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1. Introduction
Zero curvature equations are a basic tool to generate integrable soliton equations

possessing Hamiltonian structures (see, e.g. [1–5]). Usually, one starts with matrix
spectral problems (or Lax pairs) associated with given matrix loop algebras. The
trace identity over semisimple Lie algebras [6, 7] and the variational identity over
nonsemisimple Lie algebras [8, 9] provide powerful approaches for establishing
Hamiltonian and quasi-Hamiltonian structures of soliton equations.

Soliton equations often come in hierarchies consisting of commuting equations
(see, e.g. [6, 10]). Typical examples of soliton hierarchies which fit into the zero
curvature formulation include the Korteweg–de Vries hierarchy [11], the Ablowitz–
Kaup–Newell–Segur hierarchy [12], the Dirac hierarchy [13], the Kaup-Newell
hierarchy [14], the Wadati–Konno–Ichikawa hierarchy [15] and the Boiti–Pempinelli–
Tu hierarchy [16]. Those hierarchies only contain dependent variables less than or
equal to three, and the case of more dependent variables is highly complicated,
requiring considerable efforts in computations. Integrable couplings associated with
nonsemisimple loop algebras present such examples, which can possess a large
number of dependent variables.

[283]
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Very recently, the three-dimensional special orthogonal Lie algebra so(3,R) has
been used in constructing soliton hierarchies (see, e.g. [17, 18]). This Lie algebra,
being simple, can be realized through 3× 3 skew-symmetric matrices, and thus, it
has the basis

e1 =


0 0 −1

0 0 0

1 0 0

 , e2 =


0 0 0

0 0 −1

0 1 0

 , e3 =


0 −1 0

1 0 0

0 0 0

 , (1.1)

which has the cyclic commutator relations:

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (1.2)

Its derived algebra is the algebra itself, and thus, it is 3-dimensional, too. The only
other such three-dimensional real Lie algebra is the special linear algebra sl(2,R),
and it has been widely used in studying soliton equations in soliton theory (see,
e.g. [11–16]).

The matrix loop algebra we shall adopt below is

s̃o(3,R) =
{∑
i≥0

Miλ
n−i

∣∣ n ∈ Z, and Mi ∈ so(3,R), i ≥ 0
}
, (1.3)

where λ is the loop parameter. That is to say that s̃o(3,R) is the space of
all Laurent series in λ with coefficients in so(3,R) and a finite regular part.
A particular subalgebra of this loop algebra s̃o(3,R) is formed by linear combinations:
p1(λ)e1 + p2(λ)e2 + p3(λ)e3, with p1, p2, p3 being arbitrary polynomials in λ.
Owing to the cyclic commutator relations (1.2), the loop algebra s̃o(3,R) provides
a good structural basis for our study of soliton equations with Hamiltonian and
quasi-Hamiltonian structures, and a few new soliton hierarchies have been already
generated from s̃o(3,R), indeed (see, e.g. [17–22]).

In this paper, we would like to use the loop algebra s̃o(3,R) to introduce
a counterpart matrix spectral problem for the Heisenberg spectral problem (see,
e.g. [23–26]), and compute an integrable counterpart hierarchy of the Heisenberg
soliton hierarchy (see, e.g. [3, 27]) by zero curvature equations. An application of
the trace identity will engender bi-Hamiltonian structures for all members in the
resulting counterpart soliton hierarchy, and thus the counterpart soliton hierarchy
is Liouville integrable. The new counterpart hierarchy provides us with another
interesting example of soliton hierarchies associated with the matrix loop algebra
s̃o(3,R). A few concluding remarks and comments will be given at the end of the
paper.

2. The Heisenberg soliton hierarchy
2.1. Solving the stationary zero curvature equation

The Heisenberg hierarchy [3] is associated with the following 2 × 2 matrix
spectral problem [23, 24],
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φx = Uφ = U(u, λ)φ, U =

λr λp

λq −λr

 ,
u =

p
q

 , φ =

φ1

φ2

 , pq + r2
= 1.

(2.1)

The corresponding stationary zero curvature equation

Wx = [U,W ] (2.2)

with

W =

a b

c −a

 (2.3)

is equivalent to 
ax = λpc − λqb,

bx = 2λrb − 2λpa,

cx = 2λqa − 2λrc.

(2.4)

Let a, b and c have the following Laurent expansions in λ:

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (2.5)

and take the initial data

a0 = r, b0 = p, c0 = q, (2.6)

which are required by the equations on the first powers of λ in (2.4):

pc0 − qb0 = 0, rb0 − pa0 = 0, qa0 − rc0 = 0.

While determining the sequence of {ai, bi, ci | i ≥ 1} by (2.4), we impose the condition
that the constants of integration take the value of zero,

ai |u=0 = bi |u=0 = ci |u=0 = 0, i ≥ 1, (2.7)

so that the uniqueness can be guaranteed. Under (2.7), the system (2.4) equivalently
generates 

ai+1 = −
1
2
∂−1 q

r
∂bi+1 −

1
2
∂−1p

r
∂ci+1,

bi,x = 2rbi+1 − 2pai+1,

ci,x = 2qai+1 − 2rci+1,

i ≥ 0, (2.8)

the first of which is because we have

2rax = 2λrpc − 2λrqb = p(2λqa − cx)− q(bx + 2λpa) = −pcx − qbx, (2.9)
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from (2.4). The relationship in (2.8) clearly tells the inverse of a recursion relation
for bi and ci ,bi,x

ci,x

 = R
bi+1

ci+1

 , R =

2r + p∂−1 q

r
∂ p∂−1p

r
∂

−q∂−1 q

r
∂ −2r − q∂−1p

r
∂

 , i ≥ 0.

Actually, we have the recursion relationbi+1

ci+1

 = L
bi,x
ci,x

 , L =

 1
2r
−

1
4
p∂−1q∂

1
r

1
4
p∂−1p∂

1
r

−
1
4
q∂−1q∂

1
r

−
1
2r
+

1
4
q∂−1p∂

1
r

 , i ≥ 0.

(2.10)
We give a proof of (2.10) for the completeness of deriving the Heisenberg

hierarchy. Through the second and third relations in (2.4), we can compute that

qxbx − pxcx = 2λr(qxb + pxc)− 2λ(pqx + pxq)a = 2λr(qxb + pxc + 2rxa).

Then taking (2.9) into consideration, we obtain

λ(qb + pc + 2ra)x =
qx

2r
bx −

px

2r
cx,

and it thus follows that

qbi+1 + pci+1 + 2rai+1 =
1
2
∂−1 qx

r
bi,x −

1
2
∂−1px

r
ci,x, i ≥ 0.

Together with (2.8), this leads to

ai+1 =
1
4
r∂−1 qx

r
bi,x −

1
4
r∂−1px

r
ci,x −

1
4
qbi,x +

1
4
pci,x

= −
1
4
r∂−1q∂

1
r
bi,x +

1
4
r∂−1p∂

1
r
ci,x, i ≥ 0, (2.11)

and finally to the recursion relation (2.10).
Now, through (2.8) or (2.10) and (2.11), the first two sets of {ai, bi, ci | i ≥ 1}

can be worked out as follows:

a1 = −
1
4
pxq +

1
4
pqx, b1 = −

1
4r
(ppxq − p

2qx − 2px),

c1 = −
1
4r
(pxq

2
− pqqx + 2qx);

a2 = −
1

32r3 (3pp
2
xq

3
− 6p2pxq

2qx + 3p3qq2
x − 4ppxxq2

− 4p2qqxx

− p2
xq

2
+ 14ppxqqx − p2q2

x + 4pxxq + 4pqxx − 4pxqx),

b2 =
1

32r2 (3pp
2
xq

2
− 6p2pxqqx + 3p3q2

x − 8ppxxq + 12ppxqx + 8pxx),
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c2 =
1

32r2 (3p
2
xq

3
− 6ppxq2qx + 3p2qq2

x − 8pqqxx + 12pxqqx + 8qxx).

We point out that the localness of the first two sets of {ai, bi, ci | i ≥ 1} is not
an accident. All the functions ai, bi, ci, i ≥ 1, are differential functions, indeed.
We explain this phenomenon as follows. First from the stationary zero curvature
equation (2.2), i.e. Wx = [U,W ], we can compute

d

dx
tr(W 2) = 2 tr(WWx) = 2 tr(W [U,W ]) = 0,

and hence, the fact that tr(W 2) = 2(a2
+ bc) tells that

a2
+ bc = (a2

+ bc)|u=0 = 1,

where the initial data in (2.6) was used. Then, taking the Laurent expansions (2.5)
into consideration, we see that

ai =
p

4
ci−1,x −

q

4
bi−1,x −

r

2

∑
k+l=i, k,l≥1

(akal + bkbl), i ≥ 1. (2.12)

Finally, based on this recursion relation (2.12) and the last two recursion relations
in (2.8), an application of the mathematical induction shows that all the functions
ai, bi, ci, i ≥ 1, are differential functions in u, i.e. they are all local.

2.2. The Heisenberg hierarchy and its bi-Hamiltonian structure

It is, now, direct to see that the Lax operators

V [m] = λ(λmW)+ ≡

m∑
i=0

ai bi

ci −ai

 λm+1−i, m ≥ 0, (2.13)

guarantee that the corresponding zero curvature equations:

Utm − (V
[m])x + [U,V

[m]
] = 0, m ≥ 0, (2.14)

equivalently yield a hierarchy of soliton equations

utm =

p
q


tm

= Km =

bm,x
cm,x

 , m ≥ 0. (2.15)

The third set of equations in (2.14) is

rtm = am,x, m ≥ 0,

which is automatically satisfied, due to (2.9). Every Heisenberg system in this soliton
hierarchy is local, since all the functions ai, bi, ci, i ≥ 0, are differential equations.

The Hamiltonian structures of the Heisenberg hierarchy (2.15) can be furnished
by the trace identity [6]

δ

δu

∫
tr
(
∂U

∂λ
W

)
dx = λ−γ

∂

∂λ
λγ tr

(
∂U

∂u
W

)
, γ = −

λ

2
d

dλ
ln | tr(W 2)|, (2.16)
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or generally, the variational identity (see [8, 28]). A straightforward computation of

∂U

∂λ
=

r p

q −r

 , ∂U

∂p
=

−1
2
q

r
λ λ

0
1
2
q

r
λ

 , ∂U

∂q
=

−1
2
p

r
λ 0

λ
1
2
p

r
λ

 ,
and

tr
(
W
∂U

∂λ

)
= qb + pc + 2ra,

tr
(
W
∂U

∂p

)
= λc −

qaλ

r
,

tr
(
W
∂U

∂q

)
= λb −

paλ

r
,

and an application of (2.16) give rise to the following identity

δ

δu

∫
(qb + pc + 2ra) dx = λ−γ

∂

∂λ
λγ

λ(c − qa/r)
λ(b − pa/r)

 .
A balance of coefficients of λ−m for each m ≥ 0 in the equality obviously yields

δ

δu

∫
(qbm + pcm + 2ram) dx = (γ −m+ 1)

 cm −
q

r
am

bm −
p

r
am

 , m ≥ 0.

The identity with m = 1 tells that γ = 0, and thus, we obtain

δ

δu
Hm =

 cm+1 −
q

r
am+1

bm+1 −
p

r
am+1

 , m ≥ 0, (2.17)

with the Hamiltonian functionals being defined by

H0 =

∫
pxq − pqx

2(1+ r)
dx, Hm =

∫ (
−
qbm+1 + pcm+1 + 2ram+1

m

)
dx, m ≥ 1.

(2.18)
It then follows from (2.8) that

utm = Km =

bm,x
cm,x

 =
2rbm+1 − 2pam+1

2qam+1 − 2rcm+1

 = J
 cm+1 −

q

r
am+1

bm+1 −
p

r
am+1

 , m ≥ 0.

(2.19)
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where

J = J (u) =

 0 2r

−2r 0

 , pq + r2
= 1. (2.20)

A direct evaluation shows that J is a Hamiltonian operator, by noting

J ′(u)[S] =

 0 −(qS1
+ pS2)/r

(qS1
+ pS2)/r 0

 , S =

S1

S2

 .
It follows now that the Heisenberg soliton hierarchy (2.15) has the bi-Hamiltonian
structure

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1, (2.21)

where the Hamiltonian functionals Hm’s and the first Hamiltonian operator J are
respectively given by (2.18) and (2.20), and the second Hamiltonian operator M is
defined by

M = ∂LJ =

 −
1
2
∂p∂−1p∂ ∂ −

1
2
∂p∂−1q∂

∂ −
1
2
∂q∂−1p∂ −

1
2
∂q∂−1q∂

 . (2.22)

It is straightforward to verify that the two operators J and M form a Hamiltonian
pair and so

8 = MJ−1
=


1
2
∂

1
r
−

1
4
∂p∂−1q∂

1
r

1
4
∂p∂−1p∂

1
r

−
1
4
∂q∂−1q∂

1
r

−
1
2
∂

1
r
+

1
4
∂q∂−1p∂

1
r

 (2.23)

presents a common hereditary recursion operator for the Heisenberg soliton hierarchy
(2.15). The resulting functionals correspond to common conservation laws for each
soliton system in the whole soliton hierarchy (2.15).

The first nonlinear system in the Heisenberg hierarchy (2.15) reads

pt1 =
1

8r3 (−6ppxxq + 2p2pxxq
2
+ pp2

xq
2
+ 4ppxqx

−2p2pxqqx + 2p2qxx − 2p3qqxx + 4pxx + p3q2
x ),

qt1 = −
1

8r3 (−2ppxxq3
+ 2p2q2qxx + p

2
xq

3
− 2ppxq2qx

+p2qq2
x + 2pxxq2

− 6pqqxx + 4pxqqx + 4qxx).

(2.24)

This Heisenberg system has the bi-Hamiltonian structure

ut1 = J
δH1

δu
= M

δH0

δu
, (2.25)
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where H0 is defined by (2.18) and H1 is given by

H1 =

∫ [
−

1
16r2 (p

2q2
x − 2ppxqqx + p2

xq
2
+ 4pxqx)

]
dx. (2.26)

3. An integrable so(3,R)-counterpart
3.1. The Heisenberg type hierarchy associated with so(3,R)

To generate an integrable counterpart of the Heisenberg hierarchy (2.15), associated
with so(3,R), we introduce a new 3× 3 matrix spectral problem,

φx = Uφ = U(u, λ)φ, u =

p
q

 , φ =


φ1

φ2

φ3

 , (3.1)

where the spectral matrix U is chosen as

U = λre1 + λpe2 + λqe3 =


0 −λq −λr

λq 0 −λp

λr λp 0

 , p2
+ q2
+ r2
= 1. (3.2)

We similarly follow a standard procedure using the zero curvature formulation
(see [6, 10]), to present an integrable hierarchy. First, we solve the stationary zero
curvature equation

Wx = [U,W ], W ∈ s̃o(3,R). (3.3)

If we assume W to be

W = ae1 + be2 + ce3 =


0 −c −a

c 0 −b

a b 0

 , (3.4)

then Eq. (3.3) becomes 
ax = λpc − λqb,

bx = −λrc + λqa,

cx = λrb − λpa.

(3.5)

Note that the second and third relations in (2.4) and (3.5) are slightly different,
which generate different soliton hierarchies with different recursion operators.

Let a, b and c be the following Laurent expansions in λ:

a =
∑
i≥0

aiλ
−i, b =

∑
i≥0

biλ
−i, c =

∑
i≥0

ciλ
−i, (3.6)
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and take the initial data

a0 = r, b0 = p, c0 = q, (3.7)

which are required by the equations on the first powers of λ in (3.5):

pc0 − qb0 = 0, −rc0 + qa0 = 0, rb0 − pa0 = 0.

While determining the sequence of {ai, bi, ci | i ≥ 1} by (3.5), we similarly impose
the condition that the constants of integration take the value of zero,

ai |u=0 = bi |u=0 = ci |u=0 = 0, i ≥ 1, (3.8)

to guarantee the uniqueness.
Under (3.8), the system (3.5) leads equivalently to

ai+1 = −∂
−1p

r
∂bi+1 − ∂

−1 q

r
∂ci+1,

bi,x = −rci+1 + qai+1,

ci,x = rbi+1 − pai+1,

i ≥ 0, (3.9)

the first of which is because from (3.5) we have

rax = λrpc − λrqb = p(−bx + λqa)− q(cx + λpa) = −pbx − qcx . (3.10)

The relationship in (3.9) tells the inverse of recursion relations for bi and ci ,bi,x
ci,x

 = R
bi+1

ci+1

 , R =

 −q∂−1p

r
∂ −r − q∂−1 q

r
∂

r + p∂−1p

r
∂ p∂−1 q

r
∂

 , i ≥ 0.

Actually, we have the following recursion relationbi+1

ci+1

 = L
bi,x
ci,x

 , L =

 p∂−1q∂
1
r

1
r
− p∂−1p∂

1
r

−
1
r
+ q∂−1q∂

1
r

−q∂−1p∂
1
r

 , i ≥ 0.

(3.11)
The proof for (3.11) is straightforward. First, the second and third relations in

(3.5) yield

qxbx − pxcx = −λr(pxb + qxc)+ λ(ppx + qqx)a = −λr(pxb + qxc + rxa).

Then, by (3.10), we arrive at

λ(pb + qc + ra)x =
px

r
cx −

qx

r
bx,

and this tells us that

pbi+1 + qci+1 + rai+1 = ∂
−1px

r
ci,x − ∂

−1 qx

r
bi,x, i ≥ 0.
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Together with (3.9) we obtain

ai+1 = r∂
−1px

r
ci,x − r∂

−1 qx

r
bi,x + qbi,x − pci,x

= −r∂−1p∂
1
r
ci,x + r∂

−1q∂
1
r
bi,x, i ≥ 0, (3.12)

and further the recursion relation (3.11). In (3.12), the operator relation f ∂ = −fx+∂f
was used for simplification.

Through the above recursion relations in (3.9) or (3.11) and (3.12), the first two
sets of {ai, bi, ci | i ≥ 1} can be computed as follows:

a1 = pxq − pqx, b1 =
1
r
(−p2qx + ppxq + qx), c1 =

1
r
(pxq

2
− pqqx − px);

a2 = −
1

2r3 (3p
4q2
x + 3p2

xq
4
+ 2p3pxx + 2q3qxx − 6pq3pxqx + 3p2q2p2

x

− 3q2q2
x + 2ppxxq2

+ 3p2q2q2
x − 6p3pxqqx + 2p2qqxx − 2qqxx

+ 2ppxqqx − 3p2p2
x − 2ppxx − 4p2q2

x − 4pxq2
+ p2

x + q
2
x ),

b2 =
1

2r2 (3pp
2
xq

2
+ 2pxxq2

− 6p2pxqqx − 3pp2
x − 3pq2

x + 2p2pxx + 3p3q2
x − 2pxx),

c2 =
1

2r2 (3q
3p2

x − 6ppxq2qx + 2q2qxx + 3p2qq2
x − 3qq2

x − 3p2
xq − 2qxx + 2p2qxx).

The localness of the first two sets of {ai, bi, ci | i ≥ 1} is not an accident. All the
functions ai, bi, ci, i ≥ 1, are local, indeed.

PROPOSITION 3.1. Let p2
+q2
+ r2
= 1. Assume that ai, bi, ci, i ≥ 1, be defined

by (3.9) from the initail data (3.7) under the condition (3.8). Then the functions
ai, bi, ci, i ≥ 1, are all differential functions in p and q.

Proof : The verification of the localness property per se is straightforward and
easy. First from the stationary zero curvature equation (3.3), i.e. Wx = [U,W ], we
can similarly compute

d

dx
tr(W 2) = 2 tr(WWx) = 2 tr(W [U,W ]) = 0,

and so, due to tr(W 2) = −2(a2
+ b2
+ c2), we have

a2
+ b2
+ c2
= (a2

+ b2
+ c2)|u=0 = 1,

the last step of which follows from the initial data in (3.7). This implies that

ai = −pci−1,x + qbi−1,x −
r

2

∑
k+l=i, k,l≥1

(akal + bkbl + ckcl), i ≥ 1. (3.13)

By using this recursion relation (3.13) and the last two recursion relations in (3.9),
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i.e. 
bi =

1
r
(ci−1,x + pai),

ci =
1
r
(−bi−1,x + qai),

i ≥ 1,

application of the mathematical induction finally shows that all the functions
ai, bi, ci, i ≥ 1, are local, i.e. they are all differential functions in p and q.
The proof is finished. 2

As usual, let us introduce

V [m] = λ(λmW)+ ≡

m∑
i=0

(aie1 + bie2 + cie3)λ
m+1−i

∈ s̃o(3,R), m ≥ 0. (3.14)

Then, based on (3.5), we can see that the corresponding zero curvature equations

Utm − (V
[m])x + [U,V

[m]
] = 0, m ≥ 0, (3.15)

equivalently engender a hierarchy of soliton equations:

utm =

p
q


tm

= Km =

bm,x
cm,x

 , m ≥ 0. (3.16)

Note that the third set of equations in (3.15) is

rtm = am,x, m ≥ 0,

which is, thanks to (3.10), automatically satisfied:

rtm = −
p

r
ptm −

q

r
qtm = −

p

r
bm,x −

q

r
cm,x = am,x, m ≥ 0. (3.17)

Every system in this counterpart soliton hierarchy is local, since all the functions
ai, bi, ci, i ≥ 0, are differential functions. The first nonlinear system in the counterpart
hierarchy (3.16) reads

pt1 = −
1
r3 (−qq

2
x − 2ppxq2qx + p

2qq2
x − qxx + 2p2qxx + q

2qxx

−p2
xq + q

3p2
x − ppxxq + p

3pxxq + ppxxq
3
− p4qxx − p

2q2qxx),

qt1 = −
1
r3 (−p

3qqxx − p
3q2
x + p

2pxxq
2
+ 2p2pxqqx − pq

3qxx − pp
2
xq

2

+pxxq
4
− p2pxx + pqqxx + pp

2
x + pq

2
x − 2pxxq2

+ pxx).

(3.18)

3.2. Bi-Hamiltonian structure and Liouville integrability

We shall show that all systems in the counterpart soliton hierarchy (3.16)
are Liouville integrable. Let us first establish a bi-Hamiltonian structure for the
counterpart hierarchy (3.16).



294 W.X. MA, S.F. SHEN, S.M. YU, H.Q. ZHANG, W.Y. ZHANG

We shall use the trace identity (2.16), i.e.

δ

δu

∫
tr
(
∂U

∂λ
W

)
dx = λ−γ

∂

∂λ
λγ tr

(
∂U

∂u
W

)
, γ = −

λ

2
d

dλ
ln | tr(W 2)|.

It is direct to find that

∂U

∂λ
=


0 −q −r

q 0 −p

r p 0

 , ∂U

∂p
=


0 0

p

r
λ

0 0 −λ

−
p

r
λ λ 0

 , ∂U

∂q
=


0 −λ

q

r
λ

λ 0 0

−
q

r
λ 0 0

 ,
and so, we obtain

tr
(
W
∂U

∂λ

)
= −2qc − 2pb − 2ra,

tr
(
W
∂U

∂p

)
= −2λb +

2paλ
r

,

tr
(
W
∂U

∂q

)
= −2λc +

2qaλ
r

.

Plugging these quantities into the above trace identity gives rise to

δ

δu

∫
(−qc − pb − ra) dx = λ−γ

∂

∂λ
λγ

λ(pa/r − b)
λ(qa/r − c)

 .
A balance of coefficients of λ−m for each m ≥ 0 then yields

δ

δu

∫
(−qcm − pbm − ram) dx = (γ −m+ 1)


p

r
am − bm

q

r
am − cm

 , m ≥ 0.

This identity with m = 1 tells us that γ = 0, and hence, we obtain

δ

δu
Hm =


p

r
am+1 − bm+1

q

r
am+1 − cm+1

 , m ≥ 0, (3.19)

where the Hamiltonian functionals are defined by

H0 =

∫
pxq − pqx

1+ r
dx, Hm =

∫
qcm+1 + pbm+1 + ram+1

m
dx, m ≥ 1.

(3.20)
The functional H0 was directly computed from the vector(

pa1

r
− b1,

qa1

r
− c1

)T
=

(
−
qx

r
,
px

r

)T
.
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Now, it follows from (3.9) that

utm = Km =

bm,x
cm,x

 =
−rcm+1 + qam+1

rbm+1 − pam+1

 = J

p

r
am+1 − bm+1

q

r
am+1 − cm+1

 , m ≥ 0,

(3.21)
where

J = J (u) =

 0 r

−r 0

 , p2
+ q2
+ r2
= 1. (3.22)

Noting that the Gateaux derivative of J reads

J ′(u)[S] =

 0 −
pS1
+ qS2

r
pS1
+ qS2

r
0

 , S =

S1

S2

 , (3.23)

a straightforward argument shows that J is a Hamiltonian operator. Again based
on (3.11), it now follows that the counterpart soliton hierarchy (3.16) has the
bi-Hamiltonian structure

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m ≥ 1, (3.24)

where the Hamiltonian functionals Hm and the first Hamiltonian operator J are
respectively given by (3.20) and (3.22), and the second Hamiltonian operator M is
defined by

M = ∂LJ =

−∂ + ∂p∂−1p∂ ∂p∂−1q∂

∂q∂−1p∂ −∂ + ∂q∂−1q∂

 . (3.25)

A Maple computation can show that J and M constitute a Hamiltonian pair and
so, the operator

8 = MJ−1
=

 ∂p∂−1q∂
1
r

∂
1
r
− ∂p∂−1p∂

1
r

−∂
1
r
+ ∂q∂−1q∂

1
r

−∂q∂−1p∂
1
r

 (3.26)

is a common hereditary recursion operator for the counterpart soliton hierarchy (3.16).
The first nonlinear system (3.18) in the hierarchy (3.16) has the bi-Hamiltonian
structure

ut1 = K1 = J
δH1

δu
= M

δH0

δu
, (3.27)

where H0 is defined by (3.20) and H1 is given by

H1 =

∫
1

2r2 (p
2q2
x − 2ppxqqx + p2

xq
2
− p2

x − q
2
x ) dx. (3.28)
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The resulting functionals correspond to common conservation laws for each
soliton system in the counterpart soliton hierarchy (3.16). We point out that such
differential polynomial conservation laws can also be generated either directly by
computer algebra codes (see, e.g. [29]) or from some Riccati equation obtained
from the underlying matrix spectral problem (see, e.g. [30–32]).

The bi-Hamiltonian structures in (3.24) show that the counterpart soliton hierarchy
(3.16) is Liouville integrable, i.e. it possesses infinitely many conserved functionals
and symmetries which form Abelian algebras:

{Hk,Hl}J =

∫ (
δHk

δu

)T
J
δHl

δu
dx = 0, k, l ≥ 0,

{Hk,Hl}M =

∫ (
δHk

δu

)T
M
δHl

δu
dx = 0, k, l ≥ 0,

and
[Kk,Kl] = K

′

k(u)[Kl] −K
′

l (u)[Kk] = 0, k, l ≥ 0.

These commuting relations are also consequences of the Virasoro algebras of Lax
operators. We refer the interested readers to [33–35] for a detailed and systematical
study on algebraic structures of Lax operators and zero curvature equations.

4. Concluding remarks
Starting with the special orthogonal Lie algebra s̃o(3,R), we introduced a counter-

part matrix spectral problem of the Heisenberg spectral problem by using the same
linear combination of basis matrices, and generated an integrable so(3,R)-counterpart
of the Heisenberg soliton hierarchy. All members in the resulting counterpart soliton
hierarchy are local and bi-Hamiltonian. So, they are Liouville integrable PDEs, and
particularly possess infinitely many commuting symmetries and conserved densities.

We remark that the following three typical matrix spectral matrices associated
with s̃o(3,R):

U(u, λ) = λe1 + pe2 + qe3,

U(u, λ) = λ2e1 + λpe2 + λqe3,

U(u, λ) = λe1 + λpe2 + λqe3,

where u = (p, q)T includes two dependent variables, have been considered of late
[17–19]. Our example above provides a new spectral problem associated with so(3,R),
fitting into the zero curvature formulation. We hope that more examples of such
soliton hierarchies, even with dependent variables more than two, can be presented
in future research.

Given an initial matrix loop algebra, one normally needs only a considerable
investment of time and computational dexterity to formulate spectral problems and
construct the corresponding integrable hierarchies of soliton equations. Higher-order
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matrix spectral problems can engender soliton hierarchies consisting of multi-
component integrable systems (see, e.g. [36–41]). Integrable couplings (see, e.g.
[42–45]) associated with enlarged matrix loop algebras [46, 47] provide such
specific examples of soliton hierarchies. They possess triangular forms [28] and their
conserved densities can be generated by applying the variational identity [8, 28].
Nevertheless, there exist nonsemisimple loop algebras [48, 49], which do not possess
any ad-invariant, symmetric and nondegenerate bilinear form, and so, one needs to
develop new tools, besides the variational identity, to compute Hamiltonian structures
of soliton equations.
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