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Abstract
Starting from a modified Toda spectral problem, a hierarchy of generalized
Toda lattice equations with two arbitrary constants is constructed through
discrete zero curvature equations. It is shown that the hierarchy possesses
a bi-Hamiltonian structure and a hereditary recursion operator, which implies
that there exist infinitely many common commuting symmetries and infinitely
many common commuting conserved functionals. Two cases of the involved
constants present two specific integrable sub-hierarchies, one of which is
exactly the Toda lattice hierarchy.

PACS numbers: 02.30.Ik, 02.90.+p

1. Introduction

It is an important subject to find new nonlinear integrable equations, both continuous and
discrete. The discovery of the inverse scattering transform (IST) brings a powerful idea to
analyse nonlinear integrable equations analytically, and the IST can also lead to the geometrical
and algebraic interpretation of many integrable properties of nonlinear equations such as
Hamiltonian structures and Virasoro algebras [1]. The key of the IST theory is spectral
problems or the Lax pairs, which pay a crucial role in the treatment of nonlinear integrable
equations [2]. Other beautiful theories on integrable equations such as Sato τ -function theory
[3] and R-matrix theory [4] also underscore the importance of spectral problems or the Lax
pairs.

Among the well-known integrable equations are the KP-type continuous and discrete
equations. The related KP theories are systematic and the residue technique can be used to
present sufficiently many conserved densities required in exploring integrability of the KP
equations. However, for non-KP-type equations, the working techniques are varied [5]. The
structures that integrable equations possess are very particular and the involved nonlinearity
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causes much difficulty in the process of construction. It is very challenging to get new
integrable equations by any method.

We will focus on lattice equations within the framework of the Lax pairs. A lattice
equation

ut = K(u,Eu,E−1u, . . .)

is said to possess a Lax pair, U and V , if it can be written as a compatibility condition (called
a discrete zero curvature equation [6])

Ut = (EV )U − UV

of a discrete spatial spectral problem

Eφ = U(u, λ)φ

and an associated temporal spectral problem

φt = V (u,Eu,E−1u, . . . ; λ)φ

where λ is a spectral parameter. In the setting up of the Lax theory, the starting point is
a spatial spectral problem. The equations resulting from spectral problems often possess
bi-Hamiltonian structures and hereditary recursion operators [7]. Therefore, infinitely
many symmetries and infinitely many conserved densities can be guaranteed, which exhibit
integrability of the equations under consideration.

In this paper, starting from a modified Toda spectral problem, we would like to construct a
hierarchy of generalized Toda lattice equations with two arbitrary constants through the discrete
Lax technique or the technique of discrete zero curvature equations. The bi-Hamiltonian theory
on integrable equations [8, 9] will be used to establish a bi-Hamiltonian formulation and to
present a hereditary recursion operator for the resulting lattice hierarchy. Thus, there exist
infinitely many common symmetries and infinitely many common conservation laws. It will
also be shown that two cases of the involved constants present two specific sub-hierarchies of
integrable lattice equations, one of which is exactly the Toda lattice hierarchy [8].

2. A discrete spectral problem and related lattice equations

Let f be a lattice function. We specify the shift operator E and the inverse E−1 of E as

(Ef )(n) = f (n + 1) (E−1f )(n) = f (n − 1) n ∈ Z (2.1)

and always write

f (k) = Ekf k ∈ Z. (2.2)

Of course, the shift unit could also be taken as some other number, less than or greater than
one. Let us now introduce the following discrete spectral problem,

Eφ = U(u, λ)φ U(u, λ) =
[

0 1

(αλ + β)r λ + s

]
φ =

[
φ1

φ2

]
u =

[
r

s

]

(2.3)

where λ is a spectral parameter, and α and β are two constants satisfying the nondegenerate
condition

α2 + β2 �= 0. (2.4)
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This discrete spectral problem is a modified Toda spectral problem. If α = 0 and β = 1, then
(2.3) is exactly the Toda spectral problem [8]. The discrete spectral problem is also equivalent
to

(E − βrE−1 − s)ψ = λ(αrE−1 − 1)ψ ψ = Eφ1.

This is one of the generalized eigenvalue problems of the type

L1(u)ψ = λL2(u)ψ

where L1(u) and L2(u) are two difference (or differential–difference) operators and u is the
potential. Choose L2(u) to be the identity operator and L1(u) to be a Lax operator with
infinitely many fields

L1(u) = unE
n + un−1E

n−1 + · · ·
where n is an integer and the coefficients ui are a sequence of field variables with possibly
non-commuting components, and then we have a discrete eigenvalue problem of the standard
KP type. Lax operators with finitely many fields are special reductions of this Lax operator
with infinitely many fields. When α �= 0, L2(u) = αrE−1 − 1 in our case is not a constant
operator, and thus the above spectral eigenvalue problem, equivalent to (2.3), is not of the
standard KP type.

In order to construct the associated lattice equations, we first solve the stationary discrete
zero curvature equation

(E�)U − U� = 0. (2.5)

If we choose

� =
[

a b

(αλ + β)c −a

]
(2.6)

then equation (2.5) becomes


rb(1) − c = 0

(a(1) + a) + λb(1) + sb(1) = 0

αλ(c(1) − rb) + β(c(1) − rb) − λ(a(1) − a) − s(a(1) − a) = 0.

(2.7)

Taking the selection

a =
∞∑

m=0

amλ−m b =
∞∑

m=0

bmλ−m c =
∞∑

m=0

cmλ−m (2.8)

for (2.7) and comparing each power of λ in the equations of (2.7), we obtain the initial set of
relations:

b(1) = 0 c0 = 0 a0 − a
(1)
0 = −α

(
c
(1)
0 − rb0

) = αrb0 (2.9)

and the recursion relation:


cm+1 − rb
(1)
m+1 = 0 m � 0

b
(1)
m+1 + sb(1)

m +
(
a(1)

m + am

) = 0 m � 0(
a

(1)
m+1 − am+1

)
+ s

(
a(1)

m − am

)
+ α

(
rbm+1 − c

(1)
m+1

)
+ β

(
rbm − c(1)

m

) = 0 m � 0.

(2.10)

Upon fixing initial data in (2.9):

a0 = −1

2
b0 = 0 (2.11)
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the recursion relation (2.10) uniquely determines the lattice functions am, bm and cm,m � 1,
under the initial conditions

a1|u=0 = c1|u=0 = 0 am|u=0 = bm|u=0 = cm|u=0 = 0 m � 2. (2.12)

Different initial data and initial conditions will only lead to linear combinations of the resulting
lattice functions. The first few lattice functions are easily computed:


a1 = αr b1 = 1 c1 = r

a2 = −α2r(1)r − α2r2 − α2rr(−1) − αrs − αrs(−1) + βr

b2 = −αr − αr(−1) − s(−1) c2 = −rs − αr2 − αrr(1).

(2.13)

Moreover, from (2.5), we can know [10] that (E − 1)tr(�k) = 0 for all k � 1. In particular,
tr(�2) = 2[a2 + (αλ + β)bc] is a constant, and let us say γ . Then, we have a recursion relation
for am:

am+1 =
m∑

i=1

aiam−i+1 + α

m+1∑
i=1

bicm−i+2 + β

m∑
i=1

bicm−i+1 − 1

2
γ m � 1. (2.14)

This, together with the first two recursion relations in (2.10), implies through the mathematical
induction that all lattice functions am, bm and cm,m � 1, are local and they are just difference
polynomials in r and s.

As usual, we choose that

Vm =
[

(λma)+ (λmb)+

(αλ + β)(λmc)+ −(λma)+

]

=




m∑
i=0

aiλ
m−i

m∑
i=0

biλ
m−i

(αλ + β)

m∑
i=0

ciλ
m−i −

m∑
i=0

aiλ
m−i


 m � 0.

(2.15)

Then it follows from (2.10) that

(EVm)U − UVm =
[

0 −b
(1)
m+1

(αλ + β)cm+1 β
(
c(1)
m − rbm

) − s
(
a(1)

m − am

)
]

.

To generate the associated lattice equations through the discrete zero curvature equation, we
need to take a modification

	m =
[
bm+1 0

0 0

]
(2.16)

and define the auxiliary Lax operators

V [m] = Vm + 	m m � 0. (2.17)

Then, a direct calculation leads to the following matrix:

(EV [m])U − UV [m] =
[

0 0

(αλ + β)(cm+1 − rbm+1) β
(
c(1)
m − rbm

) − s
(
a(1)

m − am

)
]

(2.18)

which is consistent with Utm . Therefore, the temporal evolution laws for the eigenfunction φ

to obey can be taken to be

φtm = V [m]φ m � 0. (2.19)
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Then the compatibility conditions of the discrete spectral problem (2.3) and the associated
spectral problems (2.19)

Utm = (EV [m])U − UV [m] m � 0 (2.20)

give rise to the following hierarchy of lattice equations:


rtm = cm+1 − rbm+1 m � 0

stm = −α
(
c
(1)
m+1 − rbm+1

)
+

(
a

(1)
m+1 − am+1

)
= β

(
c(1)
m − rbm

) − s
(
a(1)

m − am

)
m � 0.

(2.21)

Noting (2.13), we have the first nonlinear lattice equation{
rt1 = r(s(−1) − s) + αr(r(−1) − r(1))

st1 = αs(r − r(1)) + β(r(1) − r).
(2.22)

Interestingly, when α = 0 and β = −1, (2.22) becomes the Toda lattice equation [11]

rt1 = r(s(−1) − s) st1 = r − r(1) (2.23)

and when α = 1 and β = 0, (2.22) gives the lattice equation

rt1 = r(s(−1) − s) + r(r(−1) − r(1)) st1 = s(r − r(1)) (2.24)

which was previously presented in [12]. We chose β = −1 but not β = 1 to get the Toda
lattice equation (2.23), since a negative value is selected for a0 in (2.11). Obviously, the lattice
equation (2.24) is linearly independent of the Toda lattice equation (2.23). Namely, any linear
transformation of dependent variables cannot transform one of them to the other.

To establish a Hamiltonian structure for a lattice hierarchy, we can usually use the trace
identity [10], but in this case, we fail to apply it. The reason may be the rank problem of
the discrete spectral problem (2.3). It is not easy to define a homogeneous rank for the terms
involving (αλ + β)r . If we observe the recursion relation (2.10) more carefully and note that
a2 is not homogeneous due to the last term βr , we find that when m � 3, all am, bm and cm

are not homogeneous difference polynomials in r and s, indeed. However, inspired by

tr

(
(�U−1)

∂U

∂r

)
= a

r
tr

(
(�U−1)

∂U

∂s

)
= c

r

which are the sources of conserved functionals in the trace identity, we can rewrite those lattice
equations in (2.21) as

utm =
[
r

s

]
tm

= J1




am+1

r
cm+1

r


 m � 0 (2.25)

where J1 is a local difference operator defined by

J1 =
[

0 r − rE−1

Er − r α(rE−1 − Er)

]
. (2.26)

Now taking advantage of the recursion relation (2.10), we can easily obtain


am+1

r
cm+1

r


 = �




am

r
cm

r


 m � 0 (2.27)

where the operator � is given by

� =
[

�11 �12

−(1 + E)r −s

]
(2.28)
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with two entries in the first row:


�11 = −α(1 + E)r − 1

r
(E − 1)−1[αr(E − E−1)r − s(1 − E)r]

�12 = −αs − 1

r
(E − 1)−1[αr(1 − E−1)s − β(Er − rE−1)].

In practice, the inverse operator (E − 1)−1 will only be defined on those lattice functions
in the range of E − 1 as follows: if we have g = (E − 1)f and f |u=0 = 0, then we set
f = (E − 1)−1g.

The recursion relation (2.27) motivates us to introduce another local difference operator
J2:

J2 = J1� =
[
−rEr + rE−1r −rs + rE−1s

rs − sEr β(Er − rE−1)

]
(2.29)

and then the lattice hierarchy (2.21) can be written in the following form:

utm =
[
r

s

]
tm

= J1




am+1

r
cm+1

r


 = J2




am

r
cm

r


 m � 0. (2.30)

At this moment, we can guess that the lattice hierarchy (2.21) has a bi-Hamiltonian formulation.
This is true, indeed. In the next section, we will prove that J1 and J2 are a Hamiltonian pair
and

Gm :=




am+1

r
cm+1

r


 m � 0 (2.31)

are all gradient vector functions.

3. Bi-Hamiltonian structure

Let us first introduce the basic notion of the Hamiltonian theory of lattice equations, to achieve
clarity in describing our design, procedure and results. The variational derivative, the Gateaux
derivative and the inner product are defined by

δH̃

δu
=

(
δH̃

δr
,
δH̃

δs

)T
δH̃

δr
=

∑
n∈Z

E−n ∂H

∂r(n)

δH̃

δs
=

∑
n∈Z

E−n ∂H

∂s(n)
(3.1)

P ′(u)[v] = ∂

∂ε
P (u + εv)

∣∣∣∣
ε=0

(3.2)

〈f, g〉 =
∑
n∈Z

〈f (n), g(n)〉 (3.3)

where u = (r, s)T , H̃ =
∑

n∈Z
H(u(n)) is a functional, P can be either a vector function or an

operator, v is a two-dimensional vector function, f and g are two-dimensional vector functions,
and 〈f (n), g(n)〉 denotes the standard inner product of f (n) and g(n) in the Euclidean space
R

2. Denote by J † the adjoint operator of an operator J with respect to the product (3.3), i.e.,
J † is defined by

〈f, J †g〉 = 〈Jf, g〉. (3.4)
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Obviously, E† = E−1 and (J−1)† = (J †)−1. If an operator J has the property J † = −J ,
then J is called skew-symmetric. For example, the difference operator 	 := E − E−1 is
skew-symmetric.

Definition 3.1. A linear operator J is called a Hamiltonian operator, if it is a skew-symmetric
operator and satisfies the Jacobi identity

〈J ′(u)[Jf ]g, h〉 + cycle(f, g, h) = 0. (3.5)

A pair of operators J1 and J2 is called a Hamiltonian pair, if any linear combination αJ1 +βJ2

with two constants α and β is Hamiltonian.

The commutator between vector functions and the associated Poisson bracket with a given
Hamiltonian operator J are given by

[f, g] = f ′(u)[g] − g′(u)[f ] (3.6)

and

{F̃ , G̃}J =
〈
δF̃

δu
, J

δG̃

δu

〉
F̃ =

∑
n∈Z

F(u(n)) G̃ =
∑
n∈Z

G(u(n)) (3.7)

respectively. Note that this Poisson bracket is defined especially through the use of the
variational derivative. Two vector functions f and g are called commuting if [f, g] = 0.
Similarly, two functionals F̃ and G̃ are called commuting under the Poisson bracket {· , ·}J if
{F̃ , G̃}J = 0. If an operator J is Hamiltonian, then we have [13][

J
δF̃

δu
, J

δG̃

δu

]
= J {F̃ , G̃}J . (3.8)

Therefore, if F̃ and G̃ are commuting under the Poisson bracket {· , ·}J , then the corresponding
vector functions J δF̃

δu
and J δG̃

δu
are commuting as well.

Definition 3.2. If a lattice equation ut = K(u,Eu,E−1u, . . .) can be written as

ut = K(u) = J
δH̃

δu
H̃ =

∑
n∈Z

H(u(n)) (3.9)

where J is Hamiltonian, then it is called a Hamiltonian equation. If it can be written as

ut = K(u) = J1
δH̃ 1

δu
= J2

δH̃ 2

δu
H̃ 1 =

∑
n∈Z

H1(u(n)) H̃ 2 =
∑
n∈Z

H2(u(n)) (3.10)

where J1 and J2 are a Hamiltonian pair, then it is called a bi-Hamiltonian equation.

The bi-Hamiltonian formulation is a beautiful characteristic structure [8, 9], which
often guarantees the existence of infinitely many symmetries and infinitely many conserved
functionals, exhibiting integrability of the equations under consideration.

In what follows, we would like to show that the lattice hierarchy (2.21) is bi-Hamiltonian.
To proceed, we now choose a specific 2 × 2 matrix local difference operator:

J (u) =
[

−σ1(rEr − rE−1r) −σ1(rs − rE−1s) + σ2(r − rE−1)

σ1(rs − sEr) + σ2(Er − r) σ3(rE
−1 − Er)

]
(3.11)

where σi, 1 � i � 3, are three arbitrary constants. The action of J is taken as the left
multiplication, and thus it is linear. Note that J is itself nonlinear with respect to u.
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Theorem 3.1. The difference operator J (u) defined by (3.11) is a Hamiltonian operator for
all values of three constants σi, 1 � i � 3.

Proof. It is easy to see that J is skew-symmetric. The Jacobi identity can be checked through
a straightforward but tedious computation, which is given in the appendix. It then follows that
J is Hamiltonian whatever the three constants σ1, σ2 and σ3 are. The proof is finished. �

The case of σ1 = 0, σ2 = 1 and σ3 = α leads to the Hamiltonian operator J1 defined by
(2.26), and the other case of σ1 = 1, σ2 = 0 and σ3 = −β leads to the Hamiltonian operator
J2 defined by (2.29). Therefore, based on theorem 3.1, J1 and J2 are a Hamiltonian pair.

It is also not difficult to check that J1 is nondegenerate. Namely, if there is a 1 × 2 matrix
local difference operator J̄ 1 such that J̄ 1J1 = 0, then J̄ 1 = 0. Suppose that J̄ 1 = (A,B) such
that J̄ 1J1 = 0, where A and B are two local difference operators, then we have B(Er − r) = 0
which can lead to B = 0, and thus A(r − rE−1) = 0 which will lead to A = 0. Therefore,
J̄ 1 = 0. This implies that J1 is nondegenerate. Actually, on some well-selected space of
vector functions (e.g., the space spanned by all J1Gm, m � 1), the inverse operator of J1 can
be explicitly introduced as follows:

J−1
1 =


α(1 − E−1)−1 1

r
+

α

r
(E − 1)−1 1

r
(E − 1)−1

(1 − E−1)−1 1

r
0


 (3.12)

where (1 − E−1)−1 = E(E − 1)−1 and (E − 1)−1 is defined as before. Then, it is obvious to
see that the adjoint operator of �, denoted by �, reads

� := �† = J2J
−1
1 =

[
�11 −r(1 + E−1)

�21 −s

]
(3.13)

with two entries in the first column:


�11 = −αr(1 + E−1) − αr(E − E−1)r(1 − E−1)−1 1

r
− r(1 − E−1)s(1 − E−1)−1 1

r

�21 = −αs + αs(1 − E)r(1 − E−1)−1 1

r
+ β(Er − rE−1)(1 − E−1)−1 1

r
.

Thus, � = �† is a common hereditary recursion operator for the hierarchy (2.21) [14].
Now the remaining task to establish a bi-Hamiltonian structure for (2.21) is to prove the

vector functions Gm, m � 0, defined by (2.31) are gradient. We use the bi-Hamiltonian theory
[8, 9] to verify this property.

A direct computation shows that the first two vector functions G0 and G1 are gradient,
i.e., we have

G0 = δH̃ 0

δu
G1 = �G0 = δH̃ 1

δu
H̃ 0 =

∑
n∈Z

H0(u(n)) H̃ 1 =
∑
n∈Z

H1(u(n))

(3.14)

where the densities of two functionals are given by

H0 = αr + s H1 = −αrs − 1

2
s2 − αrs(−1) − α

2
r2 − α2rr(−1) + βr. (3.15)

Recall we already know that J1 and J2 are a Hamiltonian pair, of which J1 is nondegenerate;
and that J1Gm+1 = J2Gm,m � 0, where Gm,m � 0, are the local vector lattice functions
defined by (2.31). Therefore, the bi-Hamiltonian theory (in particular, see lemma 7.25,
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chapter 7 of [9]) allows us to conclude that all Gm,m � 0 are gradient, i.e., there exist
functionals H̃m satisfying

Gm = δH̃m

δu
m � 0. (3.16)

Now from the variational calculus [8], the functionals H̃m can be computed by

H̃m =
∑
m∈Z

Hm(u(n)) Hm =
∫ 1

0
uT Gm(µu) dµ m � 0 (3.17)

where Gm,m � 0 are defined by (2.31).
If we define an initial functional

H̃−1 =
∑
m∈Z

H−1(u(n)) H−1 = − ln r

2
(3.18)

then, we have

G0 = �G−1 G−1 = δH̃−1

δu
=

(
− 1

2r
, 0

)T

. (3.19)

Thus H̃−1 is also a conserved functional. G−1 is generated from kerJ2. Let us sum up all the
above results in the following theorem.

Theorem 3.2. All lattice equations in the lattice hierarchy (2.21) have a bi-Hamiltonian
formulation

utm = J1Gm = J1
δH̃m

δu
= J2

δH̃m−1

δu
m � 1 (3.20)

where J1, J2,Gm,m � 1, H̃m,m � 0 are defined by (2.26), (2.29), (2.31) and (3.17),
respectively. Furthermore, the lattice hierarchy (2.21) has infinitely many common commuting
symmetries {J1Gm}∞1 , and infinitely many common conserved functionals {H̃m}∞−1 being
mutually commuting under either of the Poisson brackets {· , ·}J1 and {· , ·}J2 , where H̃−1

is defined by (3.18).

This theorem implies that the lattice hierarchy (2.21) is an integrable hierarchy in the
Liouville sense. Note that J1G0 = J1G−1 = 0 and so we do not include them in the set
of symmetries. This also indicates that associated with the discrete spectral problem (2.3),
there is no negative hierarchy with the same bi-Hamiltonian formulation as (3.20), starting
from G−1.

This is a different characteristic from the Ablowitz–Ladik discrete spectral problem
associated with the discrete nonlinear Schrödinger equation [15]. Moreover, the bi-
Hamiltonian structure presented in (3.20) is much simpler, since the Hamiltonian operators
of the Ablowitz–Ladik positive and negative hierarchies possess higher-order nonlinear
dependence on the potentials [16].

4. Concluding remarks

A hierarchy of generalized bi-Hamiltonian Toda lattice equations has been presented, starting
from a modified Toda spectral problem. By the bi-Hamiltonian theory, all lattice equations in
the resulting hierarchy have been shown to possess an infinite collection of common commuting
symmetries and conserved functionals. It is particularly interesting that the obtained hierarchy
contains two specific integrable sub-hierarchies as its examples. One is exactly the Toda
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hierarchy and the other is the lattice hierarchy that we presented in [12]. The verification of
the bi-Hamiltonian formulation relied on a matrix difference Hamiltonian operator involving
three arbitrary constants.

The modified Toda spectral problem discussed involves a linear term αλ+β of the spectral
parameter λ in front of one potential. The associated integrable lattice hierarchy connects the
Toda hierarchy and the lattice hierarchy in [12] together. This is the same phenomenon as
happened with the coupled AKNS-Kaup–Newell hierarchy [17]. It is interesting to see if
the idea of adding a linear term αλ + β works for other spectral problems, while generating
coupled integrable equations.

Besides the method of zero curvature equations used in our discussion, there are other
techniques to construct integrable lattices, for example, the algebro–geometric approach, the
Poisson algebra method, the classical R-matrix method, etc (see [18–21]). For Lax operators of
the standard KP type, the multi-Hamiltonian structures can be generated from Poisson brackets
associated with R-matrix structures [19, 21]. The resulting Hamiltonian structures possess
homogeneous dependence on potentials, and separation of variables works for associated
integrable lattices, yielding discrete Jacobi inversion problems [18]. However, for the reduced
Lax operators of the standard KP type, one has to take the compatibility of reduced Lax pairs
into consideration and make the Dirac reduction to construct multi-Hamiltonian structures
[21]. The cases of Lax operators of non-standard KP type often need direct computations,
starting from zero curvature equations.

We point out that there are also three ways to formally define the inverse of the difference
operator 	 = E − E−1, and thus the inverses of other difference operators. We just list some
of them for reference.

Method 1. Use both the right-side and the left-side limits in the computation:

	−1 = (E − E−1)−1 = 1

2

( −1∑
k=−∞

−
∞∑

k=0

)
E2k+1

(E − 1)−1 = (1 + E−1)	−1 = 1

2

( −1∑
k=−∞

−
∞∑

k=0

)
Ek

(1 − E−1)−1 = (E + 1)	−1 = 1

2

( −1∑
k=−∞

−
∞∑

k=0

)
Ek+1

(1 + E−1)−1 = (E − 1)	−1 = 1

2

( −1∑
k=−∞

−
∞∑

k=0

)
(−1)k+1Ek+1

(E + 1)−1 = (1 − E−1)	−1 = 1

2

( −1∑
k=−∞

−
∞∑

k=0

)
(−1)k+1Ek

Methods 2 and 3. Use the left-side limit or the right-side limit in the computation:

	−1 = (E − E−1)−1 =
−1∑

k=−∞
E2k+1 or −

∞∑
k=0

E2k+1

(E − 1)−1 = (1 + E−1)	−1 =
−1∑

k=−∞
Ek or −

∞∑
k=0

Ek
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(1 − E−1)−1 = (E + 1)	−1 =
−1∑

k=−∞
Ek+1 or −

∞∑
k=0

Ek+1

(1 + E−1)−1 = (E − 1)	−1 =
−1∑

k=−∞
(−1)k+1Ek+1 or −

∞∑
k=0

(−1)k+1Ek+1

(E + 1)−1 = (1 − E−1)	−1 =
−1∑

k=−∞
(−1)k+1Ek or −

∞∑
k=0

(−1)k+1Ek.

These inverse operators are nonlocal and often appear in the construction of recursion operators
and master symmetries of integrable equations [6]. The formulae for computing them are
helpful in deriving expressions and establishing formulations related to lattice equations.

We remark that when α = 1 and β = 0, the initial conserved densities defined by (3.15)
are different from the previous ones H old

0 and H old
1 :

H old
0 = s +

r

2
+

r(1)

2

H old
1 = −1

4
[2s2 + 4rs + 4r(1)s + 2r(1)r + rr(−1) + r2 + r(2)r(1) + (r(1))2]

presented in [12]. But we have two relations between them

H0 − H old
0 = (E − 1)

(
− r

2

)

H1 − H old
1 = (E − 1)

(
rs(−1) +

r(1)r

4
+

r2

4
+

3rr(−1)

4

)
.

Therefore, it follows from
δ

δu
((E − 1)f (u)) = 0 that when α = 1 and β = 0, the lattice

hierarchy (2.21) boils down to the lattice hierarchy presented previously in [12], indeed.
Many other problems deserve further investigation for the resulting hierarchy of coupled

lattice equations (2.21), for example, Bäcklund transformations, τ -symmetries, constrained
flows, the Hirota form and soliton solutions. The arbitrariness of three constants in the
Hamiltonian operator (3.11) may also provide other Hamiltonian pairs, which can be used
to present new integrable lattice hierarchies. More generally, a combination of the resulting
Hamiltonian operator with a constant coefficient matrix difference operator would carry much
more information on related integrable hierarchies of Toda type (see [22] for the KdV and the
coupled KdV cases).
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Appendix. The proof of the Jacobi identity

The following is a detailed proof of the Jacobi identity:

〈J ′(u)[Jf ]g, h〉 + cycle(f, g, h) = 0
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for the Hamiltonian operator defined by (3.11). Assume that

f = (f1(n), f2(n))T g = (g1(n), g2(n))T h = (h1(n), h2(n))T

are three arbitrary vector functions, which are required to be rapidly vanishing at infinity. We
combine the terms in 〈J ′(u)[Jf ]g, h〉 containing σ 2

1 , σ 2
2 , σ1σ2, σ1σ3 and σ2σ3, respectively.

Through a straightforward but laborious computation, we find that the coefficients of
σ 2

1 , σ 2
2 , σ1σ2, σ1σ3 and σ2σ3 read

σ 2
1 :

∑
n∈Z

[−r(Er)s(Ef1)g1h2 + (Er)rsf2(Eg1)h1 + r(E−1r)s(E−1f1)g1h2

− r(E−1r)sf2(E
−1g1)h1 − (Er)(E2r)s(E2f2)(Eg1)h2

− r(Er)(E−1s)(E−1f2)(Eg1)h1 − r(Er)sf1(Eg1)h2

+ rs(Er)(Ef1)g2h1 − r2sf2g1h2 + rs2f2g2h1 + rs(E−1s)(E−1f2)g1h2

− rs(E−1s)f2(E
−1g2)h1 + (Er)s(Es)(Ef2)(Eg1)h2

− rs(E−1s)(E−1f2)g2h1 − s2(Er)f2(Eg1)h2

+ r(E−1s)2(E−1f2)(E
−1g2)h1 − r(E−1r)s(E−1f1)g2h1

+ r(Er)(Es)(Ef2)(Eg1)h1 − r(Er)(E−1s)(Ef1)(E
−1g2)h1

+ r(E−1r)(E−2s)(E−2f2)(E
−1g1)h1 + r(E−1r)(E−1s)(E−1f1)(E

−1g2)h1

− r(Er)sf2(Eg1)h1 + r(Er)2(Ef1)(Eg1)h1 − r2(E−1r)f1(E
−1g1)h1

− r(E−1r)(Er)(E−1f1)(Eg1)h1 + r(Er)(E2r)(E2f1)(Eg1)h1

− r2(Er)f1(Eg1)h1 + r(E−1r)2(E−1f1)(E
−1g1)h1 + r2sf1g1h2 − r2sf1g2h1

+ r(E−1r)(E−1s)(E−1f1)(E
−1g2)h1 − r(Er)s(Ef1)g1h2

− (Er)rsf1(Eg1)h2 + rs(Er)(Ef1)g2h1 + (Er)2s(Ef1)(Eg1)h2

− r2(E−1s)f1(E
−1g2)h1 − r(Er)(E−1r)(Ef1)(E

−1g1)h1

+ (E−1r)(E−2r)r(E−2f1)(E
−1g1)h1 + r(E−1r)(E−1s)(E−1f2)(E

−1g1)h1

− r(E−1r)(E−1s)(E−1f2)(E
−1g1)h1](n)

σ 2
2 :

∑
n∈Z

[rf2g2h1 − rf2g1h2 + r(E−1f2)g1h2 − rf2(E
−1g2)h1

+ (Er)(Ef2)(Eg1)h2 − r(E−1f2)g2h1 − (Er)f2(Eg1)h2

+ r(E−1f2)(E
−1g2)h1](n)

σ1σ2 :
∑
n∈Z

[rsf2g1h2 − rsf2g2h1 + r(Er)(Ef1)g1h2 − r(E−1r)(E−1f1)(E
−1g2)h1

+ (Er)sf2(Eg1)h2 − r(E−1s)(E−1f2)(E
−1g2)h1 − (Er)(Es)(Ef2)(Eg1)h2

+ rs(E−1f2)g2h1 − (Er)(E2r)(E2f1)(Eg1)h2 + r(Er)(E−1f2)(Eg1)h1

− r(E−1r)(E−1f1)g1h2 + r(E−1r)f2(E
−1g1)h1 + r(Er)f1(Eg1)h2

− r(Er)(Ef1)g2h1 − r(E−1s)(E−1f2)g1h2

+ r(E−1s)f2(E
−1g2)h1 − (Er)s(Ef2)(Eg1)h2 + r(E−1s)(E−1f2)g2h1

+ (Er)sf2(Eg1)h2 − r(E−1s)(E−1f2)(E
−1g2)h1 + rsf2g1h2

− rsf2g2h1 − rs(E−1f2)g1h2 + rsf2(E
−1g2)h1

+ r(E−1r)(E−1f1)g2h1 − r(Er)(Ef2)(Eg1)h1

− r(Er)f2(Eg1)h1 + r(Er)f2(Eg1)h1 + r(Er)(Ef1)(E
−1g1)h1

− r(E−1r)(E−2f2)(E
−1g1)h1 − r2f1g1h2
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+ r2f1g2h1 + r(Er)(Ef1)g1h2 − r(E−1r)(E−1f1)(E
−1g2)h1

+ r(Er)f1(Eg1)h2 − r(Er)(Ef1)g2h1 − (Er)2(Ef1)(Eg1)h2

+ r2f1(E
−1g2)h1 − r(E−1r)(E−1f2)(E

−1g1)h1

+ r(E−1r)(E−1f2)(E
−1g1)h1](n)

σ1σ3 :
∑
n∈Z

[−(Er)(Es)(Ef2)(Eg2)h2 + rsf2(E
−1g2)h2 + (Er)sf2(Eg2)h2

− r(E−1s)(E−1f2)(E
−1g2)h2 − (Er)(E2r)(E2f1)(Eg2)h2

+ r(Er)(E−1f2)(Eg1)h2 + r(Er)f1(Eg2)h2 − r(Er)(Ef2)g2h1

+ r(Er)(Ef1)(E
−1g2)h2 − r(E−1r)(E−2f2)(E

−1g2)h1

− r(E−1r)(E−1f1)(E
−1g2)h2 + r(Er)(Ef2)g1h2

+ r2(E−1f2)g2h1 − (Er)2(Ef2)(Eg1)h2 + r2f2(E
−1g2)h1

− r2(E−1f1)g1h2](n)

σ2σ3 :
∑
n∈Z

[(Er)(Ef2)(Eg2)h2 − rf2(E
−1g2)h2

− (Er)f2(Eg2)h2 − r(E−1f2)(E
−1g2)h2](n).

Through a careful check or a computer algebra system, we see that these five sums with a
cycle of f, g and h are all equal to zero. It then follows that the Jacobi identity holds for the
Hamiltonian operator (3.11).
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