufficient conditions consisting of systems of linear
partial differential equations is presented which guarantees that the Wron-
skian determinant solves the Korteweg-de Vries equation in the bilinear form.
A systematical analysis is made for solving the resultant linear systems of
second-order and third-order partial differential equations, along with solution
formulas for their representative systems. The key technique is to apply varia-
tion of parameters in solving the involved non-homogeneous partial differential
equations. The obtained solution formulas provide us with a comprehensive
approach to construct the existing solutions and many new solutions including
rational solutions, solitons, positons, negatons, breathers, complexitons and
interaction solutions of the Korteweg-de Vries equation.

1. INTRODUCTION

Among integrable equations is the celebrated Korteweg-de Vries (KdV) equa-
tion, which serves as a model equation governing weakly nonlinear long waves whose
phase speed attains a simple maximum for waves of infinite length [DJ]. It motivates
us to explore beauty hidden in nonlinear differential (and difference) equations. The
remarkable and exceptional discovery of the inverse scattering transform [ASe| is
one of important developments in the field of applied mathematics, which comes
from the study of the KdV equation. There are various algebraic and geomet-
ric characteristics that the KdV equation possesses, for example, infinitely many
symmetries and infinitely many conserved densities [MGK], the Lax representation
[L], bi-Hamiltonian structure [Mag|, loop group [SW], and the Darboux-Bécklund
transformation [MS]. More significantly, many physically important solutions to the
KdV equation can be presented explicitly through a simple, specific form, called the
Hirota bilinear form. Such exact solutions contain solitons [HL[S], rational solutions
[ASE], positons [APP] Mafl K], negatons [RSK], breathers [I] and complexitons
[M].

Let us consider the KdV equation in its standard form

(1.1) up — 6UUy + Uy = 0.
Hirota [H| introduced the transformation (here and in the rest of the paper, we use
the notation In f for simplicity, which does not imply that f > 0)

w=—20%Inf = —2(Inf)pe = _z(ffx;’iz_ﬁ),
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1754 WEN-XIU MA AND YUNCHENG YOU

and transformed the KdV equation (ILT) into the bilinear form

which is called the bilinear KdV equation. Here D, and D, are Hirota’s bilinear
operators [BC|, defined by
<1 o o
fl@+ht+k)g@—ht—k)=>" Z,'—j'(D;D{f -9k,
= !
which are also closely related to the vertex operators from elementary particle
theory. Strictly speaking, we have

f? z

Therefore, if f solves the bilinear KAV equation (IZ)), then u = —2921n f solves
the original KdV equation (II). The bilinear form (2) looks a little bit more
complicated than the KdV equation (ICT) itself, but its bilinear property, the nearest
neighbor of the linear property, brings us great convenience in constructing explicit
exact solutions. Such a bilinear form exists not only for the KdV equation, but
also for many other physically important soliton equations, such as the Ablowitz-
Kaup-Newell-Segur equations [AKNS], the Kadomtsev-Petviashvili equation [KP],
and the Benney-Roskes equation [BR] (or the Davey-Stewartson equation [DS]).

The Wronskian technique is a powerful tool to construct exact solutions to bi-
linear differential (and difference) equations. To use this technique, we adopt the
compact Freeman and Nimmo’s notation [FNJ:

U — OUUY + Ugpgy = —[

(]7-_\1) = (]7_\17(1)) = W(¢1a¢27 T 7¢N)
R
1.3 -
" S R B Y
0 1 . N-1
PR
where
(0) 0 _ 9 : ‘
(14) ¢z :¢ia ¢i :@Qﬁia J 21; ]-SZSN

Satsuma, Freeman and Nimmo [S| [FN] proved that multi-soliton solutions to the
KdV equation can be expressed through the above Wronskian determinant, and
afterwards, Matveev [Mat] generalized the Wronskian determinant which allows us
to present another important class of exact solutions, called positons, to the KAV
equation. In using the Wronskian method to solve the KdV equation, one usually
starts from

(15) _¢i,zz = >\’L¢’H ¢i,t = _4¢i,zzz; 1< < Na

where \; are arbitrary real constants, to guarantee that the Wronskian determinant
(C3) solves the bilinear KdV equation ([CZ) and thus generates a solution

(1.6) u= =207 W (g1, 62, 6n)
to the KdV equation (Il). The solution determined by a Wronskian determinant
is called a Wronskian solution. For example, f = W (g1, ¢2, - ,¢,) and u =

—20%2In W (1, ¢2,- -+, ¢n) are Wronskian solutions to the bilinear KdV equation
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(C2) and the KdV equation (L)), respectively, provided that ¢1, ¢a, - - - , ¢y, satisfy
(CH). Sirianunpiboon et al. [SHR] extended the conditions ([LH) to the following:

(17) _¢i,zz - Z Aij¢j7 ¢i,t - _4¢i,zzz; 1 S 1 é Na
j=1

where )\;; are arbitrary real constants, in order that the Wronskian determinant
can generate rational function solutions and their interaction solutions with multi-
solitons. The first group of the above conditions (L) is a triangular system of
ordinary differential equations. Thus, solving the system of differential equations
(L) is exactly the same for scalar differential equations.

In this paper, we would like to construct explicit exact solutions to the KdV
equation by its bilinear form and to illustrate the entire process of construction
with a broader set of sufficient conditions on the Wronskian solutions:

N
(1.8) _(bi,xx = Z )\ij¢j7 (bi,t = _4¢i,x:c:c + g(bu 1 < 1 < N,
j=1

where A;; and ¢ are arbitrary real constants. Here the first group of conditions is
a coupled system of ordinary differential equations of second-order, and thus needs
a more general consideration for solving the involved differential equations. Note
that the coefficient matrix A = (\;;) in (1) has only real eigenvalues, but the
coefficient matrix A = (};;) in (L) in general has complex eigenvalues. This is
a significant difference between two sets of conditions, defined by (7)) and (LX).
The substantial extension in (L&) allows us to get a much broader class of explicit
exact solutions to the KdV equation (ILT). In particular, new exact solutions called
complexitons can be generated from the set of conditions (L), but not (7).

Now the whole problem of constructing the Wronskian solutions to the KdV
equation (Il reduces to solve the coupled system of partial differential equations
(CH), which turns out to be an interesting mathematical problem itself. We shall
analyze solution structures on the system (L) in detail, to obtain solution formulas
for all cases of the system ([L¥). The resultant fundamental solution formulas
provide a direct and comprehensive approach to construct diverse exact solutions
to the KdV equation (I1l), such as rational solutions, solitons, positons, negatons,
breathers, complexitons, and more generally their interaction solutions.

2. SUFFICIENT CONDITIONS ON WRONSKIAN SOLUTIONS

We begin with stating a broad set of sufficient conditions which make the Wron-
skian determinant a solution to the bilinear KdV equation (LZ).

Theorem 2.1. Assume that a group of functions ¢; = ¢;(x,t), 1 <i < N, satisfies
the two sets of conditions

N

(2.1) — Qi zx = Z Aij(t)p;, 1 <i <N,
j=1

(2'2) (bi,t = _4¢i,x9c9c + g(t)(bz; 1<< N7

simultaneously, where \;j(t) are arbitrary differentiable real functions of t and &(t)

is an arbitrary continuous real function of t. Then f = (N/—\l) defined by (IL3)
solves the bilinear KdV equation (L2).
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1756 WEN-XIU MA AND YUNCHENG YOU

The conditions (ZT]) and (Z2)) are a generalization to (7)) presented by Siria-
nunpiboon et al. [SHR|. Actually, if £ = 0 and the coefficient matrix A = (\;;)
of (Z1) is lower-triangular and independent of time ¢, then the result of the above
theorem boils down to the result in [SHR]. The proof of the theorem needs some
basic equalities, and the following notation is helpful in our deduction and analysis:

(NZj=1ig, i) = (0@ @0 ... eWV=i=D i) ... @)

(2.3) = det((I)(O), M ... @WN=i=1) plin) ... 7(1)(15')), 1<j<N-1,

where 4y, -+ ,i; are non-negative integers, and the vectors of functions ®U) are
defined by

(24) o) = (¢, 05, o) 0<j SN -1

We also use the assumption for convenience that if ¢ < 0, the column vector ®(?)
will disappear in the determinant det(---,®®, ...).

Lemma 2.2. Under the conditions (Z1), the following equalities hold:
N

(2.5) ST XN =1) = (N =3,N —1,N)— (N —2,N +1),
=1
(N —1) N — —
(2.6) —5z :—Z;/\M(t)(N—1)+2(N—3,N—1,N),
N —_— —_—
(2.7) > Xit)(N-3,N—1,N)=(N—-5N-3N-2N-1N)
=1
+(N-3,N,N+1)— (N—-3,N—1,N+2),
and
N 2 .
(2.8) (3 xi) (N =1) = (N=5,N =3, N =2, N~ 1,N)
=1

~(N—=4,N-2N—1,N+1)—(N—3,N—1,N+2)
+2(N—3,N,N+1)+ (N —2,N +3).
Proof. Note that we have

N N N Slans
kl
S = Y1k = Y 4,28
k=1 k=1 ij=1
where A = (a;;)nxn, and |Alg, |A|* and A;; denote the determinant resulting
from |A| with its kth row differentiated ! times with respect to z, the determinant

resulting from |A| with its kth column differentiated ! times with respect to z, and
the co-factor of a;;, respectively. Choose |A| as (N/—\l) and (]7—\3,N —1,N),
and use the above equality with [ = 2 and the conditions (ZI)). Then we obtain
the required equalities (2H) and (7)) immediately. A combination of the equality

(1) and the equality
O2(N —1)
Ox?
leads to the equality (2.8]).

—

=(N—3,N—1L,N)+(N—2,N+1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SOLVING THE KDV EQUATION BY ITS BILINEAR FORM 1757

We now differentiate (23] twice with respect to = and utilize (Z6) and (27).
Then a further computation yields the equality (2.8). This completes the proof of
the lemma. (]

Proof of Theorem [2l By using the conditions (2.2]), we obtain that
fi=NEf —4[(N=4,N —2,N—1,N)

~(N=3,N—1,N+1)+(N—2,N+2)],
for = NEfo —4[(N —5,N —3,N —2,N —1,N)
—(N=3,N,N+1)+ (N —2,N+3)].
Therefore, we can further deduce that
A= Dy(Di+ D) f - f = forf = fifo + fravaf — Afvafe +3f2

—

=[-3(N-B,N-3,N-2 N—1,N)+ 6N —3,N,N+1)—3(N—2,N +3)
+3(N-4N-2N-1,N+1)+3(N-3,N-1,N+2)|(N—1)
—12(N=3,N—-1,N+1)(N —2,N)
+3[(N—3,N—1,N)+ (N —2,N+ 1)

Now using the equalities (Z0) and (Z8) in Lemma[2ZZ and the Laplace expansion
of determinants about the last N rows, we have

A=—-12(N-3,N—1,N +1)(N —2,N)
+12(N—3,N,N+1)(N—1)+12(N =3, N —1,N)(N —2,N + 1)
N-3 0 N-2 N-1 N N+1

0 N-3 N-2 N-1 N N+1

—

This shows that f = (N — 1) solves (ILZ). Note that the entries in the last abbrevi-
ated 2N x 2N determinant above are derivatives of @, e.g., N — 1 denotes ®(N -1,
The proof is finished. O

Theorem [2.] tells us that if a group of functions ¢;(x,t), 1 < i < N, satisfies
the conditions 1) and (22)), then we can get a solution f = W (1, da, -, dn)
to the bilinear KdV equation (LZ). The conditions (22) and @J]) are two linear
systems of second-order and third-order partial differential equations. We are going
to solve these linear systems explicitly. It is rather difficult to deal with the case
where the coefficient matrix A of 1)) has complex eigenvalues. However, when —A

is a positive definite constant matrix, the situation is easy and the solution formula
of ) and ([Z2) can be expressed as

(29) d— efot §(t')dt'e\/fAz+4A\/7Atq)0’

where v/ —A is the square root of —A and ®q is an arbitrary initial vector. The
corresponding Wronskian solutions to the KdV equation (1),

(2.10) u=—-20%Inf=—202In(N — 1; ),

contain soliton and negaton solutions.
Before we proceed to solve (ZI) and (Z2), let us observe the Wronskian deter-
minants and solutions more carefully.
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1758 WEN-XIU MA AND YUNCHENG YOU

Oservation I. From the compatibility conditions ¢;tzx = Gizzt, 1 < ¢ < N, of
the conditions (Z1I) and (Z2)), we have the equality

N
(2.11) > Xijud; =0, L<i< N,
j=1
and thus it is easy to see that the Wronskian determinant W (¢1, ¢, -+ ,dn) be-

comes zero if there is at least one entry \;; satisfying A;;+ # 0.

Oservation II. If we make use of the transformation
(2.12) Gi=e ho €& dsg, 1 << N,
the differential equations in (Z2) can be put into

bit = —4bipaz, 1 <0 <N,

but the differential equations (ZI)) do not change. Obviously, the resultant Wron-
skian solutions to the KdV equation are the same:

(213)  u=—202InW (1, o, ,dn) == —202In W (1, b2, ,bn).

But the Wronskian determinants W(¢1, ¢2,-- - ,¢dn) and W(qgl, ba,- - &N) are
different, and thus they gives rise to different solutions to the bilinear KdV equation

@2).

Oservation III. If the coefficient matrix A = ()\;;) is similar to another matrix
M = (p;j) under an invertible constant matrix P, let us say A = P~'M P, then

$ = P solves

and the resultant Wronskian solutions to the KdV equation are also the same:

(2.15) u(A) = —20%1In |®© oW ... oN-1)

= 29210 |P2O P ... poN=D| = y(M).

It follows from Observations II and IIT that different Wronskian determinants
may lead to the same solution to the KdV equation. Therefore, based on Observa-
tion I, in order to construct Wronskian solutions to the KdV equation by its bilinear
form, we only need to consider the reduced case of (Z2)) and (1)) under £ = 0 and
dA/dt =0, i.e., the following conditions:

N
(216) _¢i;$1 = Z Aij¢j7 ¢i,t = _4¢i,zzz; 1<¢< N7
j=1
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where \;; are arbitrary real constants. On the other hand, the Jordan form of a
real matrix has the following two types of blocks:

By 0
1 N
(2.17) ,
| 0 DY .
[ A; 0
Iy A a —fB 10
(218) ) Az = 3 IQ - 5
U Bi o 0 1
| o L A |,

where \;, a; and §; > 0 are all real constants. The first type of blocks has the real
eigenvalue \; with algebraic multiplicity k;, and the second type of blocks has the
complex eigenvalues /\;Tt = oy + 8;v/—1 with algebraic multiplicity ;. Note that an
eigenvalue of the coefficient matrix A = (\;;) is also an eigenvalue of the Schrédinger
operator —88—; + u with zero potential. We will present solution formulas for the
system of differential equations defined by (2I6), according to the situations of
eigenvalues of the coefficient matrix. Now, based on Observation III, all we need to
do is to solve a group of subsystems of the sufficient conditions on the Wronskian
solutions, whose coeflicient matrices are of the forms (ZI7) and (ZIF).
Let us summarize the above analysis as the following theorem.

Theorem 2.3. For the KdV equation (L), all Wronskian solutions generated from
the conditions (ZI)) and ([Z2) are among the Wronskian solutions associated with
the special cases of the conditions (ZIG) whose coefficient matrices A = (\;;) are
of the Jordan form consisting of two types of Jordan blocks in [ZIT) and (ZIF).

In the next section, we shall consider how to solve the two types of subsystems
associated with the Jordan blocks in (2.I7) and (2.18), and present solution for-
mulas for their representative systems generating Wronskian solutions to the KdV

equation (L.IJ).

3. SOLUTION FORMULAS FOR THE REPRESENTATIVE SYSTEMS

In this section, we would like to consider the construction of solutions to the
associated system of differential equations defined by (2.16). Based on the form of
two types of Jordan blocks in ([ZI7) and (ZIF), a basic idea to solve the system
(216)) is to use a recursion process. That is to solve (2I6) from ¢; to ¢y, one by
one when the coefficient matrix A = (\;;) has real eigenvalues or pair by pair when
the coefficient matrix A = (\;;) has complex eigenvalues. Therefore, the entire
problem is divided into two subproblems—to solve the following two representative
systems of non-homogeneous differential equations:

(3'1) _(b:c;c = /\¢ + fa (bt = _4¢x9c9c;
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1760 WEN-XIU MA AND YUNCHENG YOU

and
— 1,20 = a1 — B2 + f1,
(3.2) — 2,00 = Bd1 + adz + f,
Git = —4Piwaw, 1 = 1,2,

where A\, a and 8 > 0 are real constants, and f = f(z,t), f1 = fi(z,t) and fo =
fa(z, t) are three given functions satisfying the compatibility condition g; = —4¢.4-
The whole system [2I6) whose coefficient matrix is of Jordan form decouples into
a group of systems determined by (31) and (3.2).

3.1. The case of real eigenvalues. First, let us consider the first representative
system (B:I). In terms of the eigenvalue A, we will establish solution formulas for
three situations of the representative system (B:1)).

Zero eigenvalue: The representative system (3:1]) in this case is

(33) ¢xm = fv d)t = _4¢zzz;

where f = f(x,t) is a given function satisfying the compatibility condition f; =
—4 frze- Immediately from the first equation in ([B3]), we can get

(3.4) ¢ = / / f@” t)ydz" dz’ + c(t)z + d(t).
o Jo
Note that f; = —4 fyz2, and thus the second equation of (B.3]) equivalently requires

Ct = _4f9c9c|:c=07 di = _4fzc|;c=0-

Then, we obtain

¢ t
(3.5) c(t) = —4/ J22(0, ") dt’ + ¢o, d(t) = —4/ f2(0,t") dt’ + do,
0 0
where ¢y and dy are arbitrary real constants. Summing up, we have the following

theorem.

Theorem 3.1. Let [ = f(x,t) be a given function satisfying the compatibility
condition fy = —4frze. Then the system of differential equations (3:3) has the

general solution given by (3:4) and BH).

Negative eigenvalue: In this case, the representative system (3.1)) is

(36) ¢zz = 05(725 + fv ¢t = _4¢xxx7 o> Oa
where « is a constant and f is a given function satisfying the compatibility condition
fi = —4fpee. From two basic solutions eV®® and e” Vo of ¢y, = o, we get a
general solution of the first differential equation of (B.8]):

1 * /
(37) ¢ = [m /O f((E,, If)ei\/az dl'/ -+ C(t):| e‘/ax

- [% /Ox f(a t)eVor da’ + d(t)}e_‘/ax,

by variation of parameters. Then noting that f; = —4f;.., by a direct but lengthy
computation, we find that the second differential equation of (B8] equivalently
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requires
1

¢ = —dan/ac— 2(\/afzz + fo +Va f)|z=o0,

1

\/afzz +fz - \/af)|z:0

These are two linear systems for ¢ and d, respectively. Hence, we can immediately
obtain the solution formulas for ¢ and d:

(3.8) c(t) = e tovet [CO - 2/0 e4°“/at/(% Jox + fo +Va [)(0,1)) dt’} ,

(39) d(t) = &7 [dy + 2 / e*mﬁt’(—% Fao o fo — /@ (0. d].

where ¢y and dy are arbitrary real constants. We conclude this result as follows.

dy = dov/ad + 2(

Theorem 3.2. Let [ = f(x,t) be a given function satisfying the compatibility
condition fy = —4fyzpr. Then the system of differential equations [BE) has the
general solution given by B1), (B8) and BJ).

Positive eigenvalue: The representative system (B.I)) in this case is
(310) ¢xm = _a¢+ fa o> 07
(311) ¢7t = _4¢xxa:7

where « is a constant and f = f(x,t) is a given function satisfying the compati-
bility condition f; = —4f;4. To solve the differential equation ([BI0), we can start
from two basic solutions sin/az and cos/ax of the corresponding homogeneous
equation of (BI0), and then use the method of variation of parameters. A general
solution is listed in the following lemma for reference.

Lemma 3.3. For any given function g = g(x) and any positive constant «, the

second-order ordinary differential equation V., = —a1p + g has the general solution
o A
) = / Sm\/o_é(%x)g(x') dx’ + ccos oz + dsin oz,
0 [0

where ¢ and d are arbitrary real constants.

Now to solve the partial differential equation BIT), we start with the solution
of (3I0) given by Lemmal33 and use the method of variation of parameters again.
Therefore, the solution of BITl) is assumed to be

(3.12) ¢ = /OI M%f(m',t) da’ + c(t) cos vax + d(t) sin .
Directly we can compute that
bure = Jo [ S 0(@cos Ve o)) di’
0
+c(t)ay/acsin oz — d(t)an/a cos Vax,

b = oo™ 41 gcosVaz 4 |—a(asin V)

—Af, + / 4f (2, t)(acosvVa(r — ) da’
0
+c; cos var + dy sin oz,
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1762 WEN-XIU MA AND YUNCHENG YOU

where f; = —4f,., has been used for the computation of ¢;. Therefore, the differ-
ential equation (BIT]) equivalently requires

(3.13) \/ia Fanloco — A/ floco + di = —dar/ac,
(314) 4fx|:c=0 +cp = 404\/& d.

Then it follows that
e + 16a%c+h =0,
where the function h = h(t) is defined by

(3'15) h = 16afxx|x=0 - 16a2f|x=0 + 4f9ct|;c=0-

Again by Lemma B3] we obtain

! sin4 t—t
oft) = — / %h(t’) dt’ + co cos do/at + dg sin da/at,
0 ay/a

where ¢g and dy are arbitrary real constants. Noting that h is given by (BIH), we
have
sinda/at
ay/a
1

4 [ (G tea = VD)0, sl — )

+co cosdan/at + dg sin don/at,
and then by (3I4), we have

(3.16)  c(t) = f£.(0,0) 4 /O F2(0,¢) cosdav/alt — t') dt’

3.17)  dit) — fx(o,o)%\o‘r‘/o_”w /t £.(0,) sin dav/a(t — t') dt’
ay/a 0

K ]‘ A A A
— [ (T fer = VaD0.6) cosdaale ) i

—cp sindav/at + dy cos dar/at,

where ¢y and dg are independent of z and ¢.
Finally, summing up, we have the following theorem on the general solution of
the system of differential equations (BI0) and BI1]).

Theorem 3.4. Let [ = f(x,t) be a given function satisfying the compatibility
condition f; = —4frzz, and « a positive constant. Then the system of differential

equations B11) and BIQ) has the general solution given by (312)) with c(t) and
d(t) being shown by BI8) and BI7), respectively.

3.2. The case of complex eigenvalues. Let us now consider the second repre-
sentative system (3Z). To present its solution formula, we first solve the following
coupled system of second-order, non-homogeneous ordinary differential equations

{ _¢1,xx = a¢1 - ﬂ¢2 + flv

(3.18)
—P2,50 = BP1 + apa + fa,
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where a and 3 > 0 are real constants, and f; and f; are two given functions of x.
Since B > 0, its coefficient matrix

o —f

b «

has two complex eigenvalues A\* = a + f3i.

A:

Theorem 3.5. The coupled non-homogenous system of second-order ordinary dif-
ferential equations (318) has the general solution

(3.19) 61 =61 + 67, b2 =05 + 65,

(3.20) ol = (D1 cos 0z + Dy sin 6z) e + (D3 cos dx + Dysindx)e” 22,

(3.21) @8 = (=Dycos bz + Dy sindx)e™® 4 (—Dy cos x4+ D3 sindz)e 27,
(3.22) = ——/ [f1(y) cosd(z — y) — fa(y) sind(x — y)] sinh A(z — y) dy,

3:23) o= -3 [ [h)sinda —9) + faly)cosda )] sinh Az~ ) dy

where two constants A and 0 are given by

(3.24) A~ \/m—a 5= \/m—i-a

2 ’ 2 ’
and D;, 1 <i <4, are arbitrary real constants.

Proof. First let us consider the homogenous case of (31]), i.e., the case of (BIJ)
with fi = fo = 0. Therefore, we have

1 o
3.25 o = — — 1.
Then replacing ¢o with this expression in the second equation of the homogenous
case leads to the following fourth-order differential equation

(3.26) D1 2000 + 2001 20 + (02 + 5%)¢1 = 0.

Its characteristic polynomial

p(\) =M +2aX2 + (@ +6%) =0

¢1,;c:c +

has four complex roots

M =A+0V-1, \f = —A+6V-1,

where A and § are defined by (3.24)). Therefore, we have the general solution ¢/
and ¢f, as given in the theorem, for the homogeneous case of (3.15).

To construct a special solution, ¢5 and ¢§, for the non-homogenous case of (3:13)),
we adopt the method of variation of parameters for D;, 1 < i < 4, and thus assume
that

(3.27) #3 = (D1 cos6x + Dy sin 6x)e” + (D3 cos dx + Dy sindz)e™ 2%,
#3 = (=D cos 6x + Dy sin §x)e* + (— Dy cos 0z + D3 sin 6x)e 27,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1764 WEN-XIU MA AND YUNCHENG YOU

where D;, 1 < ¢ < 4, are viewed as functions of z. Then we can make the following
computation:

(328) ¢}, = [(ADy+6D3)cosdx+ (ADy —§Dq)sin bz et
+(6Dy — ADs) cos 6z — (D3 + ADy) sin 0] e AT,
(329) ¢5,. = [A(ADy+6D,)+6(ADy—6D1)](cosdx)e™”
+[A(AD; — 6Dy) — 6(AD; + 6D5)| (sin dz)e™”
+[=8(6D3 + AD4) — A(6Dy — ADs)](cos 5z)e 2"
+[=8(0Ds — AD3) + A(6D3 + ADy)] (sin dz)e 2"
= (aD; + BDy)(cos dz)e”® + (—BD; 4+ aDs)(sin dx)e’?
+(aD3 — BDy)(cos z)e 2% 4+ (8D3 + aDy)(sin dz)e =A%
:= (D1 cos bz 4 Dy sin d2)e®® + (D3 cos 6z + Dy sin dz)e 27,
(330) ¢35, = [(-AD2+ 6Dy)cosdx+ (AD; + 0D;)sin dz] AT
+(0D3 4+ ADy) cos 6z + (6D4 — ADs) sindx]e 27,
(331) ¢5,, = (—aDs+BD1)(cosdx)e™ + (3D, + aDy)(sindz)e™”
—(aDy + BDs)(cos dx)e 2% — (D, — aDs3)(sin dz)e A%,
In the above computation, the method of variation of parameters required that
(D1 5 coséx + Do 4 sin 5m)eAz + (D3, cosdz + Dy 5 sin 5x)e7A“’ =0,
[(ADLI +90Dg ) cosdx + (ADg 4 — 6D 5) sin 5x] e
+(0D4,y — AD3 ;) coséx — (0Ds3  + ADy ) sin 5x] e AT = —f,
(—=Dg,5 cosdx + Dy 5 sin 6x)eA“’ — (D4, cosdz — D3 4 sin 5x)e*A“’ =0,
I:(—AD27Z- +6D1,5)coséx + (AD; 4 + dDs ) sin (53:] e
+(0D3,5 + ADy 5) coséx + (0D4,y — AD3 ) sin (53:] e AT = —fy.

Solving this linear system for D; . leads to the expressions:

)

1 : —Azx
Dlx:—ﬁ(flcoséx—l—fgsméx)e ,

)

1 . —Azx
DQx:—ﬁ(flsméa:—fgcoséx)e ,

D39c

1
= E(fl cosdx + fosin 5x)e_A” = =Dy,

1
Pre =54
Then integrating them to obtain the expressions for D; and inserting the resultant
expressions of D; into (B27) yield the special solution, ¢5 and ¢§, given in the

theorem. The proof is finished. O

(f1 sindx — fo cos 53:) e™AT = —Ds 4.

Let us then present the solution formula for the second representative system
(B2), which can be used to generate a new type of Wronskian solutions to the KdV
equation.

Theorem 3.6. Assume that f1 = f1(z,t) and fa = fa(x,t) are two given functions
satisfying the compatibility conditions fi: = —4f1 zex and for = —4f2 zaw. Then
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the general solution to the system of differential equations [B2) is given by BI9)—
B23) with the coefficients D; = D;(t), 1 < i < 4, being determined by

l D ] ~ [ COSBt —sinBt ] l Do ]
(3.32) =M . .
D, sin@s  cosft Doy

+/t o) l cosﬁ(t—s) —sin@(t—s) ] [ p1(s) ] N
0 sinﬁ(t—s) cosﬁ(t_s) pa(s) )

l Dg ] _ [ COSBt —sinBt ] l D3 ]

(3.33) =e ™ _ .

D, sinBs  cos 3t Dyo

+/t . l cos?(t —s) —sin?(t —3) ] l p3(s) ] és,
sinfB(t—s) cosf(t—s) pa(s)

where Dyg, 1 < i < 4, are arbitrary real constants, and two constants & and B are
given by

(3.34) a=—4A(vV o2 + B2 4 20), B =146(/a? + 52 - 2a),

and four functions, p;, 1 < i <4, are defined by

»

(=)

pi(t) = %fl,;c;clx:O +2f1 2la=0 + %fﬂx:o - ZK&fz,ch:o — 40 fo|z=0,
p2(t) = —%5f1,x|x:0 — 40 f1]a=0 — %fQ,;c;ch:O —2f2 z|le=0 — ZKaf2|x=o7
p3(t) = _%fl,xx|x=0 +2f1 2)z=0 — %fﬂx:o + ZK&fQ,ch:o — 40 f2]z=0,
pa(t) = ZZ&fl,xh:o — 46 f1|e=0 + %flxm|x=0 —2f2 z|lo=0 + ZKaszc:o,

with A and § being defined by (B.24).

Proof. Note that now f1 = fi(x,t) and fo = fa(x,t) are functions of two variables
2 and ¢. But in the solution formula 22)) and B23), ¢ is the dummy variable.
Let us first compute that

¢t, = (D1tcosdx+ Dyysindz)e®” + (Ds g cosdx + Dy sindz)e 2"

e = - (0@ — ) fra(w,0) + 2@ — ) fon(y,0)] dy
0

= 4/96 [91(2 = Y) fryyy (s 1) + 92(2 — y) foyyy (y,1)] dy
0

= _491 ({E) (fl,xx |z:0) - 4gl,z (x)(fl,z |z:0) - 4gl,zz (x)(fl |z:0)
—492(2)(f2,25]2=0) — 492,0(2) (f2,2|z=0) — 492,22(2) (f2lo=0) — 467 ;14
where
g1 = %(cos 0x)(sinh Ax), g2 = —%(Sin 0x) (sinh Az).

Second, based on (B:28) and ([B:29), we have
b vee = [(AD1 + 6Ds) cos 0z + (ADy — 6Dy ) sin dz]eA”
+ [(5D4 — ADs) cos 6z — (6D3 + ADy) sin Sz]e A,
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and a direct computation gives rise to

1 ]
g1,z(x) = 5(005 0x)(ePT 4 e7AT) — E(Sin ox)(ePT — e~ AT),

91,22(z) = (—0sindx + & cos 6x)eA“’ — (dsindz + o cos 0T

2A 2A

e,

1 ]
g2,z(x) = —i(sin 0x)(ePT 4 e7A%) — E(cos ox)(ePT — e~AT),

92,32(z) = —(0 cos dx + S sin 6x)eA“’ — (dcosdx — & sin oz

2A 2A

)efAz.

Now a comparison of coefficients of four functionally independent terms

(cos 0z)e®®, (sindz)e®®, (cosdz)e 2%, (sindz)e A%

in the equation ¢1; = —4¢1 244, i€, qbft + 91 = —4(;5?7%%% — 407 444 yields that

(3.35) Dy, —4(AD; + 8Ds) + pr(t)

4(3A0% — A%)Dy — 4(3A%5 — 6%) Dy + p1(t)
aDy — 3Dy + pi (t),

—~4(ADy — 5D1) + palt)

4(3A%5 — §%)Dy + 4(3A6% — A®)Dy + po(t)
BD1 + &aDy + pa(t),

—4(6Dy — AD3) + p3(t)

(3.36) Doy

(3.37) Ds,

—4(3A0% — A®)D3 — 4(3A%5 — §%) Dy + ps(t)

—a&D3 — D4 + p3(t),

—4(—(5[)3 — Al~)4) + pa(t)

4(3A%5 — 63)D3 — 4(3A6% — A*)Dy + pa(t)
BD3 — aDy + pa(t).

(3.38) Dy,

These are two linear systems of first-order ordinary differential equations. One is
for Dy and D5 and the other is for D3 and D4. Solving these two coupled linear
systems for D;, 1 < i < 4, we obtain the general solution given by (3:32)) and (B.33)

in the theorem. For example, we rewrite (3.358) and (334]) as

[ Dy, a2 e i cjc—/? |

| D2t D, D2 B a
Then it follows that

| D2 Dyo 0 p2(s)

Since A has two complex eigenvalues
N =a+pv-T,
the evolution operator e reads as [HS] [AP]
cos Bt —sin Bt
sin[?t cos Bt ] '

e — eozt
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The derivation of the formulas for D3 and D, is completely similar. Note that the
other equation ¢2; = —4¢2 42, is automatically satisfied, once D;, 1 < ¢ < 4, are
determined as above. The proof is finished. O

4. WRONSKIAN SOLUTIONS

In principle, we can construct general solutions associated with two types of Jor-
dan blocks of the coefficient matrix through the solution formulas established in the
previous section. In what follows, we present a few special but interesting Wron-
skian solutions, rather than general ones which are too complicated and lengthy to
present.

4.1. Rational solutions. Let us start with

(4.1) P(n) = ene—an’t _ g=natdn’t _ oginyy (nx — 4n3t),
where 7 is a real constant. It is easy to see that this function (n) solves
(4-2) Yow = ana wt = —dtpryy.
Upon expanding
0 .
(4.3) win) =) e,
i=0
from (Z2)) we obtain
(44) ¢0,xm = O; ¢i+1,zz = ¢i7 ¢i,t = _4¢i,zzz; 12> 0.

The expressions of ¢; can be calculated through the series expansion of the hyper-
bolic function sinh x:

[(2i+1)/3] j
(<4 iy
4.5 = L2l >,
(4.5) b 2o (2i-3j+ 1)y =
Then for each k > 1, the associated Wronskian solution to the KdV equation (L)
is given by
(4.6) u=—202InW(do, b1, -, bp_1).
Obviously, this solution is rational and it corresponds to the following Jordan

block:

0 0

10
(4.7)

0 L 0],

We call it a rational solution of order k—1. This type of solutions was also discussed
in [ASal SHR] [AM] and obtained by Freeman and Nimmo [FN] by taking the limit
7; — 0 of the multi-soliton solution. Two rational solutions of lower-order are

2
u=—202InW(py) = —202In W (x) = =
1 6zt — 144xt
=_-202InW =—202InW(x, a3 —4t) = ——————
u 9 InW(¢o, ¢1) 92InW(z, 57 t) EEEwTE

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1768 WEN-XIU MA AND YUNCHENG YOU

4.2. Solitons, positons and negatons. For a nonzero real eigenvalue \;, we start
from the eigenfunction ¢;(\;) determined by

(4.8) —(0i(Ai))az = Aidi(Ni), (9i(Ni))e = —4(i(Ni))aaa-

General solutions to this system in two cases of A\; > 0 and \; < 0 are

(4.9) di(Ni) = Cuisin(mz + 403t) + Cy; cos(niz + 4nPt), mi = VA

(4.10) #i(N\;) = Cyysinh(n;z — 4ndt) + Co; cosh(nyz — 4ndt), n; = V=i,

respectively, where C1; and Cy; are arbitrary real constants. By an inspection, we

find that
9i(X) A 0 $i(\)
50, 0i( M) 1 N L0 0i(Ni)
o e | L0 L o, L atmon ™ a0
and

1. 1, .
(ﬁaf\ﬁﬁi(Ai))t = _4(ﬁaf\i¢i()\i))xmc; 0<j <k —1,

where 0y, denotes the derivative with respect to A; and k; is an arbitrary non-
negative integer. Therefore, through this set of eigenfunctions, we obtain a Wron-
skian solution to the KdV equation (II)):
2 1 1 ki—1
(411) u = _Qaz 1nW(¢l()‘l)7_a)\L¢l(>‘l)a 778)\7f ¢i(>\i))v
1! (ki — 1)1

which corresponds to the first type of Jordan blocks with a nonzero real eigenvalue.

When \; > 0, we get positon solutions [Mat], and when A; < 0, we get negaton
solutions [RSK]. A more general positon or negaton can be obtained by combining
n sets of eigenfunctions associated with different A\; > 0 or different \; < 0:

(4.12) u o= 202 W (i (A1), ,ﬁa’;fqu(xl);
1

SEC IR e AR

This solution is called an n-position or n-negaton of order (k; — 1,ke — 1,---,
kn — 1), to reflect the number of different eigenvalues and the orders of derivatives
of eigenfunctions. If k; = 1, 1 < ¢ < n, we simply say that it is an n-position or

n-negaton.

An n-soliton solution is a special n-negaton:
(4.13) u=—2071(¢1, ¢, , én)
with ¢; being given by
(4.14a) ¢; = cosh(n;z — 4ndt + ;), i odd,
(4.14b) ¢; = sinh(n;z — 4n3t + ), i even,

where 0 <11 <12 < --- <y and y;, 1 <4 < n, are arbitrary real constants. There
are other representations of multi-soliton solutions to the KdV equation (see, for
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example, [Hl BS]). Two kinds of special positons of order k are

(415) U = _285 In W(¢7 8)\¢7 e 78§_1¢)7 ¢ = 005(7717 + 4773t + ’Y(n))a
(416) U = _zaﬁ In W(¢7 8)\¢7 e 78§_1¢)7 ¢ = Sin(nl‘ + 4773t + 7(77))7
where A > 0, n = VA and v is an arbitrary function of . But these two kinds of

positons are equivalent to each other, due to the existence of the arbitrary function
~. Similarly, two kinds of special negatons of order k are

(417) U= _Qai 1nW(¢a 8A¢a e ;a§_1¢)a ¢ = COSh(ﬂx - 4773t + 7(7’))7
(4.18) u=—=20]InW(p,0zp,---, 0y '¢), ¢ =sinh(nz — 4t +4(n)),
where A\ < 0, n = vV—X and < is an arbitrary function of 7. These solutions

exhibited above were also discussed in a slightly different way in [APPL Matl, [RSK].
The following are solitons, positons and negatons of lower-order:

2
u = —202In(cosh(nz — 43t + 7)) = — (7755_377477% )
u = —207In(cos(nz +4n*t+7)) = — 2 )
cos?(nx + 4n3t + )
210 (i 3 20’
uw = —202In(sinh(nz —4n’t + 7)) = b2 (o — 4Pt + ’y);
u = —202InW(cosh(mz — 43t + 1), sinh(naz — 43t + 72))

A(n? — n3)[(n3 — ni) + 7 cosh 205 + 03 cosh 26,]
[(n2 — m1) cosh(61 + 02) + (n2 + m1) cosh(B1 — 62)]%”
u = —202InW(cos(nx + 43t + ), O cos(nx + 4>t + 7))
160°[2 cos®(nx + 4>t +7) + (nz + 120%t) sin 2(nx + 403t + 7)]
[2(nz + 1203t) + sin 2(nx + 493t + )]
u = —202InW(cosh(nz — 4n3t + v), O cosh(nz — 43t + 7))

)

1672[2 cosh? (nz — 413t + ) — (nx — 125°t) sinh 2(nz — 413t + 7)) .
[2(nx — 12n3t) + sinh 2(nx — 473t + ~)]? '

where 7, 7, n; and ~; are arbitrary real constants, and

0; = niw — it + i, i =1,2.

Some parts of the graphs of these solutions with v = «; = 0 are displayed in Figures
[ and 21

4.3. Complexitons. For the second type of Jordan blocks of the coefficient ma-
trix, we start from a pair of eigenfunctions ®;(c, 3;) = (¢i1 (i, Bi), dia(cui, 5i))T
determined by

(4.19) By = AD;, D = [ oi1 (i, Bi) , Ay = [ o ] ’
iz (i, Bi) 8

and

(4.20) (¢ij (ai;ﬁi))t = —4(¢ij(ai,ﬁi))m¢xa .7 - 1, 2.
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FIGURE 1. 2-soliton - ny = 1, na = 1.5 (left) 2-soliton - 11 =
1, ne = 2 (right)

FIGURE 2. l-positon of order 1 - A =1 (left)  1-negaton of order
1-A=—1 (right)

The coefficient matrix A; has two complex eigenfunctions: «;+3;+/—1. By Theorem
B8, a general solution to the homogenous system of (£19) and (Z20) is

1 = _
(4.21) b1 = E[COS((Si(JJ — Bit) + K14)] lil@tait)+yi
1 - _
+§[cos(6i (x — Bit) + k)] e~ dilta =72
1 = _
(4.22) Gi2 = E[Sin(6z’($ — Bit) + k1)) eDi(z+ait)

1 = _
—i[Sin(‘Si(l’ — Bit) + kgy)] em Aelrrat)
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where kj; and ;; are arbitrary real constants and

T2 7732 1 o
(4.23) Y VAl st A Y VA el el

2 2 ’

(4.24) i =44/a? + B2 + 8y, Bi =4\/a? + 5% — 8a,.

Similarly, by an inspection, we can see that

(I)i Ai 0 (I)i
%8(”@1' 12 Az %8(X7¢’L
1 ali-1g. 1 ali-1g.
e, P | 0 I Ai |0, L gomnfa @

and . )

(Fa(th)z)t = _4(ﬁaiiq)i)xxx7 0 S] < li - 17
where 0,, denotes the derivative with respect to «;. Taking the derivative with
respect to (3;, we can have

d; A; 0 d;
105, Yo A 4105, ®;
=y T 0 So A |y L a0 e
and
(%a;;,,cbi)t = —4(%8;;,.@1%)% 0<j<li—1,
where

0 -1
Yo = .
10

Therefore, we obtain two Wronskian solutions to the KdV equation (II):

1 1
— _9592 T - T = 1T
(4.25) u=-=20InW(P;, 1!8m<1>i RNEY 1)!8%_ D),
and
1 1 o

which correspond to the same Jordan block of the second type but are different.
Such a general Wronskian solution is

1 1
e 2 T 7l71 T'...' T 71"71 T
(4.27) u==20;InW(®7, -, = 1)!8411 D15 5Dy, - 1)!8<n D),
where O, can be either of 0., and 0dg,. This solution is called an n-complexiton
solution of order (I — 1,l2 — 1,---,l,, — 1), to reflect the orders of derivatives of

eigenfunctions with respect to eigenvalues. If [; = 1, 1 < i < n, we simply say that
it is an n-complexiton.
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In particular, one-complexiton is
(4.28) u = —202InW(¢11,d12)
—462[1 4 cos(261(z — P1t) 4 2k1) cosh(2A1 (z + ant) + 2m1)]
[A1sin(261(z — Bit) + 2k1) + 61 sinh(2A (z + ast) + 271)]2
4oy fr sin(261 (x — Blt) + 2k1) sinh(2A (z + @1t) + 2v1)
[Aq8in(26; (z — Bit) + 2k1) + 61 sinh(2A1 (z + ant) + 271)] 2

where aq, f1 > 0, k1 = K11 = K12, and 1 = 711 = Y12 are arbitrary real constants,
and Ay, 1, a1, and (B are given by

A=y YoitBi—e o [Veit Bt

» 01 )

2 2
a1 =4/al + BF + 8, B =4y/of + 57 — 8ay.
The subcase of a3 = 0 leads to the following solution:
" 81 + 861 cos(v231 x — 4B1+/281 t + 2k1) cosh(v281 = + 4581v261 t + 271)
[sin(v2B1 © — 461201 t + 2k1) + sinh(y201 = + 461201 t + 271)]

This solution is associated with purely imaginary eigenvalues of the Schrédinger
spectral problem with zero potential. In addition, if we fix

s 1 b
K1 = Z, Y1 = Eln(a), Al = —a, (51 = b,

where a and b are arbitrary real constants, then our one-complexiton solution (f23)
boils down to the breather-like or spike-like solution presented in [J]:
" 8{(a® — b%)(b/a) cosv sinh(n + p) + 2b*[1 + sin v cosh(n + p)]}
N [cosv — (b/a) sinh(n + p)]?
where v = —2bz + 8(3a%b — b)t, n = —2ax + 8(a® — 3ab?)t and p = In(b/a). Figure
depicts some singularities of the single complexiton solution with kK =~ = 0.

)

FIGURE 3. l-complexiton - a; =0, f; =1 (left)  1-complexiton
- = 1, ,61 =1 (I‘lght)
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4.4. Interaction solutions. We are now presenting examples of Wronskian inter-
action solutions among different kinds of Wronskian solutions to the KdV equation.
Let us assume that there are two sets of eigenfunctions

(429) (bl (A)7 ¢2(A)7 T ¢k(A)7 wl(/'[/)a wQ(/-I’)7 e 7¢l(/~l/)

associated with two different eigenvalues A and pu, respectively. A Wronskian solu-
tion

(4.30) u= =202 W(1(N), -, Sr(N); (), - tuln))

is said to be a Wronskian interaction solution between two solutions determined
by the two sets of eigenfunctions in ([@29). Of course, we can have more general
Wronskian interaction solutions among three or more kinds of solutions such as ra-
tional solutions, positons, solitons, negatons, breathers and complexitons. Roughly
speaking, it increases the complexities of rational solutions, positons, negatons and
complexitons, respectively, to add zero, positive, negative or complex eigenvalues
to the spectrum of the coefficient matrix.
In what follows, we would like to show a few special Wronskian interaction

solutions. Let us first choose different sets of eigenfunctions:

Grational = €T + d, ¢, d = consts.;

Bsoliton = cosh(nz — 41>t 4+ ), 1,7 = consts.;

Gpositon = €OS(NT + 4t + v), M,y = consts.;

2 2
@complexiton,1 = cos(%(m —4t) + k) cosh(% (x +4t) +7), K,y = consts.,

2 2
@Pcomplexiton,2 = sin(% (x — 4t) + k) sinh(%(x +4t) + ), K,y = consts.

Three Wronskian interaction determinants between any two of a rational solution,
a single soliton and a single positon are
W (brational, Psoliton) = n(cx + d) sinh(nz — 413t + ) — ccosh(nz — 4n3t + ),
W(¢rationalv ¢positon) = —U(CLC + d) sin(nx + 47]3t + ')/) - CCOS(?]LE + 47]3t + ’)/),
W((bsolitona ¢positon) = —-nN COSh(??J? — 4773t + 'Y) Sin(’l]l‘ + 4773t + ’Y)
—ncos(nz 4 403t + ) sinh(nz — 403t + 7).
Further, the corresponding Wronskian interaction solutions are
202[n?(cx 4 d)? + ¢ cosh? £_]
[n(cx + d)sinhé_ — ccosh€_]27
22l (cx + d)? — & cos? 4]
[n(cx + d)sin&y + ccos&4]?’
4n?(cosh? € + cos? &4)
(coshé_siné&y + cos&, sinh&_)2’

Urs = _285 In W((brationah (bsoliton) =

Urp = _282 In W(¢rational; ¢positon) =

Usp = —2893 In W((bsolitona ¢positon) =

where
L =nx+ 477375 + 7.

Some singularities of these solutions are shown in Figures @ and bl
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FIGURE 4. ups -n=7v=c=d =1 (left)
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The following are two Wronskian interaction determinants and solutions involv-
ing three eigenfunctions. The first Wronskian determinant is

w ((brational’ ¢solitona (bpositon)

—n?[(cx + d)n(cos 4 sinh € —sin&, cosh&_) — 2ccoséy coshé_],

so that its corresponding Wronskian solution is

Ursp = _262 In W((brational’ ¢solitona (bpositon)
B 4(cx + d)n?(sin€y coshé + cos&y sinh &)
~ (cx+d)n(coséy sinhé —sinéy coshé_) — 2ccosé, coshé_
2n%[cncoséy sinh & + 2(ca + d)nsin €y sinh € — ensin €y cosh €2
[(cz + d)n(cos &y sinh §_ — sin &y coshé_) — 2ccos &y coshé_]2 7

where

§x = nz 4%t + 1.
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The second Wronskian determinant and its corresponding Wronskian solution are

W(LE, (bcomplexiton,lv ¢Complexiton,2)

2 2
= —%m sin 2§ + %x sinh 2¢ — cosh? ¢ +sin?é¢,

and
Ure = _282 In W(xa (Z)complexiton,l) ¢comp1exiton,2)
= [cosh? ¢ — cos® € — 422 cos? € cosh? ¢ + (222 — 1) cosh? ¢
+(222 + 1) cos? € + 4v/2 x cosh? ( sin 2€ 4 41/2 z cos? € sinh 2¢
1 2
—v2zsinh 2¢ — V2 2 sin 26 — 3 sin 2€ sinh 2(] /(—%x sin 2¢
2

—|—§m sinh 2¢ — cosh? ¢ + sin? )2,

where

1 1

¢ = 5\/§x—2\/§t+f<¢, ¢ = 5\/51‘—}—2\/5254—7.

Figure [@] depicts some singularities of these two solutions.

400000 i 600000 1

500000 7
300000 4
400000 1

200000 1 300000

100000 4 200000 1

100000 1

0

0 0

FIGURE 6. Upsp -n=v=c=d=1 (left) .- r=r=1 (right)

5. CONCLUDING REMARKS

A broad set of sufficient conditions consisting of coupled systems of linear par-
tial differential equations has been presented, which guarantees that the Wronskian
determinant solves the Korteweg-de Vries equation in the bilinear form. A system-
atical analysis has been made for solving the resultant coupled systems of linear
partial differential equations, and solution formulas for their representative systems
have been explicitly presented. The key technique is to apply the variation of pa-
rameters in solving the involved non-homogeneous partial differential equations of
second-order and third-order. The whole analysis also offers an approach to solve
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the coupled system of partial differential equations:

N
_¢i,:c:c = Z/\ij(ij ¢i,t = _4¢i,x:c:c; 1< <N,
i=1
where \;; are arbitrary real constants.

Moreover, for each type of Jordan blocks of the coefficient matrix A = (\;;),
special sets of eigenfunctions have been constructed and used to generate rational
solutions, solitons, positons, negatons, breathers, complexitons and their interac-
tion solutions to the Korteweg-de Vries equation. Of course, the obtained solution
formulas of the representative systems allow us to construct more general Wron-
skian solutions than rational solutions, positons, negatons, complexitons and their
interaction solutions presented in this paper. The resultant solution structures also
show us the rich diversity that the KdV equation carries. We believe that any
(2 + 1)-dimensional counterpart of the KdV equation will have much more gen-
eral solution structures. This is because higher dimensional equations have bigger
spaces of initial data to choose.

However, any new explicit exact solutions, even Wronskian solutions, to the KdV
equation will still be very interesting. Two open questions follow:

(1) What about the following case?

N N
_¢i,zz = Zﬂij¢j,z + Z)\ij‘(ﬁj, 1 <7 <N,

=1 =1
N N

Gi = ZQ;‘%‘,M@ + Zfij¢j, 1<i<N,
=1 =1

where all coefficients are real constants. Are there any conditions, rather
than the ones established in this paper, which will guarantee the Wronskian
solutions for the KdV equation?

(2) Are there any similar conditions to guarantee the double Wronskian solu-
tions for the KAV equation?

On the other hand, it deserves more investigation whether there exist Wronskian
solutions for the generalized KdV equations (see, say, |Bl [Y], [ISY] for examples) and
what differential conditions on Wronskian solutions one can have if there exist
Wronskian solutions.

ACKNOWLEDGMENTS

The authors would like to thank C. R. Gilson, K. Manuro and M. Pavlov for
stimulating discussions. They are also grateful to the referee for helpful suggestions
and valuable comments. The work was supported in part by the University of South
Florida Internal Awards Program under Grant No. 1249-936RO.

REFERENCES

[AKNS] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering
transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974),
249-315. MR0450815|(56:9108)

[ASa] M. J. Ablowitz and J. Satsuma, Solitons and rational solutions of nonlinear evolution
equations, J. Math. Phys. 19 (1978), 2180-2186. MR0507515/(80b:35121)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=0450815
http://www.ams.org/mathscinet-getitem?mr=0450815
http://www.ams.org/mathscinet-getitem?mr=0507515
http://www.ams.org/mathscinet-getitem?mr=0507515

SOLVING THE KDV EQUATION BY ITS BILINEAR FORM 1777

[ASe] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM,
Philadelphia, 1981. MR0642018 (84a:35251)

[AM] M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de
Vries equation, Commun. Math. Phys. 61 (1978), 1-30. MR0501106/|(58:18554)

[APP] V. A. Arkad’ev, A. K. Pogrebkov and M. K. Polivanov, Singular solutions of the KdV

equation and the method of the inverse problem, Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI) 133 (1984), 17-37. MR0742146|/(86¢:35127)

[AP] D. K. Arrowsmith and C. M. Place, Dynamical Systems, Chapman & Hall, London,
1992. MR1195127|(93j:58040)

[BR] D. J. Benney and D. J. Roskes, Wave instabilities, Studies in Appl. Math. 48 (1969),
377-385.

[BS] A. C. Bryan and A. E. G. Stuart, Representations of the multisoliton solutions of

the Korteweg-de Vries equation, Nonlinear Anal. 22 (1994), 561-566. MR 1266543
(94m:35260)

[BC] R. K. Bullough and P. J. Caudrey (eds.), Solitons, Springer-Verlag, Berlin, 1980.
MR0625877 |(82m:35001)

[B] N. J. Burroughs, A loop algebra co-adjoint orbit construction of the generalized KdV
hierarchies, Nonlinearity 6 (1993), 583-616. MR1231775|/(94j:58078)

[DS] A. Davey and K. Stewarton, On three-dimensional packets of surface waves, Proc. R.
Soc. A 338 (1974), 101-110. MR0349126 (50:1620)

[DJ] P. G. Drazin and R. S. Johnson, Solitons: an Introduction, Cambridge University
Press, Cambridge, 1989. MR0985322/(90j:35166)

[FN] N. C. Freeman and J. J. C. Nimmo, Soliton solutions of the Korteweg-de Vries and

Kadomtsev-Petviashvili equations: the Wronskian technique, Phys. Lett. A 95 (1983),
1-3. MRO0700477/(85j:35168)

[H] R. Hirota, Ezact solution of the Korteweg de Vries equation for multiple collisions of
solitons, Phys. Rev. Lett. 27 (1971), 1192-1194.

[HS] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear
Algebra, Academic Press, San Diego, California, 1974. MR0486784 (58:6484)

[J] M. Jaworski, Breather-like solutions to the Korteweg-de Vries equation, Phys. Lett.
A 104 (1984), 245-247. MR0758224/ (85h:35198)

[KP] B. B. Kadomtsev and V. I. Petviashvili, On the stability of solitary waves in weakly
dispersing media, Sov. Phys. Dokl. 15 (1970), 539-541.

K] M. Kovalyov, Basic motions of the Korteweg-de Vries equation, Nonlinear Anal. 31
(1998), 599-619. MR1487849 (99f:35177)

[L] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm.
Pure Appl. Math. 21 (1968), 467-490. MR0235310|(38:3620)

M] W. X. Ma, Complexiton solutions to the Korteweg-de Vries equation, Phys. Lett. A
301 (2002), 35-44. MR1927047|(2003h:35237)

[Mag] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19
(1978), 1156-1162. MR0488516/(80a:35112)

[Mat] V. B. Matveev, Generalized Wronskian formula for solutions of the KdV equa-

tions: first applications; Positon-positon and soliton-positon collisions: KdV case,
Phys. Lett. A 166 (1992), 205-208; 209-212. MR1170966| (93g:35125a); MR 1170967
(93c:35141)

[MS] V. B Matveev and M. A. Salle, Darbour Transformations and Solitons, Springer-
Verlag, Berlin, 1991. MR1146435 (93d:35136)

[MGK] R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equation and
generalizations II: Ezistence of conservation laws and constants of motion, J. Math.
Phys. 9 (1968), 1204-1209. MR0252826//(40:6042b)

[RSK] C. Rasinariu, U. Sukhatme and A. Khare, Negaton and positon solutions of the KdV
and mKdV hierarchy, J. Phys. A: Math. Gen. 29 (1996), 1803-1823. MR1395807
(97¢:35182)

[S] J. Satsuma, A Wronskian representation of N-soliton solutions of nonlinear evolution
equations, J. Phys. Soc. Jpn. 46 (1979) 359-360.
[SW] G. Segal and G. Wilson, Loop groups and equations of KdV type, Inst. Hautes Etudes

Sci. Publ. Math. No. 61 (1985), 5-65. MR0783348]|(87b:58039)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=0642018
http://www.ams.org/mathscinet-getitem?mr=0642018
http://www.ams.org/mathscinet-getitem?mr=0501106
http://www.ams.org/mathscinet-getitem?mr=0501106
http://www.ams.org/mathscinet-getitem?mr=0742146
http://www.ams.org/mathscinet-getitem?mr=0742146
http://www.ams.org/mathscinet-getitem?mr=1195127
http://www.ams.org/mathscinet-getitem?mr=1195127
http://www.ams.org/mathscinet-getitem?mr=1266543
http://www.ams.org/mathscinet-getitem?mr=1266543
http://www.ams.org/mathscinet-getitem?mr=0625877
http://www.ams.org/mathscinet-getitem?mr=0625877
http://www.ams.org/mathscinet-getitem?mr=1231775
http://www.ams.org/mathscinet-getitem?mr=1231775
http://www.ams.org/mathscinet-getitem?mr=0349126
http://www.ams.org/mathscinet-getitem?mr=0349126
http://www.ams.org/mathscinet-getitem?mr=0985322
http://www.ams.org/mathscinet-getitem?mr=0985322
http://www.ams.org/mathscinet-getitem?mr=0700477
http://www.ams.org/mathscinet-getitem?mr=0700477
http://www.ams.org/mathscinet-getitem?mr=0486784
http://www.ams.org/mathscinet-getitem?mr=0486784
http://www.ams.org/mathscinet-getitem?mr=0758224
http://www.ams.org/mathscinet-getitem?mr=0758224
http://www.ams.org/mathscinet-getitem?mr=1487849
http://www.ams.org/mathscinet-getitem?mr=1487849
http://www.ams.org/mathscinet-getitem?mr=0235310
http://www.ams.org/mathscinet-getitem?mr=0235310
http://www.ams.org/mathscinet-getitem?mr=1927047
http://www.ams.org/mathscinet-getitem?mr=1927047
http://www.ams.org/mathscinet-getitem?mr=0488516
http://www.ams.org/mathscinet-getitem?mr=0488516
http://www.ams.org/mathscinet-getitem?mr=1170966
http://www.ams.org/mathscinet-getitem?mr=1170966
http://www.ams.org/mathscinet-getitem?mr=1170967
http://www.ams.org/mathscinet-getitem?mr=1170967
http://www.ams.org/mathscinet-getitem?mr=1146435
http://www.ams.org/mathscinet-getitem?mr=1146435
http://www.ams.org/mathscinet-getitem?mr=0252826
http://www.ams.org/mathscinet-getitem?mr=0252826
http://www.ams.org/mathscinet-getitem?mr=1395807
http://www.ams.org/mathscinet-getitem?mr=1395807
http://www.ams.org/mathscinet-getitem?mr=0783348
http://www.ams.org/mathscinet-getitem?mr=0783348

1778 WEN-XIU MA AND YUNCHENG YOU

[SY] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New-
York, 2002. MR1873467(2003f:37001b)

[SHR] S. Sirianunpiboon, S. D. Howard and S. K. Roy, A note on the Wronskian form
of solutions of the KdV equation, Phys. Lett. A 134 (1988), 31-33. MR0972621
(89k:35230)

Y] Y. You, Global dynamics of dissipative generalized Korteweg-de Vries equations, Chin.

Ann. of Math. 17B (1996), 389-402. MR1441652/(97k:35230)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FLORIDA 33620-5700
E-mail address: mawx@math.usf.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH FLORIDA, TAMPA, FLORIDA 33620-5700
E-mail address: you@math.usf.edu

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


http://www.ams.org/mathscinet-getitem?mr=1873467
http://www.ams.org/mathscinet-getitem?mr=1873467
http://www.ams.org/mathscinet-getitem?mr=0972621
http://www.ams.org/mathscinet-getitem?mr=0972621
http://www.ams.org/mathscinet-getitem?mr=1441652
http://www.ams.org/mathscinet-getitem?mr=1441652

	1. Introduction
	2. Sufficient conditions on Wronskian solutions
	3. Solution formulas for the representative systems
	3.1. The case of real eigenvalues
	3.2. The case of complex eigenvalues

	4. Wronskian solutions
	4.1. Rational solutions
	4.2. Solitons, positons and negatons
	4.3. Complexitons
	4.4. Interaction solutions

	5. Concluding remarks
	Acknowledgments
	References

