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Abstract: A new matrix spectral problem associated with
slð2;RÞ, which generalizes the Wadati-Konno-Ichikawa
spectral problem, is introduced, and the corresponding
hierarchy of soliton equations is generated from the asso-
ciated zero curvature equations. A bi-Hamiltonian struc-
ture of the resulting generalized soliton hierarchy is fur-
nished by using the trace identity, and thus, every system
in the generalized hierarchy is Liouville integrable.
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1 Introduction

Liouville integrability of partial differential equations is
one of new and active research topics [1]. There are con-
crete examples of integrable equations which are gener-
ated from matrix spectral problems or Lax pairs associ-
ated with matrix Lie algebras (see, e.g., [2–4]). Existence
of recursion operators [5] bring a hierarchy of integrable
equations possessing the same integrable properties,
called soliton hierarchies. Among celebrated soliotn hier-
archies with dependent variables less than three are
the Korteweg-de Vries hierarchy [6], the Ablowitz-Kaup-
Newell-Segur hierarchy [7], the Dirac hierarchy [8],
the Kaup-Newell hierarchy [9] and the Wadati-Konno-
Ichikawahierarchy [10]. They often possess bi-Hamiltonian
structures [11], which show Liouville integrability. The
associated Hamiltonian structures can be furnished by

the variational identity when the underlying matrix Lie
algebras are non-semisimple [12, 13], which reduces to
the trace identity in the case of semisimple matrix Lie
algebras [14].

Let us briefly describe the procedure for constructing
soliton hierarchies by zero curvature equations (see,
e.g., [14, 15]). The beginning is to take a matrix loop
algebra ~g, associated with a matrix Lie algebra g with
the commutator

½A;B� ¼ AB� BA; A;B A g; ð1:1Þ

and introduce a spatial matrix spectral problem

ϕx ¼ Uϕ; U ¼ Uðu; λÞ A ~g; ð1:2Þ

where u stands for a column vector of dependent vari-
ables, and λ, the spectral parameter (see, e.g., [16]). We
then look for a solution

W ¼ Wðu; λÞ ¼
X
ib0

W0; iλ�i; W0; i A g; ib0; ð1:3Þ

to the stationary zero curvature equation

Wx ¼ ½U;W �: ð1:4Þ

Further, we try to formulate the temporal matrix spectral
problems

ϕtm ¼ V ½m�ϕ ¼ V ½m�ðu; λÞϕ; mb0; ð1:5Þ

by introducing the Lax matrices

V ½m� ¼ V ½m�ðu; λÞ ¼ ðλmWÞþ þ Δm A ~g; mb0;

Pþ denoting the polynomial part of P in λ, such that the
compatibility conditions of (1.2) and (1.5), i.e., the zero
curvature equations

Utm � V ½m�
x þ ½U;V ½m�� ¼ 0; mb0; ð1:6Þ

will engender a hierarchy of soliton equations:

utm ¼ KmðuÞ; mb0: ð1:7Þ
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Such a soliton hierarchy usually possesses a recursion
operator and Hamiltonian structures

utm ¼ KmðuÞ ¼ ΦmK0 ¼ J
δHm

δu
; mb0: ð1:8Þ

The recursion operator Φ is generated from the stationary
zero curvature equation (1.4) and the Hamiltonian func-
tionals Hm’s can often be computed through the trace
identity:

δ
δu

ð
trð∂U

∂λ
WÞ dx ¼ λ�γ ∂

∂λ
λγ trð∂U

∂u
WÞ;

γ ¼ � λ
2

d
dλ

lnjtrðW 2Þj; ð1:9Þ

or generally, the variational identity:

δ
δu

ð
h
∂U
∂λ

;Wi dx ¼ λ�γ ∂

∂λ
λγh

∂U
∂u

;Wi;

γ ¼ � λ
2

d
dλ

lnjhW;Wij; ð1:10Þ

where h� ; �i is a bilinear form on the underlying matrix
loop algebra ~g, satisfying three conditions: the non-
degenerate, symmetric and ad-invariant conditions.

We will make use of the three-dimensional special
linear Lie algebra slð2;RÞ, consisting of trace-free 2� 2
matrices. This Lie algebra is simple and has the basis

e1 ¼ 1 0
0 �1

� �
; e2 ¼ 0 1

0 0

� �
; e3 ¼ 0 0

1 0

� �
; ð1:11Þ

whose commutator relations read

½e1; e2� ¼ 2e1; ½e1; e3� ¼ �2e3; ½e2; e3� ¼ e1:

Its derived algebra is itself, and hence it is 3-dimensional
as well. The matrix loop algebra we will adopt in what
follows is

eslð2;RÞ ¼ X
ib0

Miλn�i jMi A slð2;RÞ; ib0 and n A Z

( )
;

ð1:12Þ
which is the space of all Laurent series in λ with coeffi-
cients in slð2;RÞ and a finite regular part. The matrix
loop algebra eslð2;RÞ contains matrices of the form

λme1 þ λne2 þ λ le3

with m, n, l being arbitrary integers. This loop algebra
lays a foundation for our study of soliton equations,

from which many well-known soliton hierarchies are
generated (see, e.g., [6–10]).

In this paper, we would like to introduce a general-
ization of the Wadati-Konno-Ichikawa spectral problem,
which is associated with the matrix loop algebra eslð2;RÞ,
and compute an associated hierarchy of bi-Hamiltonian
soliton equations by zero curvature equations. The corre-
sponding Hamiltonian structures will be furnished by
applying the trace identity, and thus all soliton equations
in the resulting generalized soliton hierarchy are Liou-
ville integrable. The resulting hierarchy provides a new
example of soliton hierarchies supplementing the exist-
ing ones associated with slð2;RÞ in the literature (see,
e.g., [17, 18] for examples). A few concluding remarks
and interesting questions will round off the paper.

2 A generalized Wadati-Konno-
Ichikawa soliton hierarchy

This section aims to present a generalized Wadati-Konno-
Ichikawa soliton hierarchy associated with the matrix
loop algebra eslð2;RÞ defined in (1.12).

Let α be an arbitrarily given constant. We introduce a
new spectral matrix U as

U ¼ Uðu; λÞ ¼ ðλþ αqÞe1 þ λpe2 þ λqe3

¼ λþ αq λp
λq �λ� αq

� �
; u ¼ p

q

� �
; ð2:1Þ

to formulate a matrix spectral problem:

ϕx ¼ Uϕ ¼ Uðu; λÞϕ; ϕ ¼ ϕ1

ϕ2

� �
; ð2:2Þ

where λ is the spectral parameter. A special case with
α ¼ 0 reduces to the Wadati-Konno-Ichikawa matrix spec-
tral problem in [10].

First, we solve the stationary zero curvature equation
(1.4). The equation (1.4) becomes

λax þ α½ðqaÞx þ λ�1cxx� ¼ λðpcx � qbxÞ;
λðpaÞx þ bxx ¼ 2λbx � 2αðpcx � qbxÞ;
λðqaÞx þ cxx ¼ �2λcx;

8><>: ð2:3Þ

if W is particularly taken as follows:

W ¼ aU þ αλ�1cxe1 þ bxe2 þ cxe3

¼ λaþ αqaþ αλ�1cx λpaþ bx
λqaþ cx �λa� αqa� αλ�1cx

� �
A eslð2;RÞ: ð2:4Þ
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Obviously, the system (2.3) is equivalent to

λax � 2αcx ¼ λðpcx � qbxÞ;
λðpaÞx þ bxx ¼ 2λbx � 2αðpcx � qbxÞ;
λðqaÞx þ cxx ¼ �2λcx:

8<: ð2:5Þ

Upon letting

a ¼
X
ib0

aiλ�i; b ¼
X
ib0

biλ�i; c ¼
X
ib0

ciλ�i; ð2:6Þ

and taking the initial values

a0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ; b0 ¼ p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ;

c0 ¼ � q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ; ð2:7Þ

which are required by the equations on the first powers
of λ in (2.5):

a0; x ¼ pc0; x � qb0; x; ðpa0Þx ¼ 2b0; x; ðqa0Þx ¼ �2c0; x;

the system (2.5) equivalently yields

�ciþ1

biþ1

� �
¼ Ψ

�ci
bi

� �
; Ψ ¼ Ψ11 Ψ12

Ψ21 Ψ22

� �
; ib0; ð2:8Þ

where

Ψ11 ¼ � 1
2 ∂þ 1

4 q∂
�1p∂2 � αq∂�1 1ffiffiffiffiffiffiffiffi

pqþ1
p ∂

þ 1
2 αq∂

�1pq∂;

Ψ12 ¼ � 1
4 q∂

�1q∂2 þ 1
2 αq∂

�1qq∂;

Ψ21 ¼ 1
4 p∂

�1p∂2 � αp∂�1 1ffiffiffiffiffiffiffiffi
pqþ1

p ∂

þ 1
2 αp∂

�1pq∂� α∂�1p∂;

Ψ22 ¼ 1
2 ∂� 1

4 p∂
�1q∂2 þ 1

2 αp∂
�1qq∂� α∂�1q∂;

8>>>>>>>>>><>>>>>>>>>>:
ð2:9Þ

with

p ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ; q ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ; ð2:10Þ

and

aiþ1; x ¼ pciþ1; x � qbiþ1; x þ 2αci; x; ib0: ð2:11Þ

Note that all vectors ð�ci; biÞT , ib0, are gradient (see
the next section for a proof), and so, the adjoint operator
of Ψ, Φ ¼ Ψy, will provide a candidate of hereditary op-
erators (see [19] for definition).

Let us show how to derive the recursion relation

(2.8). First, from the second and third equations of (2.5),
we have

qbi; x � pci; x ¼ 1
2
qðpaiÞx þ

1
2
qbi�1; xx þ αqðpci�1; x � qbi�1; xÞ

þ 1
2
pðqaiÞx þ

1
2
pci�1; xx

¼ 1
2
ðpqÞxai þ pqai; x þ 1

2
qbi�1; xx þ 1

2
pci�1; xx

þ αqðpci�1; x � qbi�1; xÞ; ib 1:

Then from the first equation of (2.5), we have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p
aiÞx ¼ ðpqþ 1Þai; x þ 1

2
ðpqÞxai

¼ � 1
2
qbi�1; xx � 1

2
pci�1; xx

� αqðpci�1; x � qbi�1; xÞ
þ 2αci�1; x; ib 1;

and thus

ai ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ½� 1
2
∂�1q∂2bi�1 � 1

2
∂�1p∂2ci�1

þ 2α∂�1 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ∂ci�1

� α∂�1qðp∂ci�1 � q∂bi�1Þ�; ib 1:

Based on this, the recursion relation (2.8) finally follows
directly from the second and third equations of (2.5).

While using the above recursion relations (2.8) and
(2.11), we impose the following conditions on constants
of integration:

aiju¼0 ¼ biju¼0 ¼ ciju¼0 ¼ 0; ib 1; ð2:12Þ

to determine the sequence of fai; bi; ci j ib 1g uniquely.
This way, the first set can be computed as follows:

a1 ¼ pqx � qpx
4ðpqþ 1Þ3=2

� αq
ðpqþ 1Þ3=2

;

b1 ¼ px
4ðpqþ 1Þ3=2

� αpq
2ðpqþ 1Þ3=2

þ αffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ;

c1 ¼ qx
4ðpqþ 1Þ3=2

þ αq2

2ðpqþ 1Þ3=2
:

We point out that the localness of the sequence of
fai; bi; ci j ib 1g can be shown by the mathematical in-
duction, based on (2.5) and

ð1þ pqÞa2λ4 þ ðqabx þ pacx þ 2αqa2Þλ3
þ ðbxcx þ 2αacx þ α2q2a2Þλ2 þ 2α2qacxλþ α2c2x ¼ λ4:
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The left hand side of the above equality is 1
2 λ

2 trðW 2Þ,
where W is defined by (2.4). This quantity doesn’t de-
pend on x, due to the stationary zero curvature equation
(1.4); and thus, it is equal to λ4, based on the initial data
(2.7) and the zero constants of integration (2.12).

Now, observing the recursion relations in (2.8) and
(2.11) and the structure of the spectral matrix U in (2.1),
we introduce

W ½m� ¼ λ½ðλmaÞþU þ αλ�1ðλmcxÞþe1
þ ðλmbxÞþe2 þ ðλmcxÞþe3�; mb0; ð2:13Þ

and consequently,

W ½m�
x � ½U;W ½m��

¼ αð�2λcm; x þ cm; xxÞ λbm; xx þ 2αλðpcm; x � qbm; xÞ
λcm; xx �αð�2λcm; x þ cm; xxÞ

� �
:

This matrix is not of the same form as the Gateaux deriv-
ative operator U 0. To make a matrix of the same form as
U 0, we take a modification choice

Δm ¼ 2αcmU; mb0; ð2:14Þ

and then we find that the corresponding zero curvature
equations

Utm � V ½m�
x þ ½U;V ½m�� ¼ 0; mb0; ð2:15Þ

with the Lax matrices being defined by

V ½m� ¼ W ½m� þ Δm; mb0; ð2:16Þ

engender a hierarchy of soliton equations:

utm ¼ Km

¼ bm; xx þ 2αðpcm; x � qbm; xÞ þ 2αðpcmÞx
cm; xx þ 2αðqcmÞx

� �
;

mb0; ð2:17Þ

which are all local, because of the localness of the se-
quence of fai; bi; ci j ib 1g. The first nonlinear system in
the soliton hierarchy (2.17) reads

ut0 ¼
p
q

� �
t0

¼ K0

¼
� p
2
ffiffiffiffiffiffiffiffi
pqþ1

p
�
xx � α ðpqÞx

ðpqþ1Þ3=2 þ α
� pqffiffiffiffiffiffiffiffi

pqþ1
p

�
x

�� q
2
ffiffiffiffiffiffiffiffi
pqþ1

p
�
xx � α

� q2ffiffiffiffiffiffiffiffi
pqþ1

p
�
x

24 35: ð2:18Þ

3 Hamiltonian structures and
Liouville integrability

3.1 Application of the trace identity

To furnish Hamiltonian structures, we use the trace iden-
tity (1.9) (or generally, the variational identity (1.10)). It is
direct to compute

∂U
∂λ

¼ 1 p
q �1

� �
;

∂U
∂p

¼ 0 λ
0 0

� �
;

∂U
∂q

¼ α 0
λ �α

� �
;

and thus, we obtain

trðW ∂U
∂λ

Þ ¼ 2λðpqþ 1Þaþ pcx þ qbx þ 2αðqaþ λ�1cxÞ
¼ 2λðpqþ 1Þaþ pcx þ qbx � 4αc;

trðW ∂U
∂p

Þ ¼ λðλqaþ cxÞ ¼ �2λ2c;

trðW ∂U
∂q

Þ ¼ 2αðλaþ αqaþ αλ�1cxÞ þ λ2paþ λbx ¼ 2λ2b:

Then, an application of the trace identity (1.9) to this
case tells

δ
δu

ð
½λðpqþ 1Þaþ 1

2
pbx þ 1

2
qcx � 2αc� dx

¼ λ�γ ∂

∂λ
λγ �λ2c

λ2b

� �
:

Upon balancing coefficients of all powers of λ in the
equality, we get

δ
δu

ð
ðpqþ 1Þa0 dx ¼ ðγþ 2Þ �c0

b0

� �
;

and

δ
δu

ð
½ðpqþ 1Þam þ 1

2
pbm�1; x þ 1

2
qcm�1; x � 2αcm�1� dx

¼ ðγ�mþ 2Þ �cm
bm

� �
; mb 1:

The first identity yields γ ¼ �1, and so, we arrive at

δ
δu

Hm ¼ �cm
bm

� �
; mb0; ð3:1Þ
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where

H0 ¼
ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

pqþ 1
p

dx; ð3:2aÞ

H1 ¼
ð� qpx � pqx
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p ð ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p þ 1Þ þ
αqffiffiffiffiffiffiffiffiffiffiffiffiffi
pqþ 1

p �
dx; ð3:2bÞ

Hmþ1 ¼
ð�� 2ðpqþ 1Þamþ1 þ pbm; x þ qcm; x � 4αcm

2m

�
dx;

mb 1: ð3:3Þ

The functional H1 above was determined directly from
ð�c1; b1ÞT .

Now, it follows that the soliton hierarchy (2.17) has
the Hamiltonian structures:

utm ¼ Km ¼ J
�cm
bm

� �
¼ J

δHm

δu
; mb0; ð3:4Þ

where the Hamiltonian operator is defined by

J ¼ �2αðp∂þ ∂pÞ ∂2 � 2αq∂
�∂2 � 2α∂q 0

� �
; ð3:5Þ

and the Hamiltonian functionals Hm’s are given by (3.2)
and (3.3).

The presented functionals Hm, mb 1; can generate
infinitely many conservation laws with commuting con-
served densities for each soliton system in the whole gen-
eralized soliton hierarchy (2.17). We point out that differ-
ential polynomial type conservation laws can be directly
computed by computer algebra systems (see, e.g., [20]) or
from certain Riccati equation inherited from the underly-
ing matrix spectral problem (see, e.g., [21–24]).

3.2 Recursion operator and Hamiltonian
pair

It is direct to show that J defined by (3.5) and

M ¼ ΦJ ð3:6Þ

where

Φ ¼ Ψy ¼ Φ11 Φ12

Φ21 Φ22

� �
; ib0; ð3:7Þ

with the entries of Φ being defined by

Φ11 ¼ 1
2 ∂� 1

4 ∂
2p∂�1q� α∂ 1ffiffiffiffiffiffiffiffi

pqþ1
p ∂�1q

þ 1
2 α∂pq∂

�1q;

Φ12 ¼ � 1
4 ∂

2p∂�1p� α∂ 1ffiffiffiffiffiffiffiffi
pqþ1

p ∂�1p

þ 1
2 α∂pq∂

�1p� α∂p∂�1;

Φ21 ¼ 1
4 ∂

2q∂�1qþ 1
2 α∂qq∂

�1q;

Φ22 ¼ � 1
2 ∂þ 1

4 ∂
2q∂�1pþ 1

2 α∂qq∂
�1p� α∂q∂�1;

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:8Þ

constitute a Hamiltonian pair (see [11, 25] for details), i.e.,
any linear combination N of J and M is skew-symmetric,ð

KTðNSÞ dx ¼ �
ð
STðNKÞ dx ð3:9Þ

for all vector fields K and S, and satisfies the Jacobi
identity

ð
KTN 0ðuÞ½NS�T dx þ cycleðK; S;TÞ

¼
ð
KTN 0ðuÞ½NS�T dx þ

ð
STN 0ðuÞ½NT�K dx

þ
ð
T TN 0ðuÞ½NK�S dx ¼ 0 ð3:10Þ

for all vector fields K, S and T. It follows then that the
operator Φ ¼ Ψy is hereditary (see [19] for definition),
i.e., it satisfies

Φ 0ðuÞ½ΦK�S�ΦΦ 0ðuÞ½K�S
¼ Φ 0ðuÞ½ΦS�K �ΦΦ 0ðuÞ½S�K ð3:11Þ

for all vector fields K and S.
We know that the Lie derivative LKΦ is defined by

ðLKΦÞS ¼ Φ½K; S� � ½K;ΦS�;

where ½� ; �� is the Lie bracket of vector fields:

½K; S� ¼ K 0ðuÞ½S� � S 0ðuÞ½K�: ð3:12Þ

On one hand, the condition (3.11) is equivalent to

LΦKΦ ¼ ΦLKΦ ð3:13Þ

where K is an arbitrary vector field. On the other hand,
an operator Φ ¼ Φðu; ux; . . .Þ which doesn’t depend on t
explicitly is a recursion operator of a given evolution
equation ut ¼ K ¼ KðuÞ if and only if LKΦ ¼ 0: There-
fore, due to

LK0Φ ¼ 0; ð3:14Þ
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where K0 is defined as in (2.18), we see that

LKmΦ ¼ LΦKm�1Φ ¼ ΦLKm�1Φ ¼ 0; mb 1; ð3:15Þ

where the Km’s are defined by (2.17). This implies that the
operator Φ ¼ Ψy, defined by (3.7) and (3.8), is a common
hereditary recursion operator for the whole generalized
soliton hierarchy (2.17). We remark that various recursion
operators can be found through Lax representations or
by computer algebra systems for partial differential equa-
tions (see, e.g., [26, 27]), and that there exist direct com-
puter algorithms for constructing symmetries of differ-
ential and/or differential-difference equations (see, e.g.,
[28]).

3.3 Liouville integrability

It now follows that except the first one, all members in
the soliton hierarchy (2.17) are bi-Hamiltonian:

utm ¼ Km ¼ J
δHm

δu
¼ M

δHm�1

δu
; mb 1: ð3:16Þ

Therefore, noting distinct differential orders of Km, mb 1,
those bi-Hamiltonian structures show that the general-
ized soliton hierarchy (2.17) is Liouville integrable [29].
In particular, it possesses infinitely many commuting
conserved functionals and symmetries:

fHk;HlgJ ¼
ð�δHk

δu
�T
J
δHl

δu
dx ¼ 0; k; lb0; ð3:17Þ

fHk;HlgM ¼
ð�δHk

δu
�T
M

δHl

δu
dx ¼ 0; k; lb0; ð3:18Þ

and

½Kk;Kl� ¼ K 0
kðuÞ½Kl� � K 0

l ðuÞ½Kk� ¼ 0; k; lb0: ð3:19Þ

4 Concluding remarks

Based on the matrix loop algebra eslð2;RÞ, we introduced
a generalization of the Wadati-Konno-Ichikawa spectral
problem and generated a hierarchy of soliton equations
from the associated zero curvature equations. The re-
sulting generalized soliton hierarchy has been shown
to be bi-Hamiltonian, which guarantees its Liouville
integrability.

Recently, on one hand, the special orthogonal Lie
algebra soð3;RÞ has been used to generate new soliton

hierarchies [30, 31, 32]. Among typical discussed spectral
matrices in soð3;RÞ are the following three:

U ¼
0 �q �λ
q 0 �p
λ p 0

264
375; U ¼

0 �λq �λ2

λq 0 �λp
λ2 λp 0

264
375;

U ¼
0 �λq �λ
λq 0 �λp
λ λp 0

264
375;

which correspond to the AKNS spectral matrix, the Kaup-
Newell spectral matrix and the Wadati-Konno-Ichikawa
spectral matrix associated with slð2;RÞ, respectively.
There are also many higher-order matrix spectral prob-
lems yielding soliton hierarchies (see, e.g., [33–39]).

On the other hand, there has been a growing interest
in generating soliton hierarchies of integrable couplings
[40] from matrix spectral problems associated with non-
semisimple matrix loop algebras [41]. Non-semisimple
matrix loop algebras are a diverse and rich field, which
increases our motivations to study multi-component
integrable systems [42]. Bi-integrable couplings and tri-
integrable couplings do show various structures on re-
cursion operators in block matrix form [13, 42]. It is
very interesting to explore more algebraic and geometric
mathematical structures on integrable couplings. Very re-
cently, the irreducible representations of matrix algebras
have been used to generate matrix loop algebras which
lead to integrable couplings [16].

There are many interesting questions on integrable
couplings. Let K 0 be the Gateaux derivative operator of
K ¼ KðuÞ. Does the bi-integrable coupling

ut ¼ KðuÞ; vt ¼ K 0ðuÞ½v�; wt ¼ K 0ðuÞ½w�;

possess any Hamiltonian structure, when ut ¼ K is Ham-
iltonian? How can we solve a Cauchy problem of the per-
turbation system

ut ¼ KðuÞ; vt ¼ K 0ðuÞ½v�?

The KdV case with KðuÞ ¼ 6uux þ uxxx gives

ut ¼ 6uux þ uxxx; vt ¼ 6ðuvÞx þ vxxx:

For u given, how to solve the second equation above for
v? One can obtain special solutions to the perturbation
system, among which are symmetries of ut ¼ KðuÞ. We
expect to have a general theory to solve the linearized
equations of given nonlinear equations.
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