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A relation between semidirect sums of Lie algebras and integrable couplings
of lattice equations is established, and a practicable way to construct integrable
couplings is further proposed. An application of the resulting general theory to the
generalized Toda spectral problem yields two classes of integrable couplings
for the generalized Toda hierarchy of lattice equations. The construction of inte-
grable couplings using semidirect sums of Lie algebras provides a good source of
information on complete classification of integrable lattice equations. © 2006
American Institute of Physics. [DOI: 10.1063/1.2194630]

I. INTRODUCTION

Integrable couplings have been receiving growing attention recently. A few ways to construct

integrable couplings are presented by using perturbations,lf3 enlarging spectral problems,“’5 and

creating new loop Lie algebraS.G’7

The problem of integrable couplings can be expressed as follows:> For a given integrable
system, how can we construct a nontrivial system of differential equations which is still integrable
and includes the original integrable system as a subsystem? Obviously, a change of orders of
equations in a system does not lose integrability of the system. Therefore, up to a permutation, an
integrable coupling of a given integrable system u,=K(u) is given by a bigger and triangular
system:

u,=Ku), v,=Su,v).

The vector-valued function S should satisfy the nontriviality condition dS/d[u]# 0, where [u]
=(u,Dxu,D)2(u, ...) and D%u denotes a vector consisting of all derivatives of u of order n with
respect to the space variable x. The above nontriviality condition means that the second subsystem
involves the dependent variables of the first subsystem (i.e., the original system), and thus it
guarantees that trivial diagonal systems with S(u,v)=S(v) are not within our discussion.

A basic integrable coupling of an integrable system u,=K(u) is given by
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u=Ku), v,=K'wlv], (1.1)

which can be generated by a perturbation around a solution of the system u,=K(u).I In the above
system and elsewhere throughout this paper, P'(u)[v] denotes the Gateaux derivative of P(u)
=P(u,D,u,...) with respect to u in a direction v, i.e.,

d Jd
P'(u)[v]= P P(u+€v)|seg= e P(u+ev,Dau+eDyw, ...)| -

Obviously, the second subsystem v,=K'(u)[v] in the above integrable coupling (1.1) is linear with
respect to v. Moreover, a symmetry S(u) of the system u,=K(u) leads to a solution (u,S(u)) to the
integrable coupling (1.1). However, the second component v of a solution (u,v) to the integrable
coupling (1.1) is generally not a symmetry of the system u,=K(u). This is because v satisfies the
linearized system v,=K'(u)[v] only for one solution, not for all solutions of the system u,=K(u).
Therefore, the simple integrable coupling (1.1) is already a generalization of the symmetry prob-
lem. Another basic integrable coupling of an integrable system u,=K(u) reads as

u,=Ku), v,=K u)v]+K(u). (1.2)

This system has a set of hereditary recursion operators2

B1P(u) 0 )
Bi® (w)v]+ BPu) BP(u)

with two arbitrary constants 8; and 3,, if the original system u,=K(u) has a hereditary recursion
operator ®(u). Therefore, integrable couplings possess richer integrable structures than the origi-
nal integrable systems.

The study of integrable couplings provides clues towards complete classification of integrable
systems. Let us first observe classification of square matrix spectral problems through the Jordan
blocks under similar transformations of matrices. Each triangular Jordan block corresponds to an
undecomposable subsystem in a given integrable system. Now, note that an arbitrary Lie algebra
has a semidirect sum structure of a solvable Lie algebra and a semisimple Lie algebra,8 and we
will see that semidirect sums of Lie algebras can result in integrable couplings. These imply that
the study of integrable couplings through semidirect sums of Lie algebras is an inevitable step
towards complete classification of integrable systems with an arbitrary number of components,
from a point of view of Lie algebras.

The study of integrable couplings also generates interesting mathematical structures such as
Lax pairs with several spectral parameters,g’10’2 integrable constrained flows with higher
multiplicity,“’12 local bi-Hamiltonian structures in higher dimensions" and hereditary recursion
operators of higher order." Very recently, we have proposed a relation between semidirect sums
of Lie algebras and integrable couplings of continuous soliton equations, which provides an
interesting and systematic approach to integrable couplings of continuous soliton equations.15 In
this paper, we would like to discuss the problem of discrete integrable couplings and develop a
theory for constructing discrete integrable couplings by use of semidirect sums of Lie algebras.

Throughout our discussion, we denote by E the shift operator, write

D(B1.B,) = (

(E"x)(n) =x"(n) = x(m +n), where x:Z — R, m,n € 7, (1.3)

and adopt an inverse of the difference operator E—1 as follows:

—1 0
(E-1)"'= %( PSS )Ek. (1.4)
k=0

k=— =

Let G be a matrix Lie algebra with the standard Lie bracket [A,B]=AB-BA, and closed under
matrix multiplication: AB € G for all A,B € G. We assume that an integrable lattice equation (or
system) of evolution type
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u,=K(u) = K(u,Eu,E™'u, ...) (1.5)

is associated with G, where u=u(n,r) is a dependent variable. More precisely, there is a pair of
square matrices U and V in G, called a Lax pair, so that the discrete spatial matrix spectral
problem

Ep=Ud=Uu\)é (1.6)

and the associated discrete temporal matrix spectral problem

& =Vd=V(u,Eu,E u, ... ;}\) ¢, (1.7)

. . . . 16.1
where A is a spectral parameter and ¢ is an eigenfunction, generate 6:17

equation (1.5) through their isospectral (i.e., \,=0) compatibility condition

the integrable lattice

U,=(EV)U-UV, (1.8)

which is called a discrete zero curvature equation. In other words, we have

U'(u)[K]=(EV)U=-UV, (1.9)

where U’ (u)[K] denotes the Gateaux derivative as above. In a nonisospectral case, e.g., \,=f(\),
then we have

U'w)[K]+ fU, = (EV)U - UV, (1.10)

where U, is a partial derivative of U with respect to A. Based on (1.6) and (1.7), the lattice
equation (1.5) can often be solved by the inverse scattering transform (for example, see Ref. 18).
There are also a few interesting Lie algebraic structures hidden behind the equation (1.10) (see
Ref. 17 for more information). An integrable hierarchy and its master symmetry hierarchy usually
correspond to the isospectral case and the nonisospectral case \,=\", n=0, respectively. These
two hierarchies constitute a semidirect sum of Lie algebras, each of which consists of symmetries
in one hierarchy. The spatial matrix spectral problem (1.6) is our starting point in constructing
discrete integrable couplings. The closure property of the Lie algebra G under matrix multiplica-
tion guarantees that (EV)U-UYV is still in G so that the discrete zero curvature equation (1.8)
makes sense.

In what follows, we are going to establish a relation between semidirect sums of Lie algebras
and integrable couplings of lattice equations and a technically practicable way to generate inte-
grable couplings through semidirect sums of Lie algebras. The resulting general theory will be
used to generate two classes of integrable couplings for the generalized Toda hierarchy presented
in Ref. 19. It will also be indicated that the construction of integrable couplings using semidirect
sums of Lie algebras provides a good source of information about classification of integrable
lattice equations. A few concluding remarks will be given in the last section.

Il. CONSTRUCTING INTEGRABLE COUPLINGS USING SEMIDIRECT SUMS OF LIE
ALGEBRAS
A. Generating scheme

Assume that the lattice equation (1.5) has a Lax pair (U, V) in a matrix Lie algebra G closed
under matrix multiplication.

To construct an integrable coupling of the lattice equation (1.5), we use semidirect sums of Lie
algebras to enlarge the original Lie algebra G. Take another matrix Lie algebra G, closed under

matrix multiplication and then form a semidirect sum G of G and G :

G=G&aG,. (2.1)

The notion of semidirect sums means that G and G, satisfy
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[G.G]C G, (2.2)

where [G,G.]={[A,B]|A € G,B € G.}. Obviously, G, is an ideal Lie subalgebra of G. The sub-
script ¢ here indicates a contribution to the construction of couplings. We also require that the
closure property between G and G, under matrix multiplication,

GG.G.GCG,, (2.3)

where G,G,={AB|A € G,,B € G,}, to guarantee that a Lax pair from the semidirect sum G can
generate a coupling system. Note that the two different binary operations were used in the above
closure properties in (2.2) and (2.3).

Now choose a pair of new Lax matrices in the semidirect sum G of Lie algebras:

U=U+U., V=V+V, U.,V.eG,, (2.4)

and make a pair of enlarged discrete spatial matrix spectral problems

E¢=Ud=U(ii,\),
(2.5)
¢, =Vd=V(@,En,E"'i,... ;]\,

where the matrix U, in U introduces additional dependent variables and i consists of both the
original dependent variables and the additional dependent variables. In addition, the matrix U.

could depend on the spectral parameter \, and the matrix V, in V really does almost in all cases.
Based on the closure properties of G, G, and between G and G, it is easy to see that

(EV)U-UV=[(EV)U-UV]+{[(EV)U,- UV]+[(EV)U-UV.]+[(EV)U,.- U.V.]}
e G&G,.

Therefore, under u,=K(u), the corresponding enlarged discrete zero curvature equation

U=(EVIU-UV (2.6)

precisely presents

U,=(EVU-UV,
(2.7)
Uc,t = [(EV) Uc - UCV] + [(EVC)U_ UVC] + [(EVC) Uc - UCVc]'

The first equation above is equivalent to the lattice equation (1.5), and hence, this is a coupling
system for the lattice equation (1.5).

The whole construction process above shows that semidirect sums of a given Lie algebra G
with new Lie algebras provide a great choice of candidates of integrable couplings for the lattice
equation (1.5) generated from the Lie algebra G.

B. Realizations by particular semi-direct sums

To shed light on the above general scheme of constructing coupling systems, let us introduce
the following particular class of semidirect sums of Lie algebras:

G=G&G, G={diag4,....A,0,...,0)},
ARG

y13 v—pu+1
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\
(o

ij

Q
o

I

N
N

(2.8)

putlut+l

L Bv+l,v+1 J

where A,B;; are arbitrary square matrices, A is of the same order as U and the partitions of

matrices in G and G, are the same. Obviously, B;;,j = u, are square but B;;,j= u+1, may not; and

all closure conditions of G,G,. and between G and G, under matrix multiplication are satisfied.
Define

Ug:=diag(U, ...,U,0,...,0), Vg:=diag(V,...,V,0,...,0).
Doy o ey

" v—u+l 2 v—u+l

Note that U; and Vj; in G generate the same lattice equation as U and V, and thus for integrable

couplings, the corresponding enlarged spectral matrices U and V in the semidirect sum G & G, can
be chosen as

U—UG+UG =
— o=
L,u.+l,,u.+l

UV+1,V+1

‘7: VG + VG,C = N

VV+l,V+l

where the first two matrices Ug and V; play the (U, V)-part and the second two matrices Ug, . and

V.c play the (U,,V,)-part in the pair of U and V defined in (2.4). It is not difficult to see that the
resulting coupling system (2.7) becomes

U,=(EV)U-UV,

(Ui, = (EVi oD Upsr s = Ui st Vier e, SIS D, (2.9)

J
U= kE [EVU, = UyVyl, 1<si<jsv+l,

where U;=U and V;=V, | <i< pu.
In particular, first, if we take
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u Uy, - Ul,,m V Vi - Vl,,l,L+l
l—]: t. ‘. . , ‘—/: t. . ,
U UM:IH'] 14 V,ua/ﬁl
0 0 0 0

then the coupling system (2.9) becomes

U,=(EV)U-UV,
(2.10)
J
U= kE (EVQU=UpVyl, 1si<jsu+l,
where U;;=U, V;=V, l<i=pu, and U;=V;=0, i=u+1. Second, if we take
U U, - Uy V Ve e Vo
_ u .o _ 14 :
U: 5 V: s
Ua1 Va1
0 U 0 1%
then the coupling system (2.9) becomes
U,=(EV)U-UV,
2.11)

Uai,t= 2 [(Evak)Ual_ Uaquk]’ Isis v,
ketl=i,k,1=0
where Uy=U and Ve, =V.

We remark that here we have just presented one class of semidirect sums of Lie algebras,
together with two specific examples. It is interesting to construct other possible realizations,
especially those which could carry essential information for keeping integrable properties of the
original lattice equations.

C. Linearly dependent case on the spectral parameter
Let us now assume that the spatial spectral matrix U depends linearly on the spectral param-

eter \ (see, for example, Refs. 17 and 19-21):

oU, U
U=U@\)=\Uy+U,, ——=—1=

2.12
ON 0N ( )

Consider two specific examples of the enlarged spatial spectral matrices introduced in the last
section,

_ (v u\ - (UU\ dU,
U1= ) U2= s _=0. (213)
0 0 0 U 2N

Note that the submatrices U, in the above two enlarged spatial spectral matrices could be of
different sizes. As in the continuous cases,*'’ suppose that

_ (W Wa) _ (W Wa)
W, = , W=
0 0 0o W

with
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: oW, W,
W=> W\, W,= > W, A%, —=0, —%=0, 2.14
> W > w, Y Py (2.14)

i=0 i=-n

where ny=0 is a proper integer, solve the corresponding enlarged discrete stationary zero curva-
ture equations

(EW)U;- UW,;=0, i=1.2, (2.15)
respectively.
Then for each m=0, choose
_ V[m] V[m] B _ 3 A A
V[’”]z( =Wy, + 4, A= T
1 0 0 ( 1)+ mo m 0 0

where A, and A, , do not depend on X\ and satisty

(EAm) UO - U()Am = O, U()Am,a = O, (216)

and choose

_ V[m] V[m] B B 3 A A
m] _ a _ m _ m m,a
V[2 - ( 0 V[m] - ()\ W2)+ + Anv Am - 0 Am >

where A, and A, , do not depend on X\ and satisfy

(EAm) UO - UOAm = 0’ (EAm,a) UO - UOAm,u =0. (2 17)

The subscript + above denotes to select the polynomial part in \. Based on (2.10) and (2.11) and
using (2.15), we can directly show that the enlarged discrete zero curvature equations

l_]i,zm =(EV'")U,- OV, i=1,2,

namely,

U, =(EV"U-uvi,

Uy, =(EV"™U, - UV,

and

U, =(EV"U-uvi,

Uy, =(EV")U, + (EVIU - UV - U W,
present
Ulm = (Am)x + [UO> Wm+l] - [Ul’Am]a
(2.18)
Ua,tm = UOWa,m+l + (EAm) Ua - UlAm,w

and

Utm = (Am)x + [UO’ Wm+1] - [UI’Am]’ (2 193)
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Ua,tm = UOWa,m+l - (EWa,m+l) U() + (EAm) Ua - UaAm + (EAm,a)Ul - U] Am,a’ (2 19b)

respectively.
We remark that these two enlarged hierarchies in (2.18) and (2.19) share the enlarged discrete
spectral problems

E(?):UIJ)’ E<7>=l723”
respectively. Thus, all lattice equations in each of the two enlarged hierarchies can possess infi-
nitely many common conserved densities except the original ones (see Refs. 22-24 for a few

concrete examples). Moreover, one can construct a specific nondegenerate bilinear form on G with
the invariance property, to present Hamiltonian structures of the enlarged lattice equations by a
generalized trace identity. The detailed analysis on those integrable properties will be left to a
future presentation.

To sum up, each system of lattice equations in the hierarchy (2.18) or (2.19) can provide an
integrable coupling for its first subsystem of lattice equations. In the next section, we will only
discuss two examples of constructing enlarged lattice hierarchies, in the generalized Toda case
presented in Ref. 19.

lll. INTEGRABLE COUPLINGS OF THE GENERALIZED TODA HIERARCHY

A. The generalized Toda equations

Let us here recall the generalized Toda hierarchy.19 The corresponding discrete spatial spectral
problem reads

0 1 r
Ed):U(u,)\)d),U(u,)\):((a)\_'_lg)r )\+s>’ u:(s), (3.1)

where \ is a spectral parameter, and @ and 3 are two arbitrary constants satisfying a?+ 5> # 0.
When @=0 and B=—1, (3.1) becomes the Toda spectral problem.'®
Its stationary discrete zero curvature equation

(EW)U-UW=0 (3.2)

has the solution

W—( . b) 33
“\(an+B)c —a)’ (33

with

a= 2 ai)\_i, b= 2 bi)\_i, c= 2 ci)\‘i,

=0 i=0 i=0

where the coefficients are defined by the initial conditions

ao——%, b0=0, C0=0,
and the recursion relation
Cip1— ”bgi)l =0, i=0, (3.4a)
by +sb" + (al +a) =0, i=0, (3.4b)
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(agi)l —a.)+ s(aﬁl) —a;) +a(rb;,, — cfi)l) + B(rb; - cl(»l)) =0, i=0, (3.4¢)

which are all difference polynomials in u with respect to the lattice variable n. Under the initial-
value conditions

aluz0= C1luz0=0,  a}ly0= biluso= ciluo=0. =2,

the recursion relation (3.4) uniquely determines the lattice functions a;, b;, and c¢;, i= 1. The first
few lattice functions are

ay=ar, b=1, c/=r,

2.(1) 2.2 2...(-1)

aG=—ar'r-ar —-arr —ars—ars(_l)+,6’r,

by=—ar- art™V — =D, cy=—rs—ar’ - arr'.

As usual, choose that

N"a \"b
vm=( ( )+m ( m)+ ) m=0. (3.5)
(a)\"'ﬁ)()\ C)+ - (A Cl)+
Then it follows from (3.4) that
( 0 - bl )
EV)U-UV,, = " )
( ) (a’)\+ﬁ)cm+l B(Cﬁ,p—”bm) _s(afnl)_am)
Take a modification
Am _ (bm+1 0 ) i
0 0
and define the temporal spectral matrices
VWil=v +A,, m=0. (3.6)
Then, a direct calculation leads to the following matrix:
0 0
EVI"hU - uviml = ( )
(V) (N4 B)Cer = ) Bl = 1) = s(al) = a,)
This is consistent with U, , and thus, making the evolution laws
¢, =V"p, m=0, (3.7)

the compatibility conditions
U, =(EVW"hU-UW", m=0,

of the discrete spatial spectral problem (3.1) and the associated discrete temporal spectral prob-
lems (3.7) give rise to the following hierarchy of lattice equations:

rtm =Cm1 — rbm+1’

stm == a(cm+1 - }"bm+]) + (am+l - am+1)’

This generalized Toda hierarchy is Liouville integrable,'9 and its Hamiltonian structure leads to
infinitely many conservation laws and symmetries for every system in the hierarchy.
Obviously, the first nonlinear lattice equation in the hierarchy is
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ry = (s = 5) + ar(F"Y = A1),

(3.9)
S, = as(r=rY)+ BrV = r).
When a=0 and B=-1, (3.9) becomes the Toda lattice equation,25
r,1=r(s(_1)—s), s, =r—r, (3.10)

and when a=1 and B=0, (3.9) becomes the following lattice equation presented in Ref. 26:
r = r(sCY = 5) + r(r=Y = A1)y, s, =s(r— ry. (3.11)

The lattice equation (3.11) is linearly independent of the Toda lattice equation (3.10). There exist
a voluminous literature on the Toda lattice equation, and its generalizations and solution structures
(for example, see Refs. 27-32).

B. Integrable couplings from specific semidirect sums

The generalized Toda spectral problem (3.1) linearly depends on the spectral parameter X, and
thus we can write

U—< 0 ! >—U7\ U U—<0 0) U—<O 1) 3.12
_(a)\+ﬂ)r)\+s_0+l’ Nar 1) \gr s ) (3.12)

We will also see that there is a difference between the two cases of =0 and a# 0 in computing
integrable couplings.
Let us first consider the semidirect sum of Lie algebras of 3 X 3 matrices,

A0 | 0 B 1
G&G, G= 00 A e CIAMNT]©Myun (. Ge= 0 0 |B e CINNT'T @ Moy

where C[N,N"'1®M,,»,=span{\‘A|k € Z,A € M,,,,}. In this case, G, is an Abelian ideal of
G & G,.. We define the corresponding enlarged spatial spectral matrix as

— U U, U1
U=U(u,\) = 0 0 eG& G, U,=U,(v)= v ) (3.13)
2

where v; and v, are new dependent variables and

v=nv)., =l v =(rsv,,0,)".

{ (W Wa) g (e>
W= s Wa = Wa(u’)\) = s
0 0 f

where W is a solution to (EW)U-UW=0, defined by (3.3), the corresponding enlarged discrete
stationary zero curvature equation (EW)U—-UW=0 becomes

Upon setting

(EW)U,-UW,=0, (3.14)
which is equivalent to
w,=wu'u,,

namely,

f=aVv, +bWy,, (3.15a)
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053501-11  Semidirect sums and discrete integrable couplings J. Math. Phys. 47, 053501 (2006)

(a\ + Byre = (an + Bc Vv, —aVvy — (N +5)f. (3.15b)
This system determines a solution for e and f as follows:
e= 2 e\, f=2 fN,
i=-n i=0

where ny=1 if =0 and n,=0 if a# 0 [see (2.14) for introduction of n,]. Now define the enlarged
temporal spectral matrix as

oyl i
v ( o o ) W= 44, m=0, (3.16)
where V"l is defined as in (3.6). To satisfy (2.16), choose A, as
hy, .
A o= , h, —arbitrary, m=0. (3.17)
’ - arh,,

Then based on (3.15), we can compute that

] m] 0
(EV'"hYU, - U™ = (EV,)U, - UN"W,), + (EA,)U, - U,A,, .= )
’ _acm+lvl+arem+l+fm+l
+ (bi('rlﬂ)—lvl ) _ ( - arhm )
0 Brh,, — arsh,,
1
_( b}(’ﬂd)-lvl-'-arhm >’ m=0
- acirg—lvl +are,, +fm+1 - ﬂrhm + a'rShm
Therefore, the mth enlarged discrete zero curvature equation
0, = (EV™) T - G
leads to
(1)
v b, 01 + arhy,
v, =< 1) =Sm(u,v)=( 0 o ) (3.18)
" U2 Ly —ac, Uyt are,,, +fm+1 - Brhm + arShm

together with the mth generalized Toda equation in (3.8). Therefore, we obtain a hierarchy of
coupling systems defined by (2.18),

— _(H) —I? _(Km(u)> =0 3.19
utm_ v ,m_ m(u)_ Sm(u,v) , M= ( )

for the generalized Toda hierarchy (3.8).
Let us second consider the semidirect sum of Lie algebras of 4 X4 matrices,

A0 1 0 B ]
GE"GC, G= 0 A |A€‘C[)\,)\_]®M2><2 N GC= 0 O |BEC[)\,)\_]®M2><2 .

In this case, G. is an Abelian ideal of G& G,, too. We define the corresponding enlarged spatial
spectral matrix as

— - U Ua Uy Uy
U=U(u,\) = eG& G, U,=U,(v)= , (3.20)
0 U U3 Uy

where v;, | <i=<4, are new dependent variables and
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v=(v1,0003,04), =W v =(r,50,0505,04)".
If we set
_ (W W, _ e f
W= . We=W,(i,\)= ,
0 w g —e
where W is a solution to (EW)U-UW=0, defined by (3.3), then the corresponding enlarged
discrete stationary zero curvature equation (EW)U—-UW=0 becomes
(EW)U, + (EW,)U~-UW, - U,W=0, (3.21)

which is equivalent to

(€M +e)+ N+ + (@ +a)v, + bV, —bv, =0,
—(an+B)reV +e) = (N +9)g + (ah + B)(c Vv, — cvy) — (@D + a)v3 =0, (3.22)

gV =\ +s5)(eV=e) = (an+ B)(rf = Vvy) = (@) = a)vy - buy=0.
This system can determine a solution for e, f, and g as follows:
e= e\, f=2fNT, g=2 g\
=0 =0 =0

Now, we define the enlarged temporal spectral matrix as

vy
V[nﬂ - ( O V[m] > ngm] = ()\mWa)+ + Am,a’ m= 0? (323)
where V"1 is defined as in (3.6). To satisfy (2.17), choose A, as
h, O )
A, .= ,  h,,—arbitrary, m=0. (3.24)
’ —arh,, 0

Then based on (3.22), we can compute that

(EVI"YU, + (EVI) U - pvim - g i)
= [(Evm) Ua + (E()\'an)+) U- U()\mWa)+ - Uan]
+ [(EAm) Ua - UaAm] + [(EAm,a) Ul - UlAm,a]

1 1
B ( — QCpy Uy t+ ar, mll rrH)-l )
1 1 1 1
acr(n-a—lvl — QCpy1Ug — ar(e;(nil + em+1) =~ 8m+1 ac;(nlll)Z - arfm+1 - (ein-a-l - em+1)
1 1 1
+ ((bﬁw)d —bpyi1)Uy bSnd)-le) + ( arh,, hl(n) )
= D13 0 r(as - B)h, - ar(l)hfnl)

(1

1
— QACpyp Vs + arﬁml] + (byysy = bpgr)vy + arh,,

(1 (1)
AC) U1 — ACpy Vg — a/r(em+1 + em+1) —8m+1 bm+lv3 + F(C!S - IB)hm,

1 1 1
m-z—l + bfn-l)—IUZ + hl(n)

1 1 1
acSnlIUZ - arfm+l - (e}(’VH)—l - em+1) - ar(l)hfn)

Then the mth enlarged discrete zero curvature equation
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= (EV") - i)

leads to

T
vtm = (vlsv29v3’v4)tm = m(l/l,U)

1
— Ay Un + arf(m + (berl b))V, + arh,

(1) (1)

+1+b o+ hy,

(1) ,  (3.25)
aclh) vy = acpy vy — ar(el)) + epi)) = gt = barvs + rlas — Phy,

1) 1 1
acl(nnvz arfye — (6,(4111 — 1) — ar(l)hgn)

together with the mth generalized Toda equation in (3.8). Therefore, we obtain a hierarchy of
coupling systems defined by (2.19),

u, = =K,,(u) = m=0 (3.26)
" v [ m(u U)

for the generalized Toda hierarchy (3.8).

C. lllustrative examples

We now work out two concrete examples as follows, one in each of the two above cases.

Case of a=1 and B=0: Let us first compute an example of the hierarchy (3.19). Assume that
a=1 and B=0 for convenience, which corresponds to the lattice hierarchy presented in Ref. 26. In
this case, we have ny=0 in (2.14).

It directly follows from (3.15) that

fi= a(l)v +b(l)v 2,

_ (1) (1)
rei =Ci 01— a; U= fi1 = sfi

where i=0 and reO:c(()l)vl— fo- We can then obtain that
Jo=- %Ul, fi=rYv; +v,,
== [r2rD 4 (X2 4 V4 DD 4Oy — (F D 4 74 $)vs;

1 1 1
7'30:51)], re]=5sv]—§vz, r€2=r(l)rvl+rl}2.

If we choose

hy =2&fof1=- §U1(V(])vl +v,), &=const,

then the vector-valued function S; defined by (3.18) becomes

(M4 r+5)v, - &rv,(Mo, +v,) )
Dsv, = (Y + 5)v,y — &rsv,(r Vo, +v,)

SI(M,U) = (_ R

Therefore, the integrable coupling of the generalized Toda lattice equation (3.11), defined by
(3.19), reads as

ry = r(sCY = 5) + r(r=Y = A1y,
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5, = s(r—r"),

(3.27)
v]’tl =—(r(l)+r+S)U] —frv](r(l)vl +U2),

Vo = Wsv, = (1D + 5)v, — &rsv,(ro; +v,),

the second subsystem of which is nonlinear with respect to both subsets of dependent variables
when £#0.

Case of @=0 and B=1: Let us second compute an example of the hierarchy (3.26). Assume
that =0 and B=1 for convenience, which corresponds to the Toda lattice hierarchy. In this case,
we have ng=1 in (2.14).

We take the initial set of functions as follows:

1
Jo=80=0, ey=-3.

Obviously from (3.22), we can have

—f“) (e(1+e) (a(])+a) —bgl)v4+bivl,

+1_

8is1 =58~ V(e,('l) +e;)— (a,(l) +a)vs + CEI)Ul —Cilyg,

(1) (N

ei+1—ei+1=—s(€f‘1) e)+g(1) fi_(agl)_ai)v4+ci vy, —bjvs,

where i=0. It then follows that

fi=1 +v(2_1), gi=r+v; e =v3+r(l +v( l))
fo=- “V+ 1+ v(z_l)) —U3— vg_l) -1+ 0(2_2)) - vf{l) + v(l_l),
g =—s(r+uv;) - r[vgl) +o3+r V(1 +0vy) +r(1 + v(z_l))] +r Wy, — vy,

6(2]) —e,=(1 -V =r+ vgl) -v3+ r(l)vz— rv(z_])).

We can use the inverse formula (1.4) to compute e, here, but as we will see, this is not necessary
for computing the corresponding integrable coupling.
Now if we choose

hy = nvlel—m)l[vg+r(1+v “))],  »=const,

then the vector-valued function T defined by (3.25) becomes

— (s = sy,
—svy— (s + D)1 +0y) = r(1 +05D) + v, -0
—U3—U4+ nvll)[v +r(1 +v,)],
Ti(w,v)= (s“V 4 s)os+rs+ r[v3 +u3+ (1 +0y) + (1 + 0(2—1))]
— Dy + rvy = proy[vs + r(1+05Y)],

(s= DY = r+ vV = vy + rDy, - ro§ )

Therefore, the integrable coupling of the Toda lattice equation (3.10), defined by (3.26), reads as

}’11=V(S(_1)—S)7 Stl=l"(l)—
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Uy =~ (S_S(_]))Ul,

Uy == sUy— (s + (1 +vy) = r(1+05) + v =0l = vy —vs+ Vo + F V(1 +0,)],

(3.28)
03, = (s +us+rs+ o8 + o3+ rD(1 +vy) + r(1 +05)]

Do, + rvy = grofvs + r(1 + v({l))],

Vg, = (s DAY - r+ vgl) —vy+ Dy, - rv({])),

the second subsystem of which is nonlinear with respect to both subsets of dependent variables
when 7+ 0.

IV. CONCLUSIONS AND REMARKS

A feasible approach to construct integrable couplings of discrete soliton equations has been
proposed by taking advantage of semidirect sums of Lie algebras, and the resulting theory has
been applied to the generalized Toda hierarchy of lattice equations to generate integrable couplings
for the hierarchy. The key point in our generating scheme is to establish a relation between
semidirect sums of Lie algebras and integrable couplings of discrete soliton equations. The un-
derlying discrete matrix spectral problems are generated from semidirect sums of Lie algebras, and
the discrete Lax spectral matrices associated with given soliton equations play the nonideal part in
the semidirect sums.

In our analysis of the two specific semidirect sums, we have seen that there is always an
arbitrary modified term A, ,. This indicates that higher order matrix spectral problems have more
degrees of freedom in generating integrable systems. On the other hand, in all additional spectral
submatrices such as U, one can take their dependence on the spectral parameter into consider-
ation, and this will bring much more diverse integrable couplings.

There are also other questions about integrable properties of the resulting enlarged lattice
equations, even in the case where additional spectral submatrices are independent of the spectral
parameter. For example, can we solve the enlarged lattice equations by the inverse scattering
transform? The class of Lie algebras in (2.8) provides a few realizations of semidirect sums of Lie
algebras. Other possible realizations are still interesting, especially those which could carry sig-
nificant information about integrable properties. Reductions of the presented cases of semidirect
sums, which keep the uniqueness property of discrete spectral problems (see Ref. 17), could be
good examples.

We would especially like to emphasize that we have been considering the problem of inte-
grable couplings and the key is semidirect sums of Lie algebras. The initial Lie algebras G
associated with given integrable systems in our construction can be simple (e.g., see Refs. 29 and

30), but semidirect sums of Lie algebras G are normally nonsimple (see Ref. 15). Our examples in
Sec. II are all nonsimple, since the Killing forms on those semidirect sums of Lie algebras G are

degenerate. However, there still exist specific nondegenerate bilinear forms on the Lie algebras G,
with nice invariance properties, and their corresponding generalized trace identities, which present
Hamiltonian structures of the enlarged lattice equations.

To conclude, semidirect sums of Lie algebras provide a good source of matrix spectral prob-
lems for generating integrable systems, and thus the study of integrable couplings using semidirect
sums of Lie algebras will enhance our understanding of classification of integrable systems. We
are expecting to see more research on related topics.
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