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A Generalization of the Wadati-Konno-Ichikawa
Soliton Hierarchy and its Liouville Integrability

Abstract: A new matrix spectral problem associated with
sl(2, R), which generalizes the Wadati-Konno-Ichikawa
spectral problem, is introduced, and the corresponding
hierarchy of soliton equations is generated from the asso-
ciated zero curvature equations. A bi-Hamiltonian struc-
ture of the resulting generalized soliton hierarchy is fur-
nished by using the trace identity, and thus, every system
in the generalized hierarchy is Liouville integrable.
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1 Introduction

Liouville integrability of partial differential equations is
one of new and active research topics [1]. There are con-
crete examples of integrable equations which are gener-
ated from matrix spectral problems or Lax pairs associ-
ated with matrix Lie algebras (see, e.g., [2-4]). Existence
of recursion operators [5] bring a hierarchy of integrable
equations possessing the same integrable properties,
called soliton hierarchies. Among celebrated soliotn hier-
archies with dependent variables less than three are
the Korteweg-de Vries hierarchy [6], the Ablowitz-Kaup-
Newell-Segur hierarchy [7], the Dirac hierarchy [8],
the Kaup-Newell hierarchy [9] and the Wadati-Konno-
Ichikawa hierarchy [10]. They often possess bi-Hamiltonian
structures [11], which show Liouville integrability. The
associated Hamiltonian structures can be furnished by
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the variational identity when the underlying matrix Lie
algebras are non-semisimple [12, 13], which reduces to
the trace identity in the case of semisimple matrix Lie
algebras [14].

Let us briefly describe the procedure for constructing
soliton hierarchies by zero curvature equations (see,
e.g., [14, 15]). The beginning is to take a matrix loop
algebra g, associated with a matrix Lie algebra g with
the commutator

[A,B]=AB—BA, A/Beg, (1.1)
and introduce a spatial matrix spectral problem
¢, =U¢p, U=U(u,A) eag, (1.2)

where u stands for a column vector of dependent vari-
ables, and A, the spectral parameter (see, e.g., [16]). We
then look for a solution

W=WuA) =) W™, Wojeq i=0, (13)

i>0
to the stationary zero curvature equation

Wy = [U, W]. (1.4)

Further, we try to formulate the temporal matrix spectral
problems

¢y, = VM = VI, 1), m >0, (15)
by introducing the Lax matrices

v — V[m](u,/\) =A"W), +Aney, m=0,

P, denoting the polynomial part of P in A, such that the
compatibility conditions of (1.2) and (1.5), i.e., the zero
curvature equations

U, — V" +[U, V"] =0, m>o, (1.6)
will engender a hierarchy of soliton equations:
u, = Kn(u), m=0. (1.7)
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Such a soliton hierarchy usually possesses a recursion
operator and Hamiltonian structures

Ug = Km(u) = CDmKO :]%, m > 0. (18)

m

The recursion operator @ is generated from the stationary
zero curvature equation (1.4) and the Hamiltonian func-
tionals #;,’s can often be computed through the trace
identity:

6 oUu 0 oUu
L i R i
&l[tr(a)l Wyde =AY 20w W),
Ad ,
Y = =5 oy Inftr(W)), (1.9)
or generally, the variational identity:
6 oU 0 oUu
Ll S Al e
5uJ<aA’W>dX AN G W
Ad
Y="57 In[<W, W3], (1.10)

where {-,-> is a bilinear form on the underlying matrix
loop algebra g, satisfying three conditions: the non-
degenerate, symmetric and ad-invariant conditions.

We will make use of the three-dimensional special
linear Lie algebra sl(2,R), consisting of trace-free 2 x 2
matrices. This Lie algebra is simple and has the basis

e—10 e—O1 e—00 (1.11)
17071a2*00737107 .

whose commutator relations read

e1, €] =261, [er,e3] = —2e3, [eye3] =ey.
Its derived algebra is itself, and hence it is 3-dimensional
as well. The matrix loop algebra we will adopt in what

follows is

sl(2,R) = {ZMi/\"i|Mi esl(2,R),i>0andne 2}7
i>0

(1.12)

which is the space of all Laurent series in A with coeffi-
cients in sl(2,R) and a finite regular part. The matrix
loop algebra sl(2, R) contains matrices of the form

AMe, + A"e; + Ales

with m, n, [ being arbitrary integers. This loop algebra
lays a foundation for our study of soliton equations,
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from which many well-known soliton hierarchies are
generated (see, e.g., [6-10]).

In this paper, we would like to introduce a general-
ization of the Wadati-Konno-Ichikawa spectral problem,
which is associated with the matrix loop algebra s~1(2, R),
and compute an associated hierarchy of bi-Hamiltonian
soliton equations by zero curvature equations. The corre-
sponding Hamiltonian structures will be furnished by
applying the trace identity, and thus all soliton equations
in the resulting generalized soliton hierarchy are Liou-
ville integrable. The resulting hierarchy provides a new
example of soliton hierarchies supplementing the exist-
ing ones associated with sl(2, R) in the literature (see,
e.g., [17, 18] for examples). A few concluding remarks
and interesting questions will round off the paper.

2 A generalized Wadati-Konno-
Ichikawa soliton hierarchy

This section aims to present a generalized Wadati-Konno-
Ichikawa soliton hierarchy associated with the matrix
loop algebra §1(2, R) defined in (1.12).

Let a be an arbitrarily given constant. We introduce a
new spectral matrix U as

U=U(u,A) = (A+aq)e, + Ape, + Ages

_[A+aq Ap _|p
| A f/lfaq}’ 4= [q ’ @D
to formulate a matrix spectral problem:
R
¢ =Up=Uu,N¢p, ¢= é, | (2.2)
2

where A is the spectral parameter. A special case with
a = 0 reduces to the Wadati-Konno-Ichikawa matrix spec-
tral problem in [10].

First, we solve the stationary zero curvature equation
(1.4). The equation (1.4) becomes

Aax + a[(qa)x + Ailcxx} = A(pr - qu)7
A(pa), + bxx = 2Aby, — 2a(pcy — qby),
A(qa)x + e = —2A¢y,

(2.3)

if W is particularly taken as follows:

W = aU + aA"'cee; + byes + cxes
_ [Aa+aga+ad "¢, Apa + by
Aga + ¢, —Aa — aga — ad ¢,

esl(2, R). (2.4)
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Obviously, the system (2.3) is equivalent to

Aay — 2acy = A(pcx — gby),
A(pa), + by = 2Aby — 2a(pcx — gby),
Aga), + cxx = —2Acy.

(2.5)

Upon letting

a= Zai/\fi, b= Zh’Aii, c= ZCi/riv (2.6)

i=0 i>0 i>0
and taking the initial values
1 P
ap = y bo =,
vpq +1 2y/pq +1
S

which are required by the equations on the first powers
of Ain (2.5):

ao,x = PCo.x — qbo.x, (Pao), =2box, (qao), = —2Co x,

the system (2.5) equivalently yields

—Cit1 —Ci Y
f— \F 5 \I’ f—
[ bi1 } { b; ] [‘1’21

where

i>0,

¥, }
¥y

¥y =—10+1g0 'po’ — ago™" ﬁ%ﬁa
+1ago'pgo,

¥ = —}40'G0’ +5aG0"qgo,

¥y =1po~'po’ —apo~ ﬂ%a
+1apd~'pgo — ad'po,

¥y =30—1p0~'Go’ + lapo"qgo — ad~'qo,

(2.9)

with
— 14 q
b= , 4= , 2.10
vpbqg+1 vpq+1 ( )
and
Qit1,x = PCit1,x — qbi+1.x + 2aci,X7 i>0. (2'11)

Note that all vectors (—C,',b,')T, i >0, are gradient (see
the next section for a proof), and so, the adjoint operator
of ¥, ® = ¥, will provide a candidate of hereditary op-
erators (see [19] for definition).

Let us show how to derive the recursion relation
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(2.8). First, from the second and third equations of (2.5),
we have

1 1
qbi,x —DCix = Eq(pai)x + iqbi—Lxx + a{'I(pCi—Lx - qbi—l,x)

+1 (qai) —|—1 Ci
qu i)x 2P i—1,xx

1 1 1
= E (pQ)xai + pqa; x + iqbifl.xx + ipcifl,xx

+aq(pci—1,x — qbi—1,x), 1>1

Then from the first equation of (2.5), we have

1
VPq +1(v/pq+1a), = (pq + Vai x + 5 (pq),ai

1 1
= - Eqbifl,xx - ipcifl,xx
—aq(pci—1,x — qbi—1,x)
+2aci1,x, 121,
and thus
1 1 1
= —2071g0%bi_1 — =0 po*ci
a; g ¥ 1 [ 2 q i—1 2 )4 Ci1
1
+2a07! oc;i_
pg+1 !

—ad7'g(poci 1 — qob 1)), i=1.

Based on this, the recursion relation (2.8) finally follows
directly from the second and third equations of (2.5).

While using the above recursion relations (2.8) and
(2.11), we impose the following conditions on constants
of integration:

a,-|u:0 = bi‘u:O = Ci|u:0 =0, i> 1, (2.12)

to determine the sequence of {a;, b;,c;|i > 1} uniquely.
This way, the first set can be computed as follows:

a = P4x —4qpx aq
4(pg+1*?  (pg+1)*?
po__ P apg a
1= 3/2 R NTESk
4(pq+1) 2(pq+1) pq +
dx aqz
=

+ .
4(pg+1)°?  2(pg+1)*?

We point out that the localness of the sequence of
{ai, bi,ci|i = 1} can be shown by the mathematical in-
duction, based on (2.5) and

(1+ pq)a’A* + (qaby + pacy + 2aga*)A3
+ (bxCy + 2aacy + a’q*a*)A* + 202qacA + a’c? = A*.
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The left hand side of the above equality is 1A* tr(W?),
where W is defined by (2.4). This quantity doesn’t de-
pend on x, due to the stationary zero curvature equation
(1.4); and thus, it is equal to A%, based on the initial data
(2.7) and the zero constants of integration (2.12).

Now, observing the recursion relations in (2.8) and
(2.11) and the structure of the spectral matrix U in (2.1),
we introduce

WM = A[(A™a) , U + aAd ' (A"cx) , e
+ (A"by) . e+ (AMcx) €3], m >0, (213)
and consequently,

wim — (U, wim
_ a(_ZACm‘x + Cm‘xx) Abm,xx + ZM(pCm,x - qu‘x)]
ACm, xx —a(—2ACm, x + Cm xx) ’

This matrix is not of the same form as the Gateaux deriv-
ative operator U’. To make a matrix of the same form as
U’, we take a modification choice

Ay = 2ac, U, m >0, (2.14)

and then we find that the corresponding zero curvature
equations

Uy, — VM 4 [U,viM] =0, m=>o0, (2.15)
with the Lax matrices being defined by

vim — wim L A, m>o0, (2.16)

engender a hierarchy of soliton equations:

U, = I(m
_ [+ 20(pCm x = qbim.x) + 2a(pCm),
Cm xx +2(qCm) ’

m=>0, (2.17)

which are all local, because of the localness of the se-
quence of {a;, b;,c;|i > 1}. The first nonlinear system in
the soliton hierarchy (2.17) reads

(Pg)y pq
ar) “(W)x] @)

(#\/%)xx - a(\/}%)x
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3 Hamiltonian structures and
Liouville integrability

3.1 Application of the trace identity

To furnish Hamiltonian structures, we use the trace iden-
tity (1.9) (or generally, the variational identity (1.10)). It is
direct to compute

au_{l p}’

oU [0 A
oA g -1 ’

ou f[a O
op |0 0 og |A —al’

and thus, we obtain

oU
tr(W3) = 2A(pq + 1)a+ pex + by + 2a(qa + A7)

= 2A(pgq + 1)a + pcx + gbx — 4ac,
tr(W?)—g) = A(Aqa + ¢,) = —2A’c,

tr(Waa—Z) = 2a(Aa + aqa + aA"'cy) + A’pa + Ab, = 2A°D.

Then, an application of the trace identity (1.9) to this
case tells

9 (A(pg+D)a+2 pby + L gc, - 20 d

5uJ (pq +1)a+5 pbx + 2 qcx — 2ac] dx

0 . [-A%
—_ Ay 2y
A a/l}l{)lzb}

Upon balancing coefficients of all powers of A in the
equality, we get

%J(qur aodx = (y +2) [_bf)o}

and

6 1 1
Su J[(pq +1)am + ipbmfl,x + iqcmfl‘x — 20Cpy_1] dx

:(y—m+2)[_cm} m>1.
b

The first identity yields y = —1, and so, we arrive at
1) —Cm
— M = >0 1
su”m {bm}’ m= G1



DE GRUYTER

where

Ho = [ \/pq + 1dx, (3.2a)

dbx — Pqx aq

%3 =J + dx, 3.2b

' [qu +1(vpg+1+1) pg+ 1'] (3-20)
2(pq + 1)ams1 + Pbm x + qCm.x — 4ac
A1 = J[_ (pq ) m+1 pzrnm7x qCm,x m} dx,
m> 1. (3.3)

The functional # above was determined directly from
(—c, by)T.

Now, it follows that the soliton hierarchy (2.17) has
the Hamiltonian structures:

—C oA,
U, = Knn —]{ bm’"} :]Tu’", m=0, (3.4)
where the Hamiltonian operator is defined by
— 2 —
J— { 2a(2pa—|—ap) 0 2aqa]7 (3.5)
—0° — 2a0q 0

and the Hamiltonian functionals #;,’s are given by (3.2)
and (3.3).

The presented functionals #;,, m > 1, can generate
infinitely many conservation laws with commuting con-
served densities for each soliton system in the whole gen-
eralized soliton hierarchy (2.17). We point out that differ-
ential polynomial type conservation laws can be directly
computed by computer algebra systems (see, e.g., [20]) or
from certain Riccati equation inherited from the underly-
ing matrix spectral problem (see, e.g., [21-24]).

3.2 Recursion operator and Hamiltonian
pair

It is direct to show that J defined by (3.5) and

M=] (3.6)
where
q)11 chZ .
q::w:[ } i>0, 3.7
(DZI (DZZ ( )

with the entries of ® being defined by
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Oy =10-10°p07'q — a0 ﬂﬁa*lq
+1aopgo~'q,
O =—10"p07'p aaﬁﬁa*lﬁ

(3.8)
+1adpqo'p — aopd ",

Oy = %azqa_lq + %aaqqa‘lq,

Dy = —30+70°G0"'p +3a09q0 'p — adgd ",

constitute a Hamiltonian pair (see [11, 25] for details), i.e.,
any linear combination N of J and M is skew-symmetric,

JKT(NS) dx = — JST(NK) dx (3.9)

for all vector fields K and S, and satisfies the Jacobi
identity

JKTN/(u) [NS|T dx + cycle(K, S, T)
= JKTN/(u) [NS]T dx + JSTN’(u)[NT]K dx

+ J TTN'(u)[NK]S dx = 0 (3.10)

for all vector fields K, S and T. It follows then that the
operator ® = ¥ is hereditary (see [19] for definition),
i.e., it satisfies

@' (u)[®K]S — ©D'(u)[K]S

= @' (u)[DS]K — DD’ (u)[S|K (3.11)

for all vector fields K and S.
We know that the Lie derivative Lx® is defined by

(Lg®@)S = DK, S] — [K, @S],

where [-, ] is the Lie bracket of vector fields:

[K,S] = K'(W)[S] — S’ (u)[K]. (3.12)
On one hand, the condition (3.11) is equivalent to
Log® = OLx® (3.13)

where K is an arbitrary vector field. On the other hand,
an operator ® = ®(u, uy, . ..) which doesn’t depend on ¢
explicitly is a recursion operator of a given evolution
equation u; = K = K(u) if and only if Lx® = 0. There-
fore, due to

L, ® = 0, (3.14)
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where Kj is defined as in (2.18), we see that

LKmq) = LIDI(,",]cD = (DLKm71® =0, m=>1, (315)
where the K,,’s are defined by (2.17). This implies that the
operator ® = ¥, defined by (3.7) and (3.8), is a common
hereditary recursion operator for the whole generalized
soliton hierarchy (2.17). We remark that various recursion
operators can be found through Lax representations or
by computer algebra systems for partial differential equa-
tions (see, e.g., [26, 27]), and that there exist direct com-
puter algorithms for constructing symmetries of differ-
ential and/or differential-difference equations (see, e.g.,
[28]).

3.3 Liouville integrability

It now follows that except the first one, all members in
the soliton hierarchy (2.17) are bi-Hamiltonian:

6Hm M 8 Hm-1

o = Ko =T = Mg

m>1 (3.16)

Therefore, noting distinct differential orders of K,,, m > 1,
those bi-Hamiltonian structures show that the general-
ized soliton hierarchy (2.17) is Liouville integrable [29].
In particular, it possesses infinitely many commuting
conserved functionals and symmetries:

[ 0H\T, 047 ,
{ A, A}y = ‘[(W) ]de =0, kl1>=0, (3.17)
i (6T, 6 ,
{Hie, H}y = J(W) M o dx=0, k1>0, (3.18)
and
[Ki, Ki] = Kj(w)[Kj] — K] (w)[Ki] =0, k,[>0. (3.19)

4 Concluding remarks

Based on the matrix loop algebra §1(2, R), we introduced
a generalization of the Wadati-Konno-Ichikawa spectral
problem and generated a hierarchy of soliton equations
from the associated zero curvature equations. The re-
sulting generalized soliton hierarchy has been shown
to be bi-Hamiltonian, which guarantees its Liouville
integrability.

Recently, on one hand, the special orthogonal Lie
algebra so(3,R) has been used to generate new soliton
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hierarchies [30, 31, 32]. Among typical discussed spectral
matrices in so(3, R) are the following three:

[0 —q - 0 —Ag A2
U=|q 0 -p|, U=|Aq O -Ap]|,
A p O A2 A 0
[0 —Ag -2
U=|Aq 0 -—Ap|,
A Ap 0

which correspond to the AKNS spectral matrix, the Kaup-
Newell spectral matrix and the Wadati-Konno-Ichikawa
spectral matrix associated with sl(2, R), respectively.
There are also many higher-order matrix spectral prob-
lems yielding soliton hierarchies (see, e.g., [33-39]).

On the other hand, there has been a growing interest
in generating soliton hierarchies of integrable couplings
[40] from matrix spectral problems associated with non-
semisimple matrix loop algebras [41]. Non-semisimple
matrix loop algebras are a diverse and rich field, which
increases our motivations to study multi-component
integrable systems [42]. Bi-integrable couplings and tri-
integrable couplings do show various structures on re-
cursion operators in block matrix form [13, 42]. It is
very interesting to explore more algebraic and geometric
mathematical structures on integrable couplings. Very re-
cently, the irreducible representations of matrix algebras
have been used to generate matrix loop algebras which
lead to integrable couplings [16].

There are many interesting questions on integrable
couplings. Let K’ be the Gateaux derivative operator of
K = K(u). Does the bi-integrable coupling

u =K(u), ve=K@)y,
possess any Hamiltonian structure, when u; = K is Ham-
iltonian? How can we solve a Cauchy problem of the per-
turbation system

u =K, vi=K'u)v]?

The KdV case with K(u) = 6uuy + uyy gives

U = BUUy + Ug, Ve = 6(UV), + Vi

For u given, how to solve the second equation above for
v? One can obtain special solutions to the perturbation
system, among which are symmetries of u; = K(u). We
expect to have a general theory to solve the linearized
equations of given nonlinear equations.
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