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A relation between semidirect sums of Lie algebras and integrable couplings
of lattice equations is established, and a practicable way to construct integrable
couplings is further proposed. An application of the resulting general theory to the
generalized Toda spectral problem yields two classes of integrable couplings
for the generalized Toda hierarchy of lattice equations. The construction of inte-
grable couplings using semidirect sums of Lie algebras provides a good source of
information on complete classification of integrable lattice equations. © 2006
American Institute of Physics. �DOI: 10.1063/1.2194630�

. INTRODUCTION

Integrable couplings have been receiving growing attention recently. A few ways to construct
ntegrable couplings are presented by using perturbations,1–3 enlarging spectral problems,4,5 and
reating new loop Lie algebras.6,7

The problem of integrable couplings can be expressed as follows:2 For a given integrable
ystem, how can we construct a nontrivial system of differential equations which is still integrable
nd includes the original integrable system as a subsystem? Obviously, a change of orders of
quations in a system does not lose integrability of the system. Therefore, up to a permutation, an
ntegrable coupling of a given integrable system ut=K�u� is given by a bigger and triangular
ystem:

ut = K�u�, vt = S�u,v� .

he vector-valued function S should satisfy the nontriviality condition �S /��u��0, where �u�
�u ,Dxu ,Dx

2u , . . . � and Dx
nu denotes a vector consisting of all derivatives of u of order n with

espect to the space variable x. The above nontriviality condition means that the second subsystem
nvolves the dependent variables of the first subsystem �i.e., the original system�, and thus it
uarantees that trivial diagonal systems with S�u ,v�=S�v� are not within our discussion.

A basic integrable coupling of an integrable system ut=K�u� is given by

�Electronic mail: mawx@math.usf.edu; Tel: �813�974-9563, Fax: �813�974-2700
�Electronic mail: xu�xixiang@sohu.com
�
Electronic mail: zhang�yfshandong@163.com

47, 053501-1022-2488/2006/47�5�/053501/16/$23.00 © 2006 American Institute of Physics

http://dx.doi.org/10.1063/1.2194630
http://dx.doi.org/10.1063/1.2194630
http://dx.doi.org/10.1063/1.2194630


w
s
�

O
r
i
c
l
T
l

T

w
o
n

s
b
u
h
w
t
t
f

L
m
o
o
i
t
t

a

L
m
s

053501-2 Ma, Xu, and Zhang J. Math. Phys. 47, 053501 �2006�

 16 M
arch 2025 10:44:12
ut = K�u�, vt = K��u��v� , �1.1�

hich can be generated by a perturbation around a solution of the system ut=K�u�.1 In the above
ystem and elsewhere throughout this paper, P��u��v� denotes the Gateaux derivative of P�u�

P�u ,Dxu , . . . � with respect to u in a direction v, i.e.,

P��u��v� =
�

��
�P�u + �v���=0 =

�

��
�P�u + �v,Dxu + �Dxv, . . . ���=0.

bviously, the second subsystem vt=K��u��v� in the above integrable coupling �1.1� is linear with
espect to v. Moreover, a symmetry S�u� of the system ut=K�u� leads to a solution �u ,S�u�� to the
ntegrable coupling �1.1�. However, the second component v of a solution �u ,v� to the integrable
oupling �1.1� is generally not a symmetry of the system ut=K�u�. This is because v satisfies the
inearized system vt=K��u��v� only for one solution, not for all solutions of the system ut=K�u�.
herefore, the simple integrable coupling �1.1� is already a generalization of the symmetry prob-

em. Another basic integrable coupling of an integrable system ut=K�u� reads as

ut = K�u�, vt = K��u��v� + K�u� . �1.2�

his system has a set of hereditary recursion operators2

���1,�2� = � �1��u� 0

�1���u��v� + �2��u� �1��u�
�

ith two arbitrary constants �1 and �2, if the original system ut=K�u� has a hereditary recursion
perator ��u�. Therefore, integrable couplings possess richer integrable structures than the origi-
al integrable systems.

The study of integrable couplings provides clues towards complete classification of integrable
ystems. Let us first observe classification of square matrix spectral problems through the Jordan
locks under similar transformations of matrices. Each triangular Jordan block corresponds to an
ndecomposable subsystem in a given integrable system. Now, note that an arbitrary Lie algebra
as a semidirect sum structure of a solvable Lie algebra and a semisimple Lie algebra,8 and we
ill see that semidirect sums of Lie algebras can result in integrable couplings. These imply that

he study of integrable couplings through semidirect sums of Lie algebras is an inevitable step
owards complete classification of integrable systems with an arbitrary number of components,
rom a point of view of Lie algebras.

The study of integrable couplings also generates interesting mathematical structures such as
ax pairs with several spectral parameters,9,10,2 integrable constrained flows with higher
ultiplicity,11,12 local bi-Hamiltonian structures in higher dimensions13 and hereditary recursion

perators of higher order.2,14 Very recently, we have proposed a relation between semidirect sums
f Lie algebras and integrable couplings of continuous soliton equations, which provides an
nteresting and systematic approach to integrable couplings of continuous soliton equations.15 In
his paper, we would like to discuss the problem of discrete integrable couplings and develop a
heory for constructing discrete integrable couplings by use of semidirect sums of Lie algebras.

Throughout our discussion, we denote by E the shift operator, write

�Emx��n� = x�m��n� = x�m + n�, where x:Z → R, m,n � Z , �1.3�

nd adopt an inverse of the difference operator E−1 as follows:

�E − 1�−1 =
1

2
� 	

k=−�

−1

− 	
k=0

� �Ek. �1.4�

et G be a matrix Lie algebra with the standard Lie bracket �A ,B�=AB−BA, and closed under
atrix multiplication: AB�G for all A ,B�G. We assume that an integrable lattice equation �or
ystem� of evolution type
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ut = K�u� = K�u,Eu,E−1u, . . . � �1.5�

s associated with G, where u=u�n , t� is a dependent variable. More precisely, there is a pair of
quare matrices U and V in G, called a Lax pair, so that the discrete spatial matrix spectral
roblem

E� = U� = U�u,��� �1.6�

nd the associated discrete temporal matrix spectral problem

�t = V� = V�u,Eu,E−1u, . . . ;��� , �1.7�

here � is a spectral parameter and � is an eigenfunction, generate16,17 the integrable lattice
quation �1.5� through their isospectral �i.e., �t=0� compatibility condition

Ut = �EV�U − UV , �1.8�

hich is called a discrete zero curvature equation. In other words, we have

U��u��K� = �EV�U − UV , �1.9�

here U��u��K� denotes the Gateaux derivative as above. In a nonisospectral case, e.g., �t= f���,
hen we have

U��u��K� + fU� = �EV�U − UV , �1.10�

here U� is a partial derivative of U with respect to �. Based on �1.6� and �1.7�, the lattice
quation �1.5� can often be solved by the inverse scattering transform �for example, see Ref. 18�.
here are also a few interesting Lie algebraic structures hidden behind the equation �1.10� �see
ef. 17 for more information�. An integrable hierarchy and its master symmetry hierarchy usually
orrespond to the isospectral case and the nonisospectral case �t=�n, n�0, respectively. These
wo hierarchies constitute a semidirect sum of Lie algebras, each of which consists of symmetries
n one hierarchy. The spatial matrix spectral problem �1.6� is our starting point in constructing
iscrete integrable couplings. The closure property of the Lie algebra G under matrix multiplica-
ion guarantees that �EV�U−UV is still in G so that the discrete zero curvature equation �1.8�

akes sense.
In what follows, we are going to establish a relation between semidirect sums of Lie algebras

nd integrable couplings of lattice equations and a technically practicable way to generate inte-
rable couplings through semidirect sums of Lie algebras. The resulting general theory will be
sed to generate two classes of integrable couplings for the generalized Toda hierarchy presented
n Ref. 19. It will also be indicated that the construction of integrable couplings using semidirect
ums of Lie algebras provides a good source of information about classification of integrable
attice equations. A few concluding remarks will be given in the last section.

I. CONSTRUCTING INTEGRABLE COUPLINGS USING SEMIDIRECT SUMS OF LIE
LGEBRAS

. Generating scheme

Assume that the lattice equation �1.5� has a Lax pair �U ,V� in a matrix Lie algebra G closed
nder matrix multiplication.

To construct an integrable coupling of the lattice equation �1.5�, we use semidirect sums of Lie
lgebras to enlarge the original Lie algebra G. Take another matrix Lie algebra Gc closed under

atrix multiplication and then form a semidirect sum Ḡ of G and Gc:

Ḡ = G* Gc. �2.1�
he notion of semidirect sums means that G and Gc satisfy
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�G,Gc� � Gc, �2.2�

here �G ,Gc�= 
�A ,B� �A�G ,B�Gc�. Obviously, Gc is an ideal Lie subalgebra of Ḡ. The sub-
cript c here indicates a contribution to the construction of couplings. We also require that the
losure property between G and Gc under matrix multiplication,

GGc,GcG � Gc, �2.3�

here G1G2= 
AB �A�G1 ,B�G2�, to guarantee that a Lax pair from the semidirect sum Ḡ can
enerate a coupling system. Note that the two different binary operations were used in the above
losure properties in �2.2� and �2.3�.

Now choose a pair of new Lax matrices in the semidirect sum Ḡ of Lie algebras:

Ū = U + Uc, V̄ = V + Vc, Uc,Vc � Gc, �2.4�

nd make a pair of enlarged discrete spatial matrix spectral problems

E�̄ = Ū�̄ = Ū�ū,���̄ ,

�2.5�
�̄t = V̄�̄ = V̄�ū,Eū,E−1ū, . . . ;���̄ ,

here the matrix Uc in Ū introduces additional dependent variables and ū consists of both the
riginal dependent variables and the additional dependent variables. In addition, the matrix Uc

ould depend on the spectral parameter �, and the matrix Vc in V̄ really does almost in all cases.
ased on the closure properties of G, Gc and between G and Gc, it is easy to see that

�EV̄�Ū − ŪV̄ = ��EV�U − UV� + 
��EV�Uc − UcV� + ��EVc�U − UVc� + ��EVc�Uc − UcVc��

� G* Gc.

herefore, under ut=K�u�, the corresponding enlarged discrete zero curvature equation

Ūt = �EV̄�Ū − ŪV̄ �2.6�

recisely presents

Ut = �EV�U − UV ,

�2.7�
Uc,t = ��EV�Uc − UcV� + ��EVc�U − UVc� + ��EVc�Uc − UcVc� .

he first equation above is equivalent to the lattice equation �1.5�, and hence, this is a coupling
ystem for the lattice equation �1.5�.

The whole construction process above shows that semidirect sums of a given Lie algebra G
ith new Lie algebras provide a great choice of candidates of integrable couplings for the lattice

quation �1.5� generated from the Lie algebra G.

. Realizations by particular semi-direct sums

To shed light on the above general scheme of constructing coupling systems, let us introduce
he following particular class of semidirect sums of Lie algebras:
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Gc =�

0

� Bij

0

B�+1,�+1

0 �

B	+1,	+1

�� , �2.8�

here A ,Bii are arbitrary square matrices, A is of the same order as U and the partitions of
atrices in G and Gc are the same. Obviously, Bij , j
�, are square but Bij , j��+1, may not; and

ll closure conditions of G ,Gc and between G and Gc under matrix multiplication are satisfied.
Define

ote that UG and VG in G generate the same lattice equation as U and V, and thus for integrable

ouplings, the corresponding enlarged spectral matrices Ū and V̄ in the semidirect sum G*Gc can
e chosen as

Ū = UG + UG,c ª

U

� Uij

U

U�+1,�+1

0 �

U	+1,	+1

�
V̄ = VG + VG,c ª


V

� Vij

V

V�+1,�+1

0 �

V	+1,	+1

� ,

here the first two matrices UG and VG play the �U ,V�-part and the second two matrices UG,c and

G,c play the �Uc ,Vc�-part in the pair of Ū and V̄ defined in �2.4�. It is not difficult to see that the
esulting coupling system �2.7� becomes

Ut = �EV�U − UV ,

�Ui+1,i+1�t = �EVi+1,i+1�Ui+1,i+1 − Ui+1,i+1Vi+1,i+1, � 
 i 
 	 , �2.9�

Uij,t = 	
k=i

j

��EVik�Ukj − UikVkj�, 1 
 i � j 
 	 + 1,

here Uii=U and Vii=V, 1
 i
�.

In particular, first, if we take



t

w

t

w

t
e
o

C

e

C
s

N
d

w

053501-6 Ma, Xu, and Zhang J. Math. Phys. 47, 053501 �2006�

 16 M
arch 2025 10:44:12
Ū =

U U12 ¯ U1,�+1

� � ]

U U�,�+1

0 0
�, V̄ =


V V12 ¯ V1,�+1

� � ]

V V�,�+1

0 0
� ,

hen the coupling system �2.9� becomes

Ut = �EV�U − UV ,

�2.10�

Uij,t = 	
k=i

j

��EVik�Ukj − UikVkj�, 1 
 i � j 
 � + 1,

here Uii=U, Vii=V, 1
 i
�, and Uii=Vii=0, i=�+1. Second, if we take

Ū = 

U Ua1

¯ Ua	

U � ]

� Ua1

0 U
�, V̄ = 


V Va1
¯ Va	

V � ]

� Va1

0 V
� ,

hen the coupling system �2.9� becomes

Ut = �EV�U − UV ,

�2.11�
Uai,t

= 	
k+l=i,k,l�0

��EVak
�Ual

− Ual
Vak

�, 1 
 i 
 	 ,

here Ua0
=U and Va0

=V.
We remark that here we have just presented one class of semidirect sums of Lie algebras,

ogether with two specific examples. It is interesting to construct other possible realizations,
specially those which could carry essential information for keeping integrable properties of the
riginal lattice equations.

. Linearly dependent case on the spectral parameter

Let us now assume that the spatial spectral matrix U depends linearly on the spectral param-
ter � �see, for example, Refs. 17 and 19–21�:

U = U�u,�� = �U0 + U1,
�U0

��
=

�U1

��
= 0. �2.12�

onsider two specific examples of the enlarged spatial spectral matrices introduced in the last
ection,

Ū1 = �U Ua

0 0
�, Ū2 = �U Ua

0 U
�,

�Ua

��
= 0. �2.13�

ote that the submatrices Ua in the above two enlarged spatial spectral matrices could be of
ifferent sizes. As in the continuous cases,4,15 suppose that

W̄1 = �W Wa

0 0
�, W̄2 = �W Wa

0 W
�

ith
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W = 	
i�0

Wi�
−i, Wa = 	

i�−n0

Wa,i�
−i,

�Wi

��
= 0,

�Wa,i

��
= 0, �2.14�

here n0�0 is a proper integer, solve the corresponding enlarged discrete stationary zero curva-
ure equations

�EW̄i�Ūi − ŪiW̄i = 0, i = 1,2, �2.15�

espectively.
Then for each m�0, choose

V̄1
�m� = �V�m� Va

�m�

0 0
� = ��mW̄1�+ + �̄m, �̄m = ��m �m,a

0 0
� ,

here �m and �m,a do not depend on � and satisfy

�E�m�U0 − U0�m = 0, U0�m,a = 0, �2.16�

nd choose

V̄2
�m� = �V�m� Va

�m�

0 V�m� � = ��mW̄2�+ + �̄m, �̄m = ��m �m,a

0 �m
� ,

here �m and �m,a do not depend on � and satisfy

�E�m�U0 − U0�m = 0, �E�m,a�U0 − U0�m,a = 0. �2.17�

he subscript 
 above denotes to select the polynomial part in �. Based on �2.10� and �2.11� and
sing �2.15�, we can directly show that the enlarged discrete zero curvature equations

Ūi,tm
= �EV̄i

�m��Ūi − ŪiV̄i
�m�, i = 1,2,

amely,

Utm
= �EV�m��U − UV�m�,

Ua,tm
= �EV�m��Ua − UVa

�m�,

nd

Utm
= �EV�m��U − UV�m�,

Ua,tm
= �EV�m��Ua + �EVa

�m��U − UVa
�m� − UaV�m�,

resent

Utm
= ��m�x + �U0,Wm+1� − �U1,�m� ,

�2.18�
Ua,tm

= U0Wa,m+1 + �E�m�Ua − U1�m,a,

nd

Ut = ��m�x + �U0,Wm+1� − �U1,�m� , �2.19a�

m
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Ua,tm
= U0Wa,m+1 − �EWa,m+1�U0 + �E�m�Ua − Ua�m + �E�m,a�U1 − U1�m,a, �2.19b�

espectively.
We remark that these two enlarged hierarchies in �2.18� and �2.19� share the enlarged discrete

pectral problems

E�̄ = Ū1�̄, E�̄ = Ū2�̄ ,

espectively. Thus, all lattice equations in each of the two enlarged hierarchies can possess infi-
itely many common conserved densities except the original ones �see Refs. 22–24 for a few

oncrete examples�. Moreover, one can construct a specific nondegenerate bilinear form on Ḡ with
he invariance property, to present Hamiltonian structures of the enlarged lattice equations by a
eneralized trace identity. The detailed analysis on those integrable properties will be left to a
uture presentation.

To sum up, each system of lattice equations in the hierarchy �2.18� or �2.19� can provide an
ntegrable coupling for its first subsystem of lattice equations. In the next section, we will only
iscuss two examples of constructing enlarged lattice hierarchies, in the generalized Toda case
resented in Ref. 19.

II. INTEGRABLE COUPLINGS OF THE GENERALIZED TODA HIERARCHY

. The generalized Toda equations

Let us here recall the generalized Toda hierarchy.19 The corresponding discrete spatial spectral
roblem reads

E� = U�u,���,U�u,�� = � 0 1

��� + ��r � + s
�, u = �r

s
� , �3.1�

here � is a spectral parameter, and � and � are two arbitrary constants satisfying �2+�2�0.
hen �=0 and �=−1, �3.1� becomes the Toda spectral problem.16

Its stationary discrete zero curvature equation

�EW�U − UW = 0 �3.2�

as the solution

W = � a b

��� + ��c − a
� , �3.3�

ith

a = 	
i�0

ai�
−i, b = 	

i�0
bi�

−i, c = 	
i�0

ci�
−i,

here the coefficients are defined by the initial conditions

a0 = − 1
2 , b0 = 0, c0 = 0,

nd the recursion relation

ci+1 − rbi+1
�1� = 0, i � 0, �3.4a�

b�1� + sb�1� + �a�1� + ai� = 0, i � 0, �3.4b�
i+1 i i
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�ai+1
�1� − ai+1� + s�ai

�1� − ai� + ��rbi+1 − ci+1
�1� � + ��rbi − ci

�1�� = 0, i � 0, �3.4c�

hich are all difference polynomials in u with respect to the lattice variable n. Under the initial-
alue conditions

�a1�u=0 = �c1�u=0 = 0, �ai�u=0 = �bi�u=0 = �ci�u=0 = 0, i � 2,

he recursion relation �3.4� uniquely determines the lattice functions ai, bi, and ci, i�1. The first
ew lattice functions are

a1 = �r, b1 = 1, c1 = r ,

a2 = − �2r�1�r − �2r2 − �2rr�−1� − �rs − �rs�−1� + �r ,

b2 = − �r − �r�−1� − s�−1�, c2 = − rs − �r2 − �rr�1�.

As usual, choose that

Vm = � ��ma�+ ��mb�+

��� + ����mc�+ − ��ma�+
�, m � 0. �3.5�

hen it follows from �3.4� that

�EVm�U − UVm = � 0 − bm+1
�1�

��� + ��cm+1 ��cm
�1� − rbm� − s�am

�1� − am�
� .

ake a modification

�m = �bm+1 0

0 0
� ,

nd define the temporal spectral matrices

V�m� = Vm + �m, m � 0. �3.6�

hen, a direct calculation leads to the following matrix:

�EV�m��U − UV�m� = � 0 0

��� + ���cm+1 − rbm+1� ��cm
�1� − rbm� − s�am

�1� − am�
� .

his is consistent with Utm
, and thus, making the evolution laws

�tm
= V�m��, m � 0, �3.7�

he compatibility conditions

Utm
= �EV�m��U − UV�m�, m � 0,

f the discrete spatial spectral problem �3.1� and the associated discrete temporal spectral prob-
ems �3.7� give rise to the following hierarchy of lattice equations:

rtm
= cm+1 − rbm+1,

stm
= − ��cm+1

�1� − rbm+1� + �am+1
�1� − am+1� ,

m � 0. �3.8�

his generalized Toda hierarchy is Liouville integrable,19 and its Hamiltonian structure leads to
nfinitely many conservation laws and symmetries for every system in the hierarchy.
Obviously, the first nonlinear lattice equation in the hierarchy is



W

a

T
a
�

B

t

W
i

w
G

w

w

s

w

n

053501-10 Ma, Xu, and Zhang J. Math. Phys. 47, 053501 �2006�

 16 M
arch 2025 10:44:12
rt1
= r�s�−1� − s� + �r�r�−1� − r�1�� ,

�3.9�
st1

= �s�r − r�1�� + ��r�1� − r� .

hen �=0 and �=−1, �3.9� becomes the Toda lattice equation,25

rt1
= r�s�−1� − s�, st1

= r − r�1�, �3.10�

nd when �=1 and �=0, �3.9� becomes the following lattice equation presented in Ref. 26:

rt1
= r�s�−1� − s� + r�r�−1� − r�1��, st1

= s�r − r�1�� . �3.11�

he lattice equation �3.11� is linearly independent of the Toda lattice equation �3.10�. There exist
voluminous literature on the Toda lattice equation, and its generalizations and solution structures

for example, see Refs. 27–32�.

. Integrable couplings from specific semidirect sums

The generalized Toda spectral problem �3.1� linearly depends on the spectral parameter �, and
hus we can write

U = � 0 1

��� + ��r � + s
� = U0� + U1, U0 = � 0 0

�r 1
�, U1 = � 0 1

�r s
� . �3.12�

e will also see that there is a difference between the two cases of �=0 and ��0 in computing
ntegrable couplings.

Let us first consider the semidirect sum of Lie algebras of 3�3 matrices,

G* Gc, G = ��A 0

0 0
��A � C��,�−1� � M2�2�, Gc = ��0 B

0 0
��B � C��,�−1� � M2�1� ,

here C�� ,�−1� � Mm�n=span
�kA �k�Z ,A�Mm�n�. In this case, Gc is an Abelian ideal of
*Gc. We define the corresponding enlarged spatial spectral matrix as

Ū = Ū�ū,�� = �U Ua

0 0
� � G* Gc, Ua = Ua�v� = �v1

v2
� , �3.13�

here v1 and v2 are new dependent variables and

v = �v1,v2�T, ū = �uT,vT�T = �r,s,v1,v2�T.

Upon setting

W̄ = �W Wa

0 0
�, Wa = Wa�ū,�� = �e

f
� ,

here W is a solution to �EW�U−UW=0, defined by �3.3�, the corresponding enlarged discrete

tationary zero curvature equation �EW̄�Ū− ŪW̄=0 becomes

�EW�Ua − UWa = 0, �3.14�

hich is equivalent to

Wa = WU−1Ua,

amely,

�1� �1�
f = a v1 + b v2, �3.15a�
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��� + ��re = ��� + ��c�1�v1 − a�1�v2 − �� + s�f . �3.15b�

his system determines a solution for e and f as follows:

e = 	
i�−n0

ei�
−i, f = 	

i�0
f i�

i,

here n0=1 if �=0 and n0=0 if ��0 �see �2.14� for introduction of n0�. Now define the enlarged
emporal spectral matrix as

V̄�m� = �V�m� Va
�m�

0 0
�, Va

�m� = ��mWa�+ + �m,a, m � 0, �3.16�

here V�m� is defined as in �3.6�. To satisfy �2.16�, choose �m,a as

�m,a = � hm

− �rhm
�, hm − arbitrary, m � 0. �3.17�

hen based on �3.15�, we can compute that

�EV�m��Ua − UVa
�m� = �EVm�Ua − U��mWa�+ + �E�m�Ua − U1�m,a = � 0

− �cm+1
�1� v1 + �rem+1 + fm+1

�
+ �bm+1

�1� v1

0
� − � − �rhm

�rhm − �rshm
�

= � bm+1
�1� v1 + �rhm

− �cm+1
�1� v1 + �rem+1 + fm+1 − �rhm + �rshm

�, m � 0.

herefore, the mth enlarged discrete zero curvature equation

Ūtm
= �EV̄�m��Ū − ŪV̄�m�

eads to

vtm
= �v1

v2
�

tm

= Sm�u,v� = � bm+1
�1� v1 + �rhm

− �cm+1
�1� v1 + �rem+1 + fm+1 − �rhm + �rshm

� , �3.18�

ogether with the mth generalized Toda equation in �3.8�. Therefore, we obtain a hierarchy of
oupling systems defined by �2.18�,

ūtm
= �u

v
�

tm

= K̄m�u� = � Km�u�
Sm�u,v�

�, m � 0 �3.19�

or the generalized Toda hierarchy �3.8�.
Let us second consider the semidirect sum of Lie algebras of 4�4 matrices,

G* Gc, G = ��A 0

0 A
��A � C��,�−1� � M2�2�, Gc = ��0 B

0 0
��B � C��,�−1� � M2�2� .

n this case, Gc is an Abelian ideal of G*Gc, too. We define the corresponding enlarged spatial
pectral matrix as

Ū = Ū�ū,�� = �U Ua

0 U
� � G* Gc, Ua = Ua�v� = �v1 v2

v3 v4
� , �3.20�
here vi, 1
 i
4, are new dependent variables and
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v = �v1,v2,v3,v4�T, ū = �uT,vT�T = �r,s,v1,v2,v3,v4�T.

If we set

W̄ = �W Wa

0 W
�, Wa = Wa�ū,�� = �e f

g − e
� ,

here W is a solution to �EW�U−UW=0, defined by �3.3�, then the corresponding enlarged

iscrete stationary zero curvature equation �EW̄�Ū− ŪW̄=0 becomes

�EW�Ua + �EWa�U − UWa − UaW = 0, �3.21�

hich is equivalent to

�e�1� + e� + �� + s�f �1� + �a�1� + a�v2 + b�1�v4 − bv1 = 0,

− ��� + ��r�e�1� + e� − �� + s�g + ��� + ���c�1�v1 − cv4� − �a�1� + a�v3 = 0, �3.22�

g�1� − �� + s��e�1� − e� − ��� + ���rf − c�1�v2� − �a�1� − a�v4 − bv3 = 0.

his system can determine a solution for e, f , and g as follows:

e = 	
i�0

ei�
−i, f = 	

i�0
f i�

−i, g = 	
i�0

gi�
−i.

ow, we define the enlarged temporal spectral matrix as

V̄�m� = �V�m� Va
�m�

0 V�m� �, Va
�m� = ��mWa�+ + �m,a, m � 0, �3.23�

here V�m� is defined as in �3.6�. To satisfy �2.17�, choose �m,a as

�m,a = � hm 0

− �rhm 0
�, hm − arbitrary, m � 0. �3.24�

hen based on �3.22�, we can compute that

�EV�m��Ua + �EVa
�m��U − UVa

�m� − UaV�m�

= ��EVm�Ua + �E��mWa�+�U − U��mWa�+ − UaVm�

+ ��E�m�Ua − Ua�m� + ��E�m,a�U1 − U1�m,a�

= � − �cm+1v2 + �rfm+1
�1� fm+1

�1�

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 �cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1�
�

+ ��bm+1
�1� − bm+1�v1 bm+1

�1� v2

− bm+1v3 0
� + � �rhm hm

�1�

r��s − ��hm − �r�1�hm
�1� �

=

− �cm+1v2 + �rfm+1

�1� + �bm+1
�1� − bm+1�v1 + �rhm,

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 − bm+1v3 + r��s − ��hm,

fm+1
�1� + bm+1

�1� v2 + hm
�1�

�cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1� − �r�1�hm
�1�

� .
hen the mth enlarged discrete zero curvature equation
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Ūtm
= �EV̄�m��Ū − ŪV̄�m�

eads to

vtm
= �v1,v2,v3,v4�tm

T = Tm�u,v�

=

− �cm+1v2 + �rfm+1

�1� + �bm+1
�1� − bm+1�v1 + �rhm

fm+1
�1� + bm+1

�1� v2 + hm
�1�

�cm+1
�1� v1 − �cm+1v4 − �r�em+1

�1� + em+1� − gm+1 − bm+1v3 + r��s − ��hm

�cm+1
�1� v2 − �rfm+1 − �em+1

�1� − em+1� − �r�1�hm
�1�

� , �3.25�

ogether with the mth generalized Toda equation in �3.8�. Therefore, we obtain a hierarchy of
oupling systems defined by �2.19�,

ūtm
= �u

v
�

tm

= K̄m�u� = � Km�u�
Tm�u,v�

�, m � 0 �3.26�

or the generalized Toda hierarchy �3.8�.

. Illustrative examples

We now work out two concrete examples as follows, one in each of the two above cases.
Case of �=1 and �=0: Let us first compute an example of the hierarchy �3.19�. Assume that

=1 and �=0 for convenience, which corresponds to the lattice hierarchy presented in Ref. 26. In
his case, we have n0=0 in �2.14�.

It directly follows from �3.15� that

f i = ai
�1�v1 + bi

�1�v2,

rei+1 = ci+1
�1� v1 − ai

�1�v2 − f i+1 − sf i,

here i�0 and re0=c0
�1�v1− f0. We can then obtain that

f0 = − 1
2v1, f1 = r�1�v1 + v2,

f2 = − �r�2�r�1� + �r�1��2 + r�1�r + r�1�s�1� + r�1�s�v1 − �r�1� + r + s�v2;

re0 = 1
2v1, re1 = 1

2sv1 − 1
2v2, re2 = r�1�rv1 + rv2.

If we choose

h1 = 2�f0f1 = − �v1�r�1�v1 + v2�, � = const,

hen the vector-valued function S1 defined by �3.18� becomes

S1�u,v� = � − �r�1� + r + s�v1 − �rv1�r�1�v1 + v2�
− r�1�sv1 − �r�1� + s�v2 − �rsv1�r�1�v1 + v2�

� .

herefore, the integrable coupling of the generalized Toda lattice equation �3.11�, defined by
3.19�, reads as

rt = r�s�−1� − s� + r�r�−1� − r�1�� ,

1
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st1
= s�r − r�1�� ,

�3.27�
v1,t1

= − �r�1� + r + s�v1 − �rv1�r�1�v1 + v2� ,

v2,t1
= − r�1�sv1 − �r�1� + s�v2 − �rsv1�r�1�v1 + v2� ,

he second subsystem of which is nonlinear with respect to both subsets of dependent variables
hen ��0.

Case of �=0 and �=1: Let us second compute an example of the hierarchy �3.26�. Assume
hat �=0 and �=1 for convenience, which corresponds to the Toda lattice hierarchy. In this case,
e have n0=1 in �2.14�.

We take the initial set of functions as follows:

f0 = g0 = 0, e0 = − 1
2 .

bviously from �3.22�, we can have

f i+1
�1� = − sf i

�1� − �ei
�1� + ei� − �ai

�1� + ai�v2 − bi
�1�v4 + biv1,

gi+1 = − sgi − r�ei
�1� + ei� − �ai

�1� + ai�v3 + ci
�1�v1 − civ4,

ei+1
�1� − ei+1 = − s�ei

�1� − ei� + gi
�1� − rf i − �ai

�1� − ai�v4 + ci
�1�v2 − biv3,

here i�0. It then follows that

f1 = 1 + v2
�−1�, g1 = r + v3, e1 = v3 + r�1 + v2

�−1�� ,

f2 = − �s�−1� + r��1 + v2
�−1�� − v3 − v3

�−1� − r�−1��1 + v2
�−2�� − v4

�−1� + v1
�−1�,

g2 = − s�r + v3� − r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1��� + r�1�v1 − rv4,

e2
�1� − e2 = �1 − s��r�1� − r + v3

�1� − v3 + r�1�v2 − rv2
�−1�� .

e can use the inverse formula �1.4� to compute e2 here, but as we will see, this is not necessary
or computing the corresponding integrable coupling.

Now if we choose

h1 = �v1e1 = �v1�v3 + r�1 + v2
�−1���, � = const,

hen the vector-valued function T1 defined by �3.25� becomes

T1�u,v� =

− �s − s�−1��v1,

− sv2 − �s + r�1���1 + v2� − r�1 + v2
�−1�� + v1 − v3

�1�

− v3 − v4 + �v1
�1��v3

�1� + r�1��1 + v2�� ,

�s�−1� + s�v3 + rs + r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1���
− r�1�v1 + rv4 − �rv1�v3 + r�1 + v2

�−1��� ,

�s − 1��r�1� − r + v3
�1� − v3 + r�1�v2 − rv2

�−1��
� .

herefore, the integrable coupling of the Toda lattice equation �3.10�, defined by �3.26�, reads as

rt = r�s�−1� − s�, st = r�1� − r ,

1 1
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v1,t1
= − �s − s�−1��v1,

v2,t1
= − sv2 − �s + r�1���1 + v2� − r�1 + v2

�−1�� + v1 − v3
�1� − v3 − v4 + �v1

�1��v3
�1� + r�1��1 + v2�� ,

�3.28�
v3,t1

= �s�−1� + s�v3 + rs + r�v3
�1� + v3 + r�1��1 + v2� + r�1 + v2

�−1���

− r�1�v1 + rv4 − �rv1�v3 + r�1 + v2
�−1��� ,

v4,t1
= �s − 1��r�1� − r + v3

�1� − v3 + r�1�v2 − rv2
�−1�� ,

he second subsystem of which is nonlinear with respect to both subsets of dependent variables
hen ��0.

V. CONCLUSIONS AND REMARKS

A feasible approach to construct integrable couplings of discrete soliton equations has been
roposed by taking advantage of semidirect sums of Lie algebras, and the resulting theory has
een applied to the generalized Toda hierarchy of lattice equations to generate integrable couplings
or the hierarchy. The key point in our generating scheme is to establish a relation between
emidirect sums of Lie algebras and integrable couplings of discrete soliton equations. The un-
erlying discrete matrix spectral problems are generated from semidirect sums of Lie algebras, and
he discrete Lax spectral matrices associated with given soliton equations play the nonideal part in
he semidirect sums.

In our analysis of the two specific semidirect sums, we have seen that there is always an
rbitrary modified term �n,a. This indicates that higher order matrix spectral problems have more
egrees of freedom in generating integrable systems. On the other hand, in all additional spectral
ubmatrices such as Uai

, one can take their dependence on the spectral parameter into consider-
tion, and this will bring much more diverse integrable couplings.

There are also other questions about integrable properties of the resulting enlarged lattice
quations, even in the case where additional spectral submatrices are independent of the spectral
arameter. For example, can we solve the enlarged lattice equations by the inverse scattering
ransform? The class of Lie algebras in �2.8� provides a few realizations of semidirect sums of Lie
lgebras. Other possible realizations are still interesting, especially those which could carry sig-
ificant information about integrable properties. Reductions of the presented cases of semidirect
ums, which keep the uniqueness property of discrete spectral problems �see Ref. 17�, could be
ood examples.

We would especially like to emphasize that we have been considering the problem of inte-
rable couplings and the key is semidirect sums of Lie algebras. The initial Lie algebras G
ssociated with given integrable systems in our construction can be simple �e.g., see Refs. 29 and

0�, but semidirect sums of Lie algebras Ḡ are normally nonsimple �see Ref. 15�. Our examples in

ec. II are all nonsimple, since the Killing forms on those semidirect sums of Lie algebras Ḡ are

egenerate. However, there still exist specific nondegenerate bilinear forms on the Lie algebras Ḡ,
ith nice invariance properties, and their corresponding generalized trace identities, which present
amiltonian structures of the enlarged lattice equations.

To conclude, semidirect sums of Lie algebras provide a good source of matrix spectral prob-
ems for generating integrable systems, and thus the study of integrable couplings using semidirect
ums of Lie algebras will enhance our understanding of classification of integrable systems. We

re expecting to see more research on related topics.
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