
Chaos, Solitons and Fractals 22 (2004) 395–406

www.elsevier.com/locate/chaos
Rational solutions of the Toda lattice equation
in Casoratian form

Wen Xiu Ma *, Yuncheng You

Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA

Accepted 24 February 2004
Abstract

A recursive procedure is presented for constructing rational solutions to the Toda lattice equation through the

Casoratian formulation. It allows us to compute a broad class of rational solutions directly, without computing long

wave limits in soliton solutions. All rational solutions arising from the Taylor expansions of the generating functions of

soliton solutions are special ones of the general class, but only a Taylor expansion containing even or odd powers leads

to non-constant rational solutions. A few rational solutions of lower order are worked out.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many integrable equations possess rational solutions, besides soliton solutions. Among the celebrated examples are

the Korteweg–de Vries (KdV) equation [1,2], the Burgers equation [3] and the Kadomtsev–Petviashvili (KP) and

modified KP equations [4]. Ablowitz and Satsuma recognized that rational solutions could be obtained by taking the

long wave limits in soliton solutions, and considered the KdV equation in detail in such a manner [5]. The technique of

computing long wave limits can also be applied to discrete integrable equations. For the Toda lattice equation [6], a few

rational solutions have been presented by this technique but hard computation of long wave limits is often involved [7,8].

There are some other approaches to finding rational solutions of integrable equations, for example, the Wronskian

or Casorati determinant technique [9], B€acklund transformation [10,11], and the symmetry reduction [3,12]. While

applying the Wronskian or Casorati determinant technique, the Taylor expansion about the modified spectral

parameter plays an important role in constructing a kind of eigenfunctions required in determinant rational solutions

[13,14]. Moreover, the determinant technique can lead to a novel class of exact solutions, called complexitons, to the

KdV equation and the Toda lattice equation [15,16]. Very recently, Wu and Zhang have successfully applied the idea of

using the Taylor expansion to the Toda lattice equation and constructed a large class of rational and mixed rational-

soliton solutions [17]. It is natural to ask why the technique of using the Taylor expansion works well for constructing

rational solutions to the Toda lattice equation. Are there any other rational solutions to the Toda lattice equation?

In this paper, we would like to answer these questions by establishing a formulation of a broad class of rational

solutions to the Toda lattice equation through the Casorati determinant. The paper is structured as follows. In Section

2, a recursive procedure will be presented for constructing eigenfunctions and rational solutions, together with a for-

mulation of rational solutions. This yields a broad class of rational solutions expressed by the Casorati determinant. In

Section 3, all rational solutions arising from the Taylor expansions of the generating functions of soliton solutions will

be analyzed within our formulation, and only a Taylor expansion containing even or odd powers leads to non-constant
* Corresponding author. Tel.: +1-813-974-3140; fax: +1-813-974-2700.

E-mail addresses: mawx@math.usf.edu (W.X. Ma), you@math.usf.edu (Y. You).

0960-0779/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.chaos.2004.02.011

mail to: mawx@math.usf.edu


396 W.X. Ma, Y. You / Chaos, Solitons and Fractals 22 (2004) 395–406
rational solutions, thereby yielding two specific series of rational solutions. In Section 4, a few concluding remarks will

be given.
2. Rational solutions

2.1. Casoratian formulation

Let us consider the Toda lattice equation in the following form:
an;t ¼ anðbn�1 � bnÞ; bn;t ¼ an � anþ1; ð2:1Þ
where (and throughout the paper) the subscript t denotes the derivative with respect to t. It can be reduced to the

periodic case (anþN ¼ an and bnþN ¼ bn for some positive integer N) and the finite case (only finitely many an and bn are
non-zero). The square form of the Toda lattice equation [18]:
An;t ¼ AnðBn � Bnþ1Þ; Bn;t ¼ 2ðA2
n�1 � A2

nÞ; ð2:2Þ
presents solutions to the Toda lattice equation (2.1) through
ðanðtÞ; bnðtÞÞ ¼ ððAn�1ð12tÞÞ
2
;Bnð12tÞÞ:
The Toda lattice equation (2.1) has the Lax representation:
_L ¼ ½A; L�; ð2:3Þ
where the Lax pair is defined by
Lnm ¼ andnþ1;m þ bn�1dnm þ dn�1;m;
Anm ¼ dnþ1;m þ bn�1dnm:

�
ð2:4Þ
Equivalently, (2.1) is determined by the isospectral (kt ¼ 0) compatibility condition of the following spectral problem:
ð/ðnÞÞt ¼ bn�1/ðnÞ þ /ðn� 1Þ;
an/ðnþ 1Þ þ bn�1/ðnÞ þ /ðn� 1Þ ¼ k/ðnÞ;

�
ð2:5Þ
where k is a spectral parameter.

Note that the dependent variable transformation
an ¼ 1þ d2

dt2
log sn ¼

snþ1sn�1

s2n
; bn ¼

d

dt
log

sn
snþ1

¼ sn;tsnþ1 � snsnþ1;t

snsnþ1

; ð2:6Þ
leads to an;t � anðbn�1 � bnÞ ¼ 0 but
bn;t � an þ anþ1 ¼
sn;ttsn � ðsn;tÞ2 � snþ1sn�1 þ s2n

s2n
� snþ1;ttsnþ1 � ðsnþ1;tÞ2 � snþ2sn þ s2nþ1

s2nþ1

:

Therefore, the Toda lattice equation (2.1) holds if so does the bilinear equation
1

2
D2

t

�
� 2 sinh2 Dn

2

� ��
sn � sn ¼ sn;ttsn � ðsn;tÞ2 � snþ1sn�1 þ s2n ¼ 0; ð2:7Þ
where Dt and Dn are Hirota’s operators. This is called the bilinear Toda lattice equation.

The transformation
e�ðyn�yn�1Þ ¼ ðln snÞtt;
links the above bilinear form to the dimensionless form of the Toda lattice equation [19]
yn;tt ¼ e�ðyn�yn�1Þ � e�ðynþ1�ynÞ: ð2:8Þ
This is transformed into the square form (2.2) if we put
An ¼ 1
2
e�ðynþ1�ynÞ=2; Bn ¼ 1

2
yn;t:
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It is known that multi-soliton solutions of the Toda lattice equation (2.1) can be presented through the s-function
determined by the Casorati determinant [13,20]:
Casð/1;/2; . . . ;/N Þ :¼

/1ðn; tÞ /1ðnþ 1; tÞ � � � /1ðnþ N � 1; tÞ
/2ðn; tÞ /2ðnþ 1; tÞ � � � /2ðnþ N � 1; tÞ

..

. ..
. . .

. ..
.

/N ðn; tÞ /N ðnþ 1; tÞ � � � /N ðnþ N � 1; tÞ

����������

����������
; N P 1; ð2:9Þ
provided that the functions /i ¼ /iðn; tÞ, 16 i6N , solve
/iðnþ 1; tÞ þ /iðn� 1; tÞ ¼ ki/iðn; tÞ; ð/iðn; tÞÞt ¼ /iðn� 1; tÞ; 16 i6N ; ð2:10Þ
where ki ¼ 2 coshðkiÞ and the ki’s are arbitrary distinct real constants. Note that the functions determined by (2.10) are

eigenfunctions of the spectral problem (2.5) under a special solution an ¼ 1 and bn ¼ 0. Therefore, the Casorati

determinant solution is actually resulted from the Darboux transformation of the Toda lattice equation [20], associated

with the spectral problem (2.5), from the special solution an ¼ 1 and bn ¼ 0.

In what follows, we would first like to show that the Casorati determinant presents a very broad class of exact

solutions to the Toda lattice equation (2.1), among which solitons, positons, negatons and complexitons are special

examples.

Theorem 2.1. Let d ¼ �1. Suppose that a set of functions wiðn; tÞ, 16 i6N , solve a system of differential-difference
equations
wiðnþ 1; tÞ þ wiðn� 1; tÞ ¼
XN
j¼1

kijwjðn; tÞ; 16 i6N ; ð2:11Þ

ðwiðn; tÞÞt ¼ wiðnþ d; tÞ þ nðtÞwiðn; tÞ; 16 i6N ; ð2:12Þ
where the kij’s are arbitrary constants and nðtÞ is an arbitrary function. Then the corresponding Casorati determinant
sn ¼ Casðw1; . . . ;wN Þ ¼ Casðw1ðn; tÞ; . . . ;wN ðn; tÞÞ ð2:13Þ
solves the bilinear Toda lattice equation (2.7), and thus the dependent variable transformation (2.6) presents a solution to
the Toda lattice equation (2.1).

Proof. Introduce a new set of functions
/iðn; tÞ ¼ e
�
R t

0
nðsÞ dswiðn; tÞ; 16 i6N : ð2:14Þ
Obviously, these functions solve the following system of differential-difference equations
/iðnþ 1; tÞ þ /iðn� 1; tÞ ¼
XN
j¼1

kij/jðn; tÞ; 16 i6N ; ð2:15Þ

ð/iðn; tÞÞt ¼ /iðnþ d; tÞ; 16 i6N ; ð2:16Þ
if and only if the functions wiðn; tÞ, 16 i6N , solve the system of differential-difference equations, (2.11) and (2.12).

On the other hand, we have
sn ¼ Casðw1; . . . ;wN Þ ¼ e
N
R t

0
nðsÞ ds

~sn; ~sn :¼ Casð/1; . . . ;/N Þ;
which leads to
sn;ttsn � ðsn;tÞ2 � snþ1sn�1 þ s2n ¼ e
2N
R t

o
nðsÞ dsð~sn;tt~sn � ð~sn;tÞ2 � ~snþ1~sn�1 þ ~s2nÞ:
Thus, sn is a solution to the bilinear Toda lattice equation (2.7) if and only if so is ~sn. But they both present the same

solution to the Toda lattice equation (2.1).

Now recall that such a s-function ~sn solves the Toda bilinear lattice equation (2.7) if (2.15) and (2.16) hold [16].

Therefore, it follows that the corresponding s-function sn solves the Toda bilinear lattice equation (2.7) as well. This

completes the proof. h
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Now, the entire problem of constructing explicit solutions is reduced to the problem of solving the system, (2.11) and

(2.12) [or (2.15) and (2.16)]. The first half conditions in (2.5) are only a special case of the conditions in (2.11).

Therefore, we can expect to generate other solutions to the Toda lattice equation (2.1) by solving the system of dif-

ferential-difference equations, (2.11) and (2.12) [or (2.15) and (2.16)], as in the KdV case [21].

In what follows, we will focus on the system of (2.15) and (2.16). This system can be compactly written as
UN ðnþ 1; tÞ þ UN ðn� 1; tÞ ¼ KUN ðn; tÞ; ðUN ðn; tÞÞt ¼ UN ðnþ d; tÞ; ð2:17Þ
where UN and K are defined by
UN ¼ UN ðn; tÞ :¼ ð/1ðn; tÞ; . . . ;/N ðn; tÞÞ
T; K :¼ ðkijÞN�N : ð2:18Þ
Note that a constant similar transformation for the coefficient matrix K does not change the resulting Casorati

determinant solution to the Toda lattice equation (2.1). Actually, if we have M ¼ P�1KP for some invertible constant

matrix P , then ~UN ¼ PUN satisfies
~UN ðnþ 1; tÞ þ ~UN ðn� 1; tÞ ¼ M ~UN ðn; tÞ; ð~UN ðn; tÞÞt ¼ ~UN ðnþ d; tÞ:
Obviously, the Casorati determinants generated from UN and ~UN have just a constant-factor difference, and thus the

transformation (2.6) leads to the same Casorati determinant solutions from UN and ~UN . Therefore as in the KdV case

[21], we only need to consider the following two types of Jordan blocks of K:
kj 0

1 kj
..
. . .

. . .
.

0 � � � 1 kj

2
6664

3
7775

kj�kj

; ð2:19Þ

Aj 0

I2 Aj

..

. . .
. . .

.

0 � � � I2 Aj

2
6664

3
7775

lj�lj

; Aj ¼
aj �bj

bj aj

� �
; I2 ¼

1 0

0 1

� �
; ð2:20Þ
where kj, aj and bj > 0 are all real constants, and kj and lj are positive integers. A Jordan block of the first type in (2.19)

has the real eigenvalue kj with algebraic multiplicity kj, and a Jordan block of the second type in (2.20) has the pair of

complex eigenvalues kj;� ¼ aj � bji with algebraic multiplicity lj.
The case of real eigenvalues greater than 2 and less than 2 corresponds to positons and negatons [22], respectively.

The case of complex eigenvalues corresponds to complexitons [16]. In the following, we would like to show that the case

of eigenvalues being 2 correspond to rational solutions and thus the corresponding Casoratian formulation will lead to

a broad class of rational solutions to the Toda lattice equation.

2.2. Rational solutions

We first present a solution formula to solve the representative system of the system of differential-difference

equations, (2.15) and (2.16), in the case of eigenvalues being 2.

Theorem 2.2. Let d ¼ �1. Suppose that f ðn; tÞ is a given continuous function and satisfies ðf ðn; tÞÞt ¼ f ðnþ d; tÞ. Then the
system of differential-difference equations
/ðnþ 1; tÞ þ /ðn� 1; tÞ ¼ 2/ðn; tÞ þ f ðn; tÞ; ð/ðn; tÞÞt ¼ /ðnþ d; tÞ ð2:21Þ
has the general solution
/ðn; tÞ ¼ aðnÞt
�

þ bðnÞ þ
Z t

0

Z s

0

f ðnþ d; rÞe�r drds
�
et; ð2:22Þ
where aðnÞ and bðnÞ are determined by
aðnþ dÞ � aðnÞ ¼ f ðnþ d; 0Þ;
bðnþ dÞ � bðnÞ ¼ aðnÞ:

�
ð2:23Þ
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Proof. Let d ¼ 1. Then we have ðf ðn; tÞÞt ¼ f ðnþ 1; tÞ and thus we can compute that
Z t

0

Z s

0

f ðnþ 2; rÞe�r drds ¼
Z t

0

Z s

0

e�r df ðnþ 1; rÞds

¼
Z t

0

f ðn
�

þ 1; sÞe�s � f ðnþ 1; 0Þ þ
Z s

0

f ðnþ 1; rÞe�r dr
�
ds

¼ f ðn; tÞe�t � f ðn; 0Þ þ
Z t

0

f ðn; sÞe�s ds� f ðnþ 1; 0Þt þ
Z t

0

Z s

0

f ðnþ 1; rÞe�r drds;
and
 Z t

0

Z s

0

f ðnþ l; rÞe�r drds ¼ �
Z t

0

Z s

0

f ðnþ l; rÞde�r ds

¼ �
Z t

0

f ðn
�

þ l; sÞe�s � f ðnþ l; 0Þ �
Z s

0

f ðnþ lþ 1; rÞe�r dr
�
ds

¼ �
Z t

0

f ðnþ l; sÞe�s dsþ f ðnþ l; 0Þt þ
Z t

0

Z s

0

f ðnþ lþ 1; rÞe�r drds; l ¼ 0; 1:
Further using those three equalities and (2.23), from (2.22) we can have
e�t½/ðnþ 1; tÞ þ /ðn� 1; tÞ � 2/ðn; tÞ� ¼ aðnþ 1Þt þ bðnþ 1Þ þ f ðn; tÞe�t � f ðn; 0Þ þ f ðnþ 1; 0Þt þ aðn� 1Þt
þ bðn� 1Þ þ f ðn; 0Þt � 2aðnÞt � 2bðnÞ

¼ ½aðnþ 1Þ þ aðn� 1Þ � f ðnþ 1; 0Þ þ f ðn; 0Þ � 2aðnÞ�t
þ ½bðnþ 1Þ þ bðn� 1Þ � f ðn; 0Þ � 2bðnÞ� þ f ðn; tÞe�t ¼ f ðn; tÞe�t;
and
ð/ðn; tÞÞt ¼ aðnÞ
�

þ
Z t

0

f ðnþ 1; rÞe�r dr
�
et þ aðnÞt

�
þ bðnÞ þ

Z t

0

Z s

0

f ðnþ 1; rÞe�r drds
�
et

¼ aðnÞ
�

þ aðnÞt þ bðnÞ þ f ðnþ 1; 0Þt þ
Z t

0

Z s

0

f ðnþ 2; rÞe�r drds
�
et

¼ aðn
�

þ 1Þt þ bðnþ 1Þ þ
Z t

0

Z s

0

f ðnþ 2; rÞe�r drds
�
et ¼ /ðnþ 1; tÞ:
Hence, the function /ðn; tÞ defined by (2.22) and (2.23) solves the system (2.21). On the other hand, the first equation

in the system (2.21) is of the second order and the recurrence relation (2.23) has two arbitrary constants. Therefore,

the solution defined by (2.22) and (2.23) is the general solution to the system (2.21).

If d ¼ �1, we can transfer the problem on / and f with d ¼ �1 into the problem on �/ and �f with d ¼ 1, upon

introducing
�/ðn; tÞ ¼ /ð�n; tÞ; �f ðn; tÞ ¼ f ð�n; tÞ:
Therefore, the second case is true as well. This completes the proof. h

This theorem provides a way to solve the triangular system of (2.15) and (2.16), whose coefficient matrix is block-

diagonal with each block being of the following low-triangular form
2 0

� 2

..

. . .
. . .

.

� � � � � 2

2
664

3
775

kj�kj

; ð2:24Þ
where the symbol � denotes an arbitrary constant entry. Associated with each such low-triangular block, the solution

process starts from f ðn; tÞ ¼ 0 and ends with f ðn; tÞ being a linear combination of the previous eigenfunctions /iðn; tÞ.
Note that the solution formula (2.22) with f ðn; tÞ ¼ 0 leads to
/ðn; tÞ ¼ ½ct þ cnþ d�et; ð2:25Þ
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where c ¼ að0Þ and d ¼ bð0Þ are arbitrary constants. Then, we can see, again from the solution formula (2.22), that all

components of the solution ð/1; . . . ;/N Þ are of the type
/iðn; tÞ ¼ etwiðn; tÞ; 16 i6N ; ð2:26Þ
where wiðn; tÞ are polynomials in n and t. Such functions wiðn; tÞ, 16 i6N , satisfy the system of (2.11) and (2.12) with

nðtÞ ¼ �1. Therefore, the system of (2.15) and (2.16), whose coefficient matrix is block-diagonal with each block being

of the form (2.24), leads to a polynomial solution sn ¼ Casðw1; . . . ;wN Þ to the bilinear Toda lattice equation (2.7).

We sum up the above result in the following theorem.

Theorem 2.3. Let a set of eigenfunctions /1ðn; tÞ;/1ðn; tÞ; . . . ;/N ðn; tÞ solve the triangular system of (2.15) and (2.16),
whose coefficient matrix K ¼ ðkijÞ is block-diagonal with each block being of the low-triangular form (2.24). Then the
s-function
sn ¼ Casðw1ðn; tÞ;w2ðn; tÞ; . . . ;wN ðn; tÞÞ; wiðn; tÞ ¼ e�t/iðn; tÞ; 16 i6N ; ð2:27Þ
presents a polynomial solution to the bilinear Toda lattice equation (2.7) and thus the transformation
an ¼
snþ1sn�1

s2n
; bn ¼

sn;tsnþ1 � snsnþ1;t

snsnþ1

ð2:28Þ
gives a rational solution to the Toda lattice equation (2.1). Moreover, the eigenfunctions required in the rational solution
are recursively determined by the solution formula (2.22).

The above two theorems show that the case of eigenvalues being 2 corresponds to rational solutions and provide a

recursive procedure for constructing rational solutions to the Toda lattice equation (2.1). The procedure can be

summarized as follows:

Step 1. Recursively using the solution formula (2.22), solve the triangular system of (2.15) and (2.16), whose coefficient

matrix is of the Jordan form with each eigenvalue being 2 to obtain the set of eigenfunctions ð/1; . . . ;/N Þ.
Step 2. Evaluate the s-function sn ¼ Casðw1; . . . ;wN Þ with wi ¼ e�t/i, 16 i6N , which presents a polynomial solution

in the space and time variables, n and t, to the bilinear Toda lattice equation (2.7).

Step 3. Compute the dependent variable transformation
an ¼
snþ1sn�1

s2n
; bn ¼

sn;tsnþ1 � snsnþ1;t

snsnþ1

:

This provides a rational solution in the space and time variables, n and t, to the Toda lattice equation (2.1).

Associated with one Jordan block case, the first two eigenfunctions and the corresponding s-functions yielding

rational solutions are
w1ðn; tÞ ¼ c1t þ c1nþ d1; ð2:29Þ

w2ðn; tÞ ¼ 1
6
c1t3 þ ð1

2
c1nþ 1

2
c1 þ 1

2
d1Þt2 þ ð1

2
c1n2 þ 1

2
c1nþ d1nþ c2Þt þ 1

6
c1n3 þ 1

2
d1n2 � 1

6
c1n� 1

2
d1nþ c2nþ d2; ð2:30Þ

sn ¼ Casðw1Þ ¼ c1t þ c1nþ d1; ð2:31Þ

sn ¼ Casðw1;w2Þ
¼ 1

3
c21t

3 þ ðc21nþ 1
2
c21 þ c1d1Þt2 þ ðc21n2 þ c21nþ 2c1d1nþ c1d1 þ d2

1 Þt þ 1
3
c21n

3 þ 1
2
c21n

2 þ c1d1n2 þ 1
6
c21n

þ c1d1nþ d2
1n� c1d2 þ c2d1; ð2:32Þ
where ci and di, i ¼ 1; 2, are all arbitrary constants. They contain most of solutions presented in [7,8,11]. More general

rational solutions can be generated from the case of more than one Jordan block.

We remark that the matrices defined by (2.24) are more general than their Jordan blocks, and thus they have broader

applications. This is why we take the form (2.24) for diagonal blocks of the coefficient matrix of (2.15) and (2.16),

although it presents the same solutions as the Jordan form does. In the following section, we will see some concrete

applications of such a choice in (2.24).
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3. Examples arising from the Taylor expansion

In this section, through the Taylor expansion, we would like to exhibit some specific rational solutions belong-

ing to our general class, which will also explain why the Taylor expansion works well for constructing rational

solutions.

It is known that soliton solutions are associated with the function of the type
/ðn; tÞ ¼ ceknþt ek þ d e�knþt e�k
; ð3:1Þ
where c and d are arbitrary constants and k is a modified spectral parameter. Actually, this function solves
/ðnþ 1; tÞ þ /ðn� 1; tÞ ¼ 2 coshðkÞ/ðn; tÞ; ð/ðn; tÞÞt ¼ /ðnþ 1; tÞ; ð3:2Þ
and so /ðn; tÞ satisfies the spectral problem (2.5) with an eigenvalue k ¼ 2 coshðkÞ under an ¼ 1 and bn ¼ 0. Like the

KdV case [9,21], we expand /ðn; tÞ and 2 coshðkÞ with respect to k about k ¼ 0:
/ðn; tÞ ¼
X1
i¼0

/iðn; tÞki; 2 coshðkÞ ¼
X1
i¼0

2

ð2iÞ! k
2i; ð3:3Þ
and then we have
/iðnþ 1; tÞ þ /iðn� 1; tÞ ¼
X½ i2�
j¼0

2

ð2jÞ!/i�2jðn; tÞ; ð/iðn; tÞÞt ¼ /iðnþ 1; tÞ; iP 0: ð3:4Þ
Now obviously, each set of functions ð/0;/1; . . . ;/mÞ gives a solution to some special triangular system with a coef-

ficient matrix of the form (2.24). It then follows from Theorem 2.3 that the corresponding Casorati determinant pre-

sents a rational solution to the Toda lattice equation (2.1).

To see what kind of eigenfunctions we can have from the above function /ðn; tÞ, let us expand eknþt ek as
eknþt ek ¼ et
X1
i¼0

1

i!
niki

X1
j¼0

bjðtÞkj ¼ et
X1
l¼0

Xl
j¼0

nl�j

ðl� jÞ! bjðtÞ
" #

kl; ð3:5Þ
where the functions bjðtÞ are determined by
X1
j¼0

bjðtÞkj ¼
X1
p¼0

tp

p!

X1
q¼1

1

q!
kq

 !p

;

as in [17]. More concretely, we have
b0ðtÞ ¼ 1; bjðtÞ ¼
Xj
p¼1

1

p!
tp

X
q1þ���þqp¼j
q1 ;...;qp P 1

Yp
r¼1

1

qr!
; jP 1; ð3:6Þ
of which the first few functions are
b1ðtÞ ¼ t; b2ðtÞ ¼ 1
2
ðt þ t2Þ; b3ðtÞ ¼ 1

6
t þ 1

2
t2 þ 1

6
t3;

b4ðtÞ ¼ 1
24
t þ 7

24
t2 þ 1

4
t3 þ 1

24
t4; b5ðtÞ ¼ 1

120
t þ 1

8
t2 þ 5

24
t3 þ 1

12
t4 þ 1

120
t5;

b6ðtÞ ¼ 1
720
t þ 31

720
t2 þ 1

8
t3 þ 13

144
t4 þ 1

48
t5 þ 1

720
t6:
On the other hand, we can similarly have
e�knþt e�k ¼ et
X1
l¼0

Xl
j¼0

nl�j

ðl� jÞ! bjðtÞ
" #

ð�kÞl: ð3:7Þ
It then follows that
/iðn; tÞ ¼ et
Xi

j¼0

½cþ ð�1Þid� ni�j

ði� jÞ! bjðtÞ; iP 0: ð3:8Þ
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If we use the case of d ¼ �1, we will have
/iðn; tÞ ¼ et
Xi

j¼0

½ð�1Þicþ d�ð�1Þj ni�j

ði� jÞ! bjðtÞ; iP 0; ð3:9Þ
which can be generated from another eigenfunction
/ðn; tÞ ¼ ce�knþt ek þ d eknþt e�k
associated with soliton solutions.

Therefore, if we take two specific choices of c ¼ 1 but d ¼ 0 and c ¼ 0 but d ¼ 1, then we have
/ðn; tÞjc¼1;d¼0 ¼ et
X1
i¼0

wiðn; tÞki; wiðn; tÞ ¼
Xi

j¼0

ni�j

ði� jÞ! bjðtÞ; ð3:10Þ

/ðn; tÞjc¼0;d¼1 ¼ et
X1
i¼0

wiðn; tÞki; wiðn; tÞ ¼
Xi

j¼0

ð�1Þi ni�j

ði� jÞ! bjðtÞ: ð3:11Þ
The first series of solutions fwiðn; tÞg
1
i¼0 was stated in [17].

Let us now choose c ¼ d ¼ 1 and c ¼ �d ¼ 1 and then we obtain the following two specific Taylor expansions:
/ðn; tÞ ¼ eknþt ek þ e�knþt e�k ¼
X1
i¼0

/iðn; tÞk2i; ð3:12Þ

/ðn; tÞ ¼ eknþt ek � e�knþt e�k ¼
X1
i¼0

/iðn; tÞk2iþ1: ð3:13Þ
The resulting two series of functions f/iðn; tÞg
1
i¼0 satisfy
/iðnþ 1; tÞ þ /iðn� 1; tÞ ¼
Xi

j¼0

2

ð2jÞ!/i�jðn; tÞ; ð/iðn; tÞÞt ¼ /iðnþ 1; tÞ; iP 0: ð3:14Þ
Thus, each set of functions ð/0;/1; . . . ;/mÞ from one of both series presents a solution to certain special triangular

system with a coefficient matrix of the form (2.24). This gives another two series of eigenfunctions
/ðn; tÞjc¼d¼1 ¼ et
X1
i¼0

wiðn; tÞk2i; wiðn; tÞ ¼
X2i
j¼0

2n2i�j

ð2i� jÞ! bjðtÞ; ð3:15Þ

/ðn; tÞjc¼�d¼1 ¼ et
X1
i¼0

wiðn; tÞk2iþ1; wiðn; tÞ ¼
X2iþ1

j¼0

2n2iþ1�j

ð2iþ 1� jÞ! bjðtÞ; ð3:16Þ
which were computed in [17].

The change of n into �n leads to the other four series of eigenfunctions f�wiðn; tÞg
1
i¼0:
�/ðn; tÞjc¼1;d¼0 ¼ et
X1
i¼0

�wiðn; tÞki; �wiðn; tÞ ¼
Xi

j¼0

ð�nÞi�j

ði� jÞ! bjðtÞ; ð3:17Þ

�/ðn; tÞjc¼0;d¼1 ¼ et
X1
i¼0

�wiðn; tÞki; �wiðn; tÞ ¼
Xi

j¼0

ð�1Þj ni�j

ði� jÞ! bjðtÞ; ð3:18Þ

�/ðn; tÞjc¼d¼1 ¼ et
X1
i¼0

�wiðn; tÞk2i; �wiðn; tÞ ¼
X2i
j¼0

2ð�nÞ2i�j

ð2i� jÞ! bjðtÞ; ð3:19Þ

�/ðn; tÞjc¼�d¼1 ¼ et
X1
i¼0

�wiðn; tÞk2iþ1; �wiðn; tÞ ¼
X2iþ1

j¼0

2ð�nÞ2iþ1�j

ð2iþ 1� jÞ! bjðtÞ: ð3:20Þ
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Unfortunately, if we take the series of eigenfunctions defined by (3.8) [or (3.9)], especially one of the first two series

of eigenfunctions (3.10) and (3.11) [or (3.17) and (3.18)], the corresponding s-function sn ¼ Casðw0;w1; . . . ;wN Þ only

leads to a constant solution. This is shown in the following theorem.

Theorem 3.1. If /iðn; tÞ, iP 0, are defined by (3.8) [or (3.9)] and wiðn; tÞ ¼ e�t/iðn; tÞ, iP 0, then the s-function
sn ¼ Casðw0;w1; . . . ;wN Þ is a constant.

Proof. The case of d ¼ �1 corresponds to s�n. Thus, it is sufficient to prove the case of d ¼ 1.

Let d ¼ 1. Assume that /sðn; tÞ is defined by (3.1) with c ¼ 1 and d ¼ 0. Then we have
ek/sðn; tÞ ¼ et
X1
i¼0

ws;iðnþ 1; tÞki;
which leads to
ws;iðnþ 1; tÞ ¼
X
pþq¼i
p;qP 0

1

p!
ws;qðn; tÞ; iP 0; ð3:21Þ
where ws;i, iP 0, are defined by (3.10) and the subscript s is just for avoiding confusion. Note that the general eigen-

functions /iðn; tÞ are scalar multiples of the above special eigenfunctions /s;iðn; tÞ. Recursively applying the equality

(3.21) to the Casorati determinant Casðw0;w1; . . . ;wN Þ from the last row to the first row, we have
sn ¼ Casðw0;w1; . . . ;wN Þ ¼

w0ðn; tÞ w0ðnþ 1; tÞ � � � w0ðnþ N ; tÞ
w1ðn; tÞ w1ðnþ 1; tÞ � � � w1ðnþ N ; tÞ
� � � � � � � � � � � �

wN ðn; tÞ wN ðnþ 1; tÞ � � � wN ðnþ N ; tÞ

���������

���������

¼ CN ðc; dÞ

ws;0ðn; tÞ ws;0ðnþ 1; tÞ � � � ws;0ðnþ N ; tÞ
ws;1ðn; tÞ ws;1ðnþ 1; tÞ � � � ws;1ðnþ N ; tÞ

� � � � � � � � � � � �
ws;N ðnþ 1; tÞ ws;N ðnþ 2; tÞ � � � ws;N ðnþ N þ 1; tÞ

���������

���������

¼ � � � ¼ CN ðc; dÞ

ws;0ðnþ 1; tÞ ws;0ðnþ 2; tÞ � � � ws;0ðnþ N þ 1; tÞ
ws;1ðnþ 1; tÞ ws;1ðnþ 2; tÞ � � � ws;1ðnþ N þ 1; tÞ

� � � � � � � � � � � �
ws;N ðnþ 1; tÞ ws;N ðnþ 2; tÞ � � � ws;N ðnþ N þ 1; tÞ

���������

���������
¼ snþ1;
where CN ðc; dÞ ¼ ðc2 � d2ÞðNþ1Þ=2
when N is odd and CN ðc; dÞ ¼ ðc2 � d2ÞN=2ðcþ dÞ when N is even. This implies that sn

does not depend on the variable n.
Furthermore, we can have
sn ¼

w0ð0; tÞ w0ð1; tÞ � � � w0ðN ; tÞ
w1ð0; tÞ w1ð1; tÞ � � � w1ðN ; tÞ
� � � � � � � � � � � �

wN ð0; tÞ wN ð1; tÞ � � � wN ðN ; tÞ

��������

��������
¼ CN ðc; dÞ

b0ðtÞ b1ðtÞ � � � bN ðtÞ
� � � � � � � � � � � �
biðtÞ

Pi
j¼0

1i�j

ði�jÞ! bjðtÞ � � �
Pi

j¼0
Ni�j

ði�jÞ! bjðtÞ
� � � � � � � � � � � �
bN ðtÞ

PN
j¼0

1N�j

ðN�jÞ! bjðtÞ � � �
PN

j¼0
NN�j

ðN�jÞ! bjðtÞ

����������

����������
: ð3:22Þ
Let us choose a solution ðx0; x1; . . . ; xN Þ to the linear system
x0 þ x1 þ � � � þ xN ¼ 0;
1
1!
x1 þ � � � þ N

1!
xN ¼ 0;

1
2!
x1 þ � � � þ N2

2!
xN ¼ 0;

� � �
1
N !
x1 þ � � � þ NN

N !
xN ¼ 1:

8>>>><
>>>>:

ð3:23Þ
Using the property of the Vandermonde determinant, it is easy to see that this system (3.23) has a unique solution

with xN 6¼ 0. Now for the last determinant in (3.22), let us multiply the first column by x0, the second column by x1, . . . ;
the last column by xN , and then add them up to form a new last column. This gives
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sn ¼
CN ðc; dÞ

xN

b0ðtÞ b1ðtÞ � � � bN�1ðtÞ 0

� � � � � � � � � � � � � � �
biðtÞ

Pi
j¼0

1i�j

ði�jÞ! bjðtÞ � � �
Pi

j¼0
ðN�1Þi�j

ði�jÞ! bjðtÞ 0

� � � � � � � � � � � � � � �
bN ðtÞ

PN
j¼0

1N�j

ðN�jÞ! bjðtÞ � � �
PN

j¼0
ðN�1ÞN�j

ðN�jÞ! bjðtÞ b0ðtÞ

�����������

�����������

¼ CN ðc; dÞ
xN

b0ðtÞ b1ðtÞ � � � bN�1ðtÞ
� � � � � � � � � � � �
biðtÞ

Pi
j¼0

1i�j

ði�jÞ! bjðtÞ � � �
Pi

j¼0
ðN�1Þi�j

ði�jÞ! bjðtÞ
� � � � � � � � � � � �
bN ðtÞ

PN
j¼0

1N�j

ðN�jÞ! bjðtÞ � � �
PN

j¼0
ðN�1ÞN�j

ðN�jÞ! bjðtÞ

�����������

�����������
;

where a cofactor expansion along the last column has been made and b0ðtÞ ¼ 1 has been used. It then follows from the

mathematical induction that sn does not depend on the variable t either. This completes the proof. h

Using the other two series of eigenfunctions in (3.15) and (3.16) [or (3.19) and (3.20)], we can have two classes of

specific rational solutions to the Toda lattice equation (2.1) by Theorem 2.3. We state this result in the following

theorem.

Theorem 3.2. If wiðn; tÞ, iP 0, are defined by one of (3.15) and (3.16) [or (3.19) and (3.20)], then the s-function
sn ¼ Casðw0;w1; . . . ;wN Þ presents a polynomial solution to the bilinear Toda lattice equation (2.7) and thus the trans-
formation (2.6) determines a rational solution to the Toda lattice equation (2.1).

Let us now list the first few examples associated with the third and fourth series of eigenfunctions fwiðn; tÞg
1
i¼0.

Associated with the third series, we have
Casðw0Þ ¼ 2; Casðw0;w1Þ ¼ 4nþ 4t þ 2; ð3:24Þ

Casðw0;w1;w2Þ ¼ 8
3
t3 þ ð8nþ 8Þt2 þ ð8n2 þ 16nþ 6Þt þ 8

3
n3 þ 8n2 þ 22

3
nþ 2; ð3:25Þ

Casðw0;w1;w2;w3Þ ¼ 16
45
t6 þ ð32

15
nþ 16

5
Þt5 þ ð16

3
n2 þ 16nþ 32

3
Þt4 þ ð64

9
n3 þ 32n2 þ 392

9
nþ 52

3
Þt3

þ ð16
3
n4 þ 32n3 þ 200

3
n2 þ 56nþ 15Þt2 þ ð32

15
n5 þ 16n4 þ 136

3
n3 þ 60n2 þ 548

15
nþ 8Þt

þ 16
45
n6 þ 16

5
n5 þ 104

9
n4 þ 64

3
n3 þ 949

45
n2 þ 157

15
nþ 2; ð3:26Þ
and associated with the fourth series, we obtain
Casðw0Þ ¼ 2nþ 2t; Casðw0;w1Þ ¼ 4
3
t3 þ ð4nþ 2Þt2 þ ð4n2 þ 4nÞt þ 4

3
n3 þ 2n2 þ 2

3
n; ð3:27Þ

Casðw0;w1;w2Þ ¼ 8
45
t6 þ ð16

15
nþ 16

15
Þt5 þ ð8

3
n2 þ 16

3
nþ 2Þt4 þ ð32

9
n3 þ 32

3
n2 þ 76

9
nþ 4

3
Þt3 þ ð8

3
n4 þ 32

3
n3 þ 40

3
n2 þ 16

3
nÞt2

þ ð16
15
n5 þ 16

3
n4 þ 28

3
n3 þ 20

3
n2 þ 8

5
nÞt þ 8

45
n6 þ 16

15
n5 þ 22

9
n4 þ 8

3
n3 þ 62

45
n2 þ 4

15
n: ð3:28Þ
These are polynomial solutions to the bilinear Toda lattice equation (2.7) and they yield four rational solutions to the

Toda lattice equation (2.1) in the case of d ¼ 1. The change of n into �n will lead to the other four rational solutions in

the case of d ¼ �1.
4. Concluding remarks

A recursive procedure for constructing rational solutions has been presented through the Casoratian formulation,

together with the general solution to the system yielding eigenfunctions required in rational solutions. This allows us to

construct a broad class of rational solutions to the Toda lattice equation, without hard computation of long wave limits

in soliton solutions. Interestingly, only the eigenfunctions corresponding to the eigenvalue 2 of the Lax pair lead to

Casorati determinant rational solutions. All rational solutions arising from the Taylor expansions of the generating

functions of soliton solutions have been analyzed and only the Taylor expansions containing even or odd powers of the

modified spectral parameter lead to non-constant rational solutions. Two series of eigenfunctions yielding non-constant

rational solutions have been explicitly given. The resulting solution space contains all rational solutions presented in

[17] and many other existing rational solutions [7,8].
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Like the KdV case [23], there also exist mixed rational-soliton type solutions. Such solutions can be viewed as a kind

of interaction solutions [21] and they can be easily generated through the Casoratian formulation in Section 2, by taking

two subsets of eigenfunctions associated with the Jordan blocks of the first type with eigenvalues being 2 and greater

than 2. Other kind of mixed rational-positon solutions and rational-complexiton solutions can similarly be constructed.

They are interaction solutions between rational solutions and positons [24] and between rational solutions and com-

plexitons [16]. More general interaction solutions among various different kinds of basic solutions can also be generated

directly using the Casoratian formulation.

We remark that the generating functions of positon solutions,
/ðn; tÞ ¼ cet cos k cosðknþ dt sin kÞ þ d et cos k sinðknþ dt sin kÞ;
where c, d and k are arbitrary constants, do not yield new rational solutions. They bring the same set of rational

solutions as the generating functions of soliton solutions do. It is interesting to research for other special functions

whose Taylor expansions can lead to determinant rational solutions to the Toda lattice equation. Moreover, it is worth

studying whether the rational solutions expressed by the Casorati determinant can always be viewed as some kind of

long wave limits of soliton solutions.

There are also rational solutions to continuous and difference Painlev�e equations, which are connected with Schur

functions and q-Schur functions [25,26]. It would be important to find relations between the general polynomial

solution and special polynomial theories for the bilinear Toda lattice equation. More generally, what kind of rational

solutions one can have for the bilinear Toda lattice equation?
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