

AN INTEGRABLE $SO(3, \mathbb{R})$ -COUNTERPART OF THE HEISENBERG SOLITON HIERARCHY

WEN-XIU MA¹, SHOU FENG SHEN², SHUI MENG YU³, HUI QUN ZHANG⁴
and WEN YING ZHANG⁵

¹Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
(e-mail: wma3@usf.edu)

²Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, PR China
³School of Sciences, Jiangnan University, Wuxi 214122, PR China

⁴College of Mathematical Science, Qingdao University, Qingdao, Shandong 266071, PR China

⁵Department of Mathematics, Shanghai University, Shanghai 200444, PR China

(Received May 14, 2014 – Revised August 20, 2014)

An integrable counterpart of the Heisenberg soliton hierarchy is generated from a matrix spectral problem associated with $so(3, \mathbb{R})$. Bi-Hamiltonian structures of the resulting counterpart soliton hierarchy are furnished by the trace identity, and all newly presented equations are shown to possess infinitely many commuting symmetries and conservation laws.

Keywords: zero curvature equation, trace identity, Hamiltonian structure, integrable equation, Heisenberg hierarchy.

MSC codes: 37K05; 37K10; 35Q53.

1. Introduction

Zero curvature equations are a basic tool to generate integrable soliton equations possessing Hamiltonian structures (see, e.g. [1–5]). Usually, one starts with matrix spectral problems (or Lax pairs) associated with given matrix loop algebras. The trace identity over semisimple Lie algebras [6, 7] and the variational identity over nonsemisimple Lie algebras [8, 9] provide powerful approaches for establishing Hamiltonian and quasi-Hamiltonian structures of soliton equations.

Soliton equations often come in hierarchies consisting of commuting equations (see, e.g. [6, 10]). Typical examples of soliton hierarchies which fit into the zero curvature formulation include the Korteweg–de Vries hierarchy [11], the Ablowitz–Kaup–Newell–Segur hierarchy [12], the Dirac hierarchy [13], the Kaup–Newell hierarchy [14], the Wadati–Konno–Ichikawa hierarchy [15] and the Boiti–Pempinelli–Tu hierarchy [16]. Those hierarchies only contain dependent variables less than or equal to three, and the case of more dependent variables is highly complicated, requiring considerable efforts in computations. Integrable couplings associated with nonsemisimple loop algebras present such examples, which can possess a large number of dependent variables.

Very recently, the three-dimensional special orthogonal Lie algebra $\text{so}(3, \mathbb{R})$ has been used in constructing soliton hierarchies (see, e.g. [17, 18]). This Lie algebra, being simple, can be realized through 3×3 skew-symmetric matrices, and thus, it has the basis

$$e_1 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \quad e_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (1.1)$$

which has the cyclic commutator relations:

$$[e_1, e_2] = e_3, \quad [e_2, e_3] = e_1, \quad [e_3, e_1] = e_2. \quad (1.2)$$

Its derived algebra is the algebra itself, and thus, it is 3-dimensional, too. The only other such three-dimensional real Lie algebra is the special linear algebra $\text{sl}(2, \mathbb{R})$, and it has been widely used in studying soliton equations in soliton theory (see, e.g. [11–16]).

The matrix loop algebra we shall adopt below is

$$\tilde{\text{so}}(3, \mathbb{R}) = \left\{ \sum_{i \geq 0} M_i \lambda^{n-i} \mid n \in \mathbb{Z}, \text{ and } M_i \in \text{so}(3, \mathbb{R}), i \geq 0 \right\}, \quad (1.3)$$

where λ is the loop parameter. That is to say that $\tilde{\text{so}}(3, \mathbb{R})$ is the space of all Laurent series in λ with coefficients in $\text{so}(3, \mathbb{R})$ and a finite regular part. A particular subalgebra of this loop algebra $\tilde{\text{so}}(3, \mathbb{R})$ is formed by linear combinations: $p_1(\lambda)e_1 + p_2(\lambda)e_2 + p_3(\lambda)e_3$, with p_1, p_2, p_3 being arbitrary polynomials in λ . Owing to the cyclic commutator relations (1.2), the loop algebra $\tilde{\text{so}}(3, \mathbb{R})$ provides a good structural basis for our study of soliton equations with Hamiltonian and quasi-Hamiltonian structures, and a few new soliton hierarchies have been already generated from $\tilde{\text{so}}(3, \mathbb{R})$, indeed (see, e.g. [17–22]).

In this paper, we would like to use the loop algebra $\tilde{\text{so}}(3, \mathbb{R})$ to introduce a counterpart matrix spectral problem for the Heisenberg spectral problem (see, e.g. [23–26]), and compute an integrable counterpart hierarchy of the Heisenberg soliton hierarchy (see, e.g. [3, 27]) by zero curvature equations. An application of the trace identity will engender bi-Hamiltonian structures for all members in the resulting counterpart soliton hierarchy, and thus the counterpart soliton hierarchy is Liouville integrable. The new counterpart hierarchy provides us with another interesting example of soliton hierarchies associated with the matrix loop algebra $\tilde{\text{so}}(3, \mathbb{R})$. A few concluding remarks and comments will be given at the end of the paper.

2. The Heisenberg soliton hierarchy

2.1. Solving the stationary zero curvature equation

The Heisenberg hierarchy [3] is associated with the following 2×2 matrix spectral problem [23, 24],

$$\begin{aligned}\phi_x &= U\phi = U(u, \lambda)\phi, & U &= \begin{bmatrix} \lambda r & \lambda p \\ \lambda q & -\lambda r \end{bmatrix}, \\ u &= \begin{bmatrix} p \\ q \end{bmatrix}, & \phi &= \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix}, & pq + r^2 &= 1.\end{aligned}\tag{2.1}$$

The corresponding stationary zero curvature equation

$$W_x = [U, W]\tag{2.2}$$

with

$$W = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}\tag{2.3}$$

is equivalent to

$$\begin{cases} a_x = \lambda pc - \lambda qb, \\ b_x = 2\lambda rb - 2\lambda pa, \\ c_x = 2\lambda qa - 2\lambda rc. \end{cases}\tag{2.4}$$

Let a, b and c have the following Laurent expansions in λ :

$$a = \sum_{i \geq 0} a_i \lambda^{-i}, \quad b = \sum_{i \geq 0} b_i \lambda^{-i}, \quad c = \sum_{i \geq 0} c_i \lambda^{-i},\tag{2.5}$$

and take the initial data

$$a_0 = r, \quad b_0 = p, \quad c_0 = q,\tag{2.6}$$

which are required by the equations on the first powers of λ in (2.4):

$$pc_0 - qb_0 = 0, \quad rb_0 - pa_0 = 0, \quad qa_0 - rc_0 = 0.$$

While determining the sequence of $\{a_i, b_i, c_i \mid i \geq 1\}$ by (2.4), we impose the condition that the constants of integration take the value of zero,

$$a_i|_{u=0} = b_i|_{u=0} = c_i|_{u=0} = 0, \quad i \geq 1,\tag{2.7}$$

so that the uniqueness can be guaranteed. Under (2.7), the system (2.4) equivalently generates

$$\begin{cases} a_{i+1} = -\frac{1}{2}\partial^{-1}\frac{q}{r}\partial b_{i+1} - \frac{1}{2}\partial^{-1}\frac{p}{r}\partial c_{i+1}, \\ b_{i,x} = 2rb_{i+1} - 2pa_{i+1}, \\ c_{i,x} = 2qa_{i+1} - 2rc_{i+1}, \end{cases} \quad i \geq 0,\tag{2.8}$$

the first of which is because we have

$$2ra_x = 2\lambda rpc - 2\lambda rqb = p(2\lambda qa - c_x) - q(b_x + 2\lambda pa) = -pc_x - qb_x,\tag{2.9}$$

from (2.4). The relationship in (2.8) clearly tells the inverse of a recursion relation for b_i and c_i ,

$$\begin{bmatrix} b_{i,x} \\ c_{i,x} \end{bmatrix} = R \begin{bmatrix} b_{i+1} \\ c_{i+1} \end{bmatrix}, \quad R = \begin{bmatrix} 2r + p\partial^{-1}\frac{q}{r}\partial & p\partial^{-1}\frac{p}{r}\partial \\ -q\partial^{-1}\frac{q}{r}\partial & -2r - q\partial^{-1}\frac{p}{r}\partial \end{bmatrix}, \quad i \geq 0.$$

Actually, we have the recursion relation

$$\begin{bmatrix} b_{i+1} \\ c_{i+1} \end{bmatrix} = L \begin{bmatrix} b_{i,x} \\ c_{i,x} \end{bmatrix}, \quad L = \begin{bmatrix} \frac{1}{2r} - \frac{1}{4}p\partial^{-1}\frac{q}{r}\partial & \frac{1}{4}p\partial^{-1}\frac{p}{r}\partial \\ -\frac{1}{4}q\partial^{-1}\frac{q}{r}\partial & -\frac{1}{2r} + \frac{1}{4}q\partial^{-1}\frac{p}{r}\partial \end{bmatrix}, \quad i \geq 0. \quad (2.10)$$

We give a proof of (2.10) for the completeness of deriving the Heisenberg hierarchy. Through the second and third relations in (2.4), we can compute that

$$q_x b_x - p_x c_x = 2\lambda r(q_x b + p_x c) - 2\lambda(pq_x + p_x q)a = 2\lambda r(q_x b + p_x c + 2r_x a).$$

Then taking (2.9) into consideration, we obtain

$$\lambda(qb + pc + 2ra)_x = \frac{q_x}{2r}b_x - \frac{p_x}{2r}c_x,$$

and it thus follows that

$$qb_{i+1} + pc_{i+1} + 2ra_{i+1} = \frac{1}{2}\partial^{-1}\frac{q_x}{r}b_{i,x} - \frac{1}{2}\partial^{-1}\frac{p_x}{r}c_{i,x}, \quad i \geq 0.$$

Together with (2.8), this leads to

$$\begin{aligned} a_{i+1} &= \frac{1}{4}r\partial^{-1}\frac{q_x}{r}b_{i,x} - \frac{1}{4}r\partial^{-1}\frac{p_x}{r}c_{i,x} - \frac{1}{4}qb_{i,x} + \frac{1}{4}pc_{i,x} \\ &= -\frac{1}{4}r\partial^{-1}\frac{q}{r}\partial b_{i,x} + \frac{1}{4}r\partial^{-1}\frac{p}{r}\partial c_{i,x}, \quad i \geq 0, \end{aligned} \quad (2.11)$$

and finally to the recursion relation (2.10).

Now, through (2.8) or (2.10) and (2.11), the first two sets of $\{a_i, b_i, c_i | i \geq 1\}$ can be worked out as follows:

$$\begin{aligned} a_1 &= -\frac{1}{4}p_x q + \frac{1}{4}pq_x, \quad b_1 = -\frac{1}{4r}(pp_x q - p^2 q_x - 2p_x), \\ c_1 &= -\frac{1}{4r}(p_x q^2 - pqq_x + 2q_x); \\ a_2 &= -\frac{1}{32r^3}(3pp_x^2 q^3 - 6p^2 p_x q^2 q_x + 3p^3 q q_x^2 - 4pp_{xx} q^2 - 4p^2 q q_{xx} \\ &\quad - p_x^2 q^2 + 14pp_x q q_x - p^2 q_x^2 + 4p_{xx} q + 4pq_{xx} - 4p_x q_x), \\ b_2 &= \frac{1}{32r^2}(3pp_x^2 q^2 - 6p^2 p_x q q_x + 3p^3 q_x^2 - 8pp_{xx} q + 12pp_x q_x + 8p_{xx}), \end{aligned}$$

$$c_2 = \frac{1}{32r^2}(3p_x^2q^3 - 6pp_xq^2q_x + 3p^2qq_x^2 - 8pqq_{xx} + 12p_xqq_x + 8q_{xx}).$$

We point out that the localness of the first two sets of $\{a_i, b_i, c_i \mid i \geq 1\}$ is not an accident. All the functions $a_i, b_i, c_i, i \geq 1$, are differential functions, indeed. We explain this phenomenon as follows. First from the stationary zero curvature equation (2.2), i.e. $W_x = [U, W]$, we can compute

$$\frac{d}{dx} \text{tr}(W^2) = 2 \text{tr}(WW_x) = 2 \text{tr}(W[U, W]) = 0,$$

and hence, the fact that $\text{tr}(W^2) = 2(a^2 + bc)$ tells that

$$a^2 + bc = (a^2 + bc)|_{u=0} = 1,$$

where the initial data in (2.6) was used. Then, taking the Laurent expansions (2.5) into consideration, we see that

$$a_i = \frac{p}{4}c_{i-1,x} - \frac{q}{4}b_{i-1,x} - \frac{r}{2} \sum_{k+l=i, k,l \geq 1} (a_k a_l + b_k b_l), \quad i \geq 1. \quad (2.12)$$

Finally, based on this recursion relation (2.12) and the last two recursion relations in (2.8), an application of the mathematical induction shows that all the functions $a_i, b_i, c_i, i \geq 1$, are differential functions in u , i.e. they are all local.

2.2. The Heisenberg hierarchy and its bi-Hamiltonian structure

It is, now, direct to see that the Lax operators

$$V^{[m]} = \lambda(\lambda^m W)_+ \equiv \sum_{i=0}^m \begin{bmatrix} a_i & b_i \\ c_i & -a_i \end{bmatrix} \lambda^{m+1-i}, \quad m \geq 0, \quad (2.13)$$

guarantee that the corresponding zero curvature equations:

$$U_{t_m} - (V^{[m]})_x + [U, V^{[m]}] = 0, \quad m \geq 0, \quad (2.14)$$

equivalently yield a hierarchy of soliton equations

$$u_{t_m} = \begin{bmatrix} p \\ q \end{bmatrix}_{t_m} = K_m = \begin{bmatrix} b_{m,x} \\ c_{m,x} \end{bmatrix}, \quad m \geq 0. \quad (2.15)$$

The third set of equations in (2.14) is

$$r_{t_m} = a_{m,x}, \quad m \geq 0,$$

which is automatically satisfied, due to (2.9). Every Heisenberg system in this soliton hierarchy is local, since all the functions $a_i, b_i, c_i, i \geq 0$, are differential equations.

The Hamiltonian structures of the Heisenberg hierarchy (2.15) can be furnished by the trace identity [6]

$$\frac{\delta}{\delta u} \int \text{tr} \left(\frac{\partial U}{\partial \lambda} W \right) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^\gamma \text{tr} \left(\frac{\partial U}{\partial u} W \right), \quad \gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln |\text{tr}(W^2)|, \quad (2.16)$$

or generally, the variational identity (see [8, 28]). A straightforward computation of

$$\frac{\partial U}{\partial \lambda} = \begin{bmatrix} r & p \\ q & -r \end{bmatrix}, \quad \frac{\partial U}{\partial p} = \begin{bmatrix} -\frac{1}{2} \frac{q}{r} \lambda & \lambda \\ 0 & \frac{1}{2} \frac{q}{r} \lambda \end{bmatrix}, \quad \frac{\partial U}{\partial q} = \begin{bmatrix} -\frac{1}{2} \frac{p}{r} \lambda & 0 \\ \lambda & \frac{1}{2} \frac{p}{r} \lambda \end{bmatrix},$$

and

$$\begin{aligned} \text{tr} \left(W \frac{\partial U}{\partial \lambda} \right) &= qb + pc + 2ra, \\ \text{tr} \left(W \frac{\partial U}{\partial p} \right) &= \lambda c - \frac{qa\lambda}{r}, \\ \text{tr} \left(W \frac{\partial U}{\partial q} \right) &= \lambda b - \frac{pa\lambda}{r}, \end{aligned}$$

and an application of (2.16) give rise to the following identity

$$\frac{\delta}{\delta u} \int (qb + pc + 2ra) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^\gamma \begin{bmatrix} \lambda(c - qa/r) \\ \lambda(b - pa/r) \end{bmatrix}.$$

A balance of coefficients of λ^{-m} for each $m \geq 0$ in the equality obviously yields

$$\frac{\delta}{\delta u} \int (qb_m + pc_m + 2ra_m) dx = (\gamma - m + 1) \begin{bmatrix} c_m - \frac{q}{r} a_m \\ b_m - \frac{p}{r} a_m \end{bmatrix}, \quad m \geq 0.$$

The identity with $m = 1$ tells that $\gamma = 0$, and thus, we obtain

$$\frac{\delta}{\delta u} \mathcal{H}_m = \begin{bmatrix} c_{m+1} - \frac{q}{r} a_{m+1} \\ b_{m+1} - \frac{p}{r} a_{m+1} \end{bmatrix}, \quad m \geq 0, \quad (2.17)$$

with the Hamiltonian functionals being defined by

$$\mathcal{H}_0 = \int \frac{p_x q - pq_x}{2(1+r)} dx, \quad \mathcal{H}_m = \int \left(-\frac{qb_{m+1} + pc_{m+1} + 2ra_{m+1}}{m} \right) dx, \quad m \geq 1. \quad (2.18)$$

It then follows from (2.8) that

$$u_{t_m} = K_m = \begin{bmatrix} b_{m,x} \\ c_{m,x} \end{bmatrix} = \begin{bmatrix} 2rb_{m+1} - 2pa_{m+1} \\ 2qa_{m+1} - 2rc_{m+1} \end{bmatrix} = J \begin{bmatrix} c_{m+1} - \frac{q}{r} a_{m+1} \\ b_{m+1} - \frac{p}{r} a_{m+1} \end{bmatrix}, \quad m \geq 0. \quad (2.19)$$

where

$$J = J(u) = \begin{bmatrix} 0 & 2r \\ -2r & 0 \end{bmatrix}, \quad pq + r^2 = 1. \quad (2.20)$$

A direct evaluation shows that J is a Hamiltonian operator, by noting

$$J'(u)[S] = \begin{bmatrix} 0 & -(qS^1 + pS^2)/r \\ (qS^1 + pS^2)/r & 0 \end{bmatrix}, \quad S = \begin{bmatrix} S^1 \\ S^2 \end{bmatrix}.$$

It follows now that the Heisenberg soliton hierarchy (2.15) has the bi-Hamiltonian structure

$$u_{t_m} = K_m = J \frac{\delta \mathcal{H}_m}{\delta u} = M \frac{\delta \mathcal{H}_{m-1}}{\delta u}, \quad m \geq 1, \quad (2.21)$$

where the Hamiltonian functionals \mathcal{H}_m 's and the first Hamiltonian operator J are respectively given by (2.18) and (2.20), and the second Hamiltonian operator M is defined by

$$M = \partial L J = \begin{bmatrix} -\frac{1}{2} \partial p \partial^{-1} p \partial & \partial - \frac{1}{2} \partial p \partial^{-1} q \partial \\ \partial - \frac{1}{2} \partial q \partial^{-1} p \partial & -\frac{1}{2} \partial q \partial^{-1} q \partial \end{bmatrix}. \quad (2.22)$$

It is straightforward to verify that the two operators J and M form a Hamiltonian pair and so

$$\Phi = M J^{-1} = \begin{bmatrix} \frac{1}{2} \partial \frac{1}{r} - \frac{1}{4} \partial p \partial^{-1} q \partial \frac{1}{r} & \frac{1}{4} \partial p \partial^{-1} p \partial \frac{1}{r} \\ -\frac{1}{4} \partial q \partial^{-1} q \partial \frac{1}{r} & -\frac{1}{2} \partial \frac{1}{r} + \frac{1}{4} \partial q \partial^{-1} p \partial \frac{1}{r} \end{bmatrix} \quad (2.23)$$

presents a common hereditary recursion operator for the Heisenberg soliton hierarchy (2.15). The resulting functionals correspond to common conservation laws for each soliton system in the whole soliton hierarchy (2.15).

The first nonlinear system in the Heisenberg hierarchy (2.15) reads

$$\begin{cases} p_{t_1} = \frac{1}{8r^3}(-6pp_{xx}q + 2p^2p_{xx}q^2 + pp_x^2q^2 + 4pp_xq_x \\ \quad - 2p^2p_xqq_x + 2p^2q_{xx} - 2p^3qq_{xx} + 4p_{xx} + p^3q_x^2), \\ q_{t_1} = -\frac{1}{8r^3}(-2pp_{xx}q^3 + 2p^2q^2q_{xx} + p_x^2q^3 - 2pp_xq^2q_x \\ \quad + p^2qq_x^2 + 2p_{xx}q^2 - 6pqq_{xx} + 4p_xqq_x + 4q_{xx}). \end{cases} \quad (2.24)$$

This Heisenberg system has the bi-Hamiltonian structure

$$u_{t_1} = J \frac{\delta \mathcal{H}_1}{\delta u} = M \frac{\delta \mathcal{H}_0}{\delta u}, \quad (2.25)$$

where \mathcal{H}_0 is defined by (2.18) and \mathcal{H}_1 is given by

$$\mathcal{H}_1 = \int \left[-\frac{1}{16r^2} (p^2 q_x^2 - 2pp_x q q_x + p_x^2 q^2 + 4p_x q_x) \right] dx. \quad (2.26)$$

3. An integrable $\text{so}(3, \mathbb{R})$ -counterpart

3.1. The Heisenberg type hierarchy associated with $\text{so}(3, \mathbb{R})$

To generate an integrable counterpart of the Heisenberg hierarchy (2.15), associated with $\text{so}(3, \mathbb{R})$, we introduce a new 3×3 matrix spectral problem,

$$\phi_x = U\phi = U(u, \lambda)\phi, \quad u = \begin{bmatrix} p \\ q \end{bmatrix}, \quad \phi = \begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{bmatrix}, \quad (3.1)$$

where the spectral matrix U is chosen as

$$U = \lambda r e_1 + \lambda p e_2 + \lambda q e_3 = \begin{bmatrix} 0 & -\lambda q & -\lambda r \\ \lambda q & 0 & -\lambda p \\ \lambda r & \lambda p & 0 \end{bmatrix}, \quad p^2 + q^2 + r^2 = 1. \quad (3.2)$$

We similarly follow a standard procedure using the zero curvature formulation (see [6, 10]), to present an integrable hierarchy. First, we solve the stationary zero curvature equation

$$W_x = [U, W], \quad W \in \widetilde{\text{so}}(3, \mathbb{R}). \quad (3.3)$$

If we assume W to be

$$W = a e_1 + b e_2 + c e_3 = \begin{bmatrix} 0 & -c & -a \\ c & 0 & -b \\ a & b & 0 \end{bmatrix}, \quad (3.4)$$

then Eq. (3.3) becomes

$$\begin{cases} a_x = \lambda p c - \lambda q b, \\ b_x = -\lambda r c + \lambda q a, \\ c_x = \lambda r b - \lambda p a. \end{cases} \quad (3.5)$$

Note that the second and third relations in (2.4) and (3.5) are slightly different, which generate different soliton hierarchies with different recursion operators.

Let a, b and c be the following Laurent expansions in λ :

$$a = \sum_{i \geq 0} a_i \lambda^{-i}, \quad b = \sum_{i \geq 0} b_i \lambda^{-i}, \quad c = \sum_{i \geq 0} c_i \lambda^{-i}, \quad (3.6)$$

and take the initial data

$$a_0 = r, \quad b_0 = p, \quad c_0 = q, \quad (3.7)$$

which are required by the equations on the first powers of λ in (3.5):

$$pc_0 - qb_0 = 0, \quad -rc_0 + qa_0 = 0, \quad rb_0 - pa_0 = 0.$$

While determining the sequence of $\{a_i, b_i, c_i | i \geq 1\}$ by (3.5), we similarly impose the condition that the constants of integration take the value of zero,

$$a_i|_{u=0} = b_i|_{u=0} = c_i|_{u=0} = 0, \quad i \geq 1, \quad (3.8)$$

to guarantee the uniqueness.

Under (3.8), the system (3.5) leads equivalently to

$$\begin{cases} a_{i+1} = -\partial^{-1} \frac{p}{r} \partial b_{i+1} - \partial^{-1} \frac{q}{r} \partial c_{i+1}, \\ b_{i,x} = -rc_{i+1} + qa_{i+1}, \\ c_{i,x} = rb_{i+1} - pa_{i+1}, \end{cases} \quad i \geq 0, \quad (3.9)$$

the first of which is because from (3.5) we have

$$ra_x = \lambda rpc - \lambda rqb = p(-b_x + \lambda qa) - q(c_x + \lambda pa) = -pb_x - qc_x. \quad (3.10)$$

The relationship in (3.9) tells the inverse of recursion relations for b_i and c_i ,

$$\begin{bmatrix} b_{i,x} \\ c_{i,x} \end{bmatrix} = R \begin{bmatrix} b_{i+1} \\ c_{i+1} \end{bmatrix}, \quad R = \begin{bmatrix} -q\partial^{-1} \frac{p}{r} \partial & -r - q\partial^{-1} \frac{q}{r} \partial \\ r + p\partial^{-1} \frac{p}{r} \partial & p\partial^{-1} \frac{q}{r} \partial \end{bmatrix}, \quad i \geq 0.$$

Actually, we have the following recursion relation

$$\begin{bmatrix} b_{i+1} \\ c_{i+1} \end{bmatrix} = L \begin{bmatrix} b_{i,x} \\ c_{i,x} \end{bmatrix}, \quad L = \begin{bmatrix} p\partial^{-1} q \partial \frac{1}{r} & \frac{1}{r} - p\partial^{-1} p \partial \frac{1}{r} \\ -\frac{1}{r} + q\partial^{-1} q \partial \frac{1}{r} & -q\partial^{-1} p \partial \frac{1}{r} \end{bmatrix}, \quad i \geq 0. \quad (3.11)$$

The proof for (3.11) is straightforward. First, the second and third relations in (3.5) yield

$$q_x b_x - p_x c_x = -\lambda r(p_x b + q_x c) + \lambda(pp_x + qq_x)a = -\lambda r(p_x b + q_x c + r_x a).$$

Then, by (3.10), we arrive at

$$\lambda(pb + qc + ra)_x = \frac{p_x}{r} c_x - \frac{q_x}{r} b_x,$$

and this tells us that

$$pb_{i+1} + qc_{i+1} + ra_{i+1} = \partial^{-1} \frac{p_x}{r} c_{i,x} - \partial^{-1} \frac{q_x}{r} b_{i,x}, \quad i \geq 0.$$

Together with (3.9) we obtain

$$\begin{aligned} a_{i+1} &= r\partial^{-1}\frac{p_x}{r}c_{i,x} - r\partial^{-1}\frac{q_x}{r}b_{i,x} + qb_{i,x} - pc_{i,x} \\ &= -r\partial^{-1}p\partial\frac{1}{r}c_{i,x} + r\partial^{-1}q\partial\frac{1}{r}b_{i,x}, \quad i \geq 0, \end{aligned} \quad (3.12)$$

and further the recursion relation (3.11). In (3.12), the operator relation $f\partial = -f_x + \partial f$ was used for simplification.

Through the above recursion relations in (3.9) or (3.11) and (3.12), the first two sets of $\{a_i, b_i, c_i | i \geq 1\}$ can be computed as follows:

$$\begin{aligned} a_1 &= p_x q - pq_x, \quad b_1 = \frac{1}{r}(-p^2 q_x + pp_x q + q_x), \quad c_1 = \frac{1}{r}(p_x q^2 - pq q_x - p_x); \\ a_2 &= -\frac{1}{2r^3}(3p^4 q_x^2 + 3p_x^2 q^4 + 2p^3 p_{xx} + 2q^3 q_{xx} - 6pq^3 p_x q_x + 3p^2 q^2 p_x^2 \\ &\quad - 3q^2 q_x^2 + 2pp_{xx} q^2 + 3p^2 q^2 q_x^2 - 6p^3 p_x q q_x + 2p^2 q q_{xx} - 2q q_{xx} \\ &\quad + 2pp_x q q_x - 3p^2 p_x^2 - 2pp_{xx} - 4p^2 q_x^2 - 4p_x q^2 + p_x^2 + q_x^2), \\ b_2 &= \frac{1}{2r^2}(3pp_x^2 q^2 + 2p_{xx} q^2 - 6p^2 p_x q q_x - 3pp_x^2 - 3pq_x^2 + 2p^2 p_{xx} + 3p^3 q_x^2 - 2p_{xx}), \\ c_2 &= \frac{1}{2r^2}(3q^3 p_x^2 - 6pp_x q^2 q_x + 2q^2 q_{xx} + 3p^2 q q_x^2 - 3q q_x^2 - 3p_x^2 q - 2q_{xx} + 2p^2 q_{xx}). \end{aligned}$$

The localness of the first two sets of $\{a_i, b_i, c_i | i \geq 1\}$ is not an accident. All the functions $a_i, b_i, c_i, i \geq 1$, are local, indeed.

PROPOSITION 3.1. *Let $p^2 + q^2 + r^2 = 1$. Assume that $a_i, b_i, c_i, i \geq 1$, be defined by (3.9) from the initail data (3.7) under the condition (3.8). Then the functions $a_i, b_i, c_i, i \geq 1$, are all differential functions in p and q .*

Proof: The verification of the localness property per se is straightforward and easy. First from the stationary zero curvature equation (3.3), i.e. $W_x = [U, W]$, we can similarly compute

$$\frac{d}{dx} \text{tr}(W^2) = 2 \text{tr}(WW_x) = 2 \text{tr}(W[U, W]) = 0,$$

and so, due to $\text{tr}(W^2) = -2(a^2 + b^2 + c^2)$, we have

$$a^2 + b^2 + c^2 = (a^2 + b^2 + c^2)|_{u=0} = 1,$$

the last step of which follows from the initial data in (3.7). This implies that

$$a_i = -pc_{i-1,x} + qb_{i-1,x} - \frac{r}{2} \sum_{k+l=i, k,l \geq 1} (a_k a_l + b_k b_l + c_k c_l), \quad i \geq 1. \quad (3.13)$$

By using this recursion relation (3.13) and the last two recursion relations in (3.9),

i.e.

$$\begin{cases} b_i = \frac{1}{r}(c_{i-1,x} + pa_i), \\ c_i = \frac{1}{r}(-b_{i-1,x} + qa_i), \end{cases} \quad i \geq 1,$$

application of the mathematical induction finally shows that all the functions a_i, b_i, c_i , $i \geq 1$, are local, i.e. they are all differential functions in p and q . The proof is finished. \square

As usual, let us introduce

$$V^{[m]} = \lambda(\lambda^m W)_+ \equiv \sum_{i=0}^m (a_i e_1 + b_i e_2 + c_i e_3) \lambda^{m+1-i} \in \widetilde{\text{so}}(3, \mathbb{R}), \quad m \geq 0. \quad (3.14)$$

Then, based on (3.5), we can see that the corresponding zero curvature equations

$$U_{t_m} - (V^{[m]})_x + [U, V^{[m]}] = 0, \quad m \geq 0, \quad (3.15)$$

equivalently engender a hierarchy of soliton equations:

$$u_{t_m} = \begin{bmatrix} p \\ q \end{bmatrix}_{t_m} = K_m = \begin{bmatrix} b_{m,x} \\ c_{m,x} \end{bmatrix}, \quad m \geq 0. \quad (3.16)$$

Note that the third set of equations in (3.15) is

$$r_{t_m} = a_{m,x}, \quad m \geq 0,$$

which is, thanks to (3.10), automatically satisfied:

$$r_{t_m} = -\frac{p}{r}p_{t_m} - \frac{q}{r}q_{t_m} = -\frac{p}{r}b_{m,x} - \frac{q}{r}c_{m,x} = a_{m,x}, \quad m \geq 0. \quad (3.17)$$

Every system in this counterpart soliton hierarchy is local, since all the functions a_i, b_i, c_i , $i \geq 0$, are differential functions. The first nonlinear system in the counterpart hierarchy (3.16) reads

$$\begin{cases} p_{t_1} = -\frac{1}{r^3}(-qq_x^2 - 2pp_xq^2q_x + p^2qq_x^2 - q_{xx} + 2p^2q_{xx} + q^2q_{xx} \\ \quad - p_x^2q + q^3p_x^2 - pp_{xx}q + p^3p_{xx}q + pp_{xx}q^3 - p^4q_{xx} - p^2q^2q_{xx}), \\ q_{t_1} = -\frac{1}{r^3}(-p^3qq_{xx} - p^3q_x^2 + p^2p_{xx}q^2 + 2p^2p_xqq_x - pq^3q_{xx} - pp_x^2q^2 \\ \quad + p_{xx}q^4 - p^2p_{xx} + pqq_{xx} + pp_x^2 + pq_x^2 - 2p_{xx}q^2 + p_{xx}). \end{cases} \quad (3.18)$$

3.2. Bi-Hamiltonian structure and Liouville integrability

We shall show that all systems in the counterpart soliton hierarchy (3.16) are Liouville integrable. Let us first establish a bi-Hamiltonian structure for the counterpart hierarchy (3.16).

We shall use the trace identity (2.16), i.e.

$$\frac{\delta}{\delta u} \int \text{tr} \left(\frac{\partial U}{\partial \lambda} W \right) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^\gamma \text{tr} \left(\frac{\partial U}{\partial u} W \right), \quad \gamma = -\frac{\lambda}{2} \frac{d}{d\lambda} \ln |\text{tr}(W^2)|.$$

It is direct to find that

$$\frac{\partial U}{\partial \lambda} = \begin{bmatrix} 0 & -q & -r \\ q & 0 & -p \\ r & p & 0 \end{bmatrix}, \quad \frac{\partial U}{\partial p} = \begin{bmatrix} 0 & 0 & \frac{p}{r} \lambda \\ 0 & 0 & -\lambda \\ -\frac{p}{r} \lambda & \lambda & 0 \end{bmatrix}, \quad \frac{\partial U}{\partial q} = \begin{bmatrix} 0 & -\lambda & \frac{q}{r} \lambda \\ \lambda & 0 & 0 \\ -\frac{q}{r} \lambda & 0 & 0 \end{bmatrix},$$

and so, we obtain

$$\begin{aligned} \text{tr} \left(W \frac{\partial U}{\partial \lambda} \right) &= -2qc - 2pb - 2ra, \\ \text{tr} \left(W \frac{\partial U}{\partial p} \right) &= -2\lambda b + \frac{2pa\lambda}{r}, \\ \text{tr} \left(W \frac{\partial U}{\partial q} \right) &= -2\lambda c + \frac{2qa\lambda}{r}. \end{aligned}$$

Plugging these quantities into the above trace identity gives rise to

$$\frac{\delta}{\delta u} \int (-qc - pb - ra) dx = \lambda^{-\gamma} \frac{\partial}{\partial \lambda} \lambda^\gamma \begin{bmatrix} \lambda(pa/r - b) \\ \lambda(qa/r - c) \end{bmatrix}.$$

A balance of coefficients of λ^{-m} for each $m \geq 0$ then yields

$$\frac{\delta}{\delta u} \int (-qc_m - pb_m - ra_m) dx = (\gamma - m + 1) \begin{bmatrix} \frac{p}{r} a_m - b_m \\ \frac{q}{r} a_m - c_m \end{bmatrix}, \quad m \geq 0.$$

This identity with $m = 1$ tells us that $\gamma = 0$, and hence, we obtain

$$\frac{\delta}{\delta u} \mathcal{H}_m = \begin{bmatrix} \frac{p}{r} a_{m+1} - b_{m+1} \\ \frac{q}{r} a_{m+1} - c_{m+1} \end{bmatrix}, \quad m \geq 0, \quad (3.19)$$

where the Hamiltonian functionals are defined by

$$\mathcal{H}_0 = \int \frac{p_x q - pq_x}{1+r} dx, \quad \mathcal{H}_m = \int \frac{qc_{m+1} + pb_{m+1} + ra_{m+1}}{m} dx, \quad m \geq 1. \quad (3.20)$$

The functional \mathcal{H}_0 was directly computed from the vector

$$\left(\frac{pa_1}{r} - b_1, \frac{qa_1}{r} - c_1 \right)^T = \left(-\frac{q_x}{r}, \frac{p_x}{r} \right)^T.$$

Now, it follows from (3.9) that

$$u_{t_m} = K_m = \begin{bmatrix} b_{m,x} \\ c_{m,x} \end{bmatrix} = \begin{bmatrix} -rc_{m+1} + qa_{m+1} \\ rb_{m+1} - pa_{m+1} \end{bmatrix} = J \begin{bmatrix} \frac{p}{r}a_{m+1} - b_{m+1} \\ \frac{q}{r}a_{m+1} - c_{m+1} \end{bmatrix}, \quad m \geq 0, \quad (3.21)$$

where

$$J = J(u) = \begin{bmatrix} 0 & r \\ -r & 0 \end{bmatrix}, \quad p^2 + q^2 + r^2 = 1. \quad (3.22)$$

Noting that the Gateaux derivative of J reads

$$J'(u)[S] = \begin{bmatrix} 0 & -\frac{pS^1 + qS^2}{r} \\ \frac{pS^1 + qS^2}{r} & 0 \end{bmatrix}, \quad S = \begin{bmatrix} S^1 \\ S^2 \end{bmatrix}, \quad (3.23)$$

a straightforward argument shows that J is a Hamiltonian operator. Again based on (3.11), it now follows that the counterpart soliton hierarchy (3.16) has the bi-Hamiltonian structure

$$u_{t_m} = K_m = J \frac{\delta \mathcal{H}_m}{\delta u} = M \frac{\delta \mathcal{H}_{m-1}}{\delta u}, \quad m \geq 1, \quad (3.24)$$

where the Hamiltonian functionals \mathcal{H}_m and the first Hamiltonian operator J are respectively given by (3.20) and (3.22), and the second Hamiltonian operator M is defined by

$$M = \partial L J = \begin{bmatrix} -\partial + \partial p \partial^{-1} p \partial & \partial p \partial^{-1} q \partial \\ \partial q \partial^{-1} p \partial & -\partial + \partial q \partial^{-1} q \partial \end{bmatrix}. \quad (3.25)$$

A Maple computation can show that J and M constitute a Hamiltonian pair and so, the operator

$$\Phi = MJ^{-1} = \begin{bmatrix} \partial p \partial^{-1} q \partial \frac{1}{r} & \partial \frac{1}{r} - \partial p \partial^{-1} p \partial \frac{1}{r} \\ -\partial \frac{1}{r} + \partial q \partial^{-1} q \partial \frac{1}{r} & -\partial q \partial^{-1} p \partial \frac{1}{r} \end{bmatrix} \quad (3.26)$$

is a common hereditary recursion operator for the counterpart soliton hierarchy (3.16). The first nonlinear system (3.18) in the hierarchy (3.16) has the bi-Hamiltonian structure

$$u_{t_1} = K_1 = J \frac{\delta \mathcal{H}_1}{\delta u} = M \frac{\delta \mathcal{H}_0}{\delta u}, \quad (3.27)$$

where \mathcal{H}_0 is defined by (3.20) and \mathcal{H}_1 is given by

$$\mathcal{H}_1 = \int \frac{1}{2r^2} (p^2 q_x^2 - 2pp_x q q_x + p_x^2 q^2 - p_x^2 - q_x^2) dx. \quad (3.28)$$

The resulting functionals correspond to common conservation laws for each soliton system in the counterpart soliton hierarchy (3.16). We point out that such differential polynomial conservation laws can also be generated either directly by computer algebra codes (see, e.g. [29]) or from some Riccati equation obtained from the underlying matrix spectral problem (see, e.g. [30–32]).

The bi-Hamiltonian structures in (3.24) show that the counterpart soliton hierarchy (3.16) is Liouville integrable, i.e. it possesses infinitely many conserved functionals and symmetries which form Abelian algebras:

$$\begin{aligned}\{\mathcal{H}_k, \mathcal{H}_l\}_J &= \int \left(\frac{\delta \mathcal{H}_k}{\delta u} \right)^T J \frac{\delta \mathcal{H}_l}{\delta u} dx = 0, \quad k, l \geq 0, \\ \{\mathcal{H}_k, \mathcal{H}_l\}_M &= \int \left(\frac{\delta \mathcal{H}_k}{\delta u} \right)^T M \frac{\delta \mathcal{H}_l}{\delta u} dx = 0, \quad k, l \geq 0,\end{aligned}$$

and

$$[K_k, K_l] = K'_k(u)[K_l] - K'_l(u)[K_k] = 0, \quad k, l \geq 0.$$

These commuting relations are also consequences of the Virasoro algebras of Lax operators. We refer the interested readers to [33–35] for a detailed and systematical study on algebraic structures of Lax operators and zero curvature equations.

4. Concluding remarks

Starting with the special orthogonal Lie algebra $\tilde{\mathfrak{so}}(3, \mathbb{R})$, we introduced a counterpart matrix spectral problem of the Heisenberg spectral problem by using the same linear combination of basis matrices, and generated an integrable $\mathfrak{so}(3, \mathbb{R})$ -counterpart of the Heisenberg soliton hierarchy. All members in the resulting counterpart soliton hierarchy are local and bi-Hamiltonian. So, they are Liouville integrable PDEs, and particularly possess infinitely many commuting symmetries and conserved densities.

We remark that the following three typical matrix spectral matrices associated with $\tilde{\mathfrak{so}}(3, \mathbb{R})$:

$$\begin{aligned}U(u, \lambda) &= \lambda e_1 + p e_2 + q e_3, \\ U(u, \lambda) &= \lambda^2 e_1 + \lambda p e_2 + \lambda q e_3, \\ U(u, \lambda) &= \lambda e_1 + \lambda p e_2 + \lambda q e_3,\end{aligned}$$

where $u = (p, q)^T$ includes two dependent variables, have been considered of late [17–19]. Our example above provides a new spectral problem associated with $\mathfrak{so}(3, \mathbb{R})$, fitting into the zero curvature formulation. We hope that more examples of such soliton hierarchies, even with dependent variables more than two, can be presented in future research.

Given an initial matrix loop algebra, one normally needs only a considerable investment of time and computational dexterity to formulate spectral problems and construct the corresponding integrable hierarchies of soliton equations. Higher-order

matrix spectral problems can engender soliton hierarchies consisting of multi-component integrable systems (see, e.g. [36–41]). Integrable couplings (see, e.g. [42–45]) associated with enlarged matrix loop algebras [46, 47] provide such specific examples of soliton hierarchies. They possess triangular forms [28] and their conserved densities can be generated by applying the variational identity [8, 28]. Nevertheless, there exist nonsemisimple loop algebras [48, 49], which do not possess any ad-invariant, symmetric and nondegenerate bilinear form, and so, one needs to develop new tools, besides the variational identity, to compute Hamiltonian structures of soliton equations.

Acknowledgements

The work was supported in part by NSF under the grant DMS-1301675, NNSFC under the grants 11371326, 11271008, 61072147, 11371323 and 11271266, Natural Science Foundation of Shanghai (Grant No. 11ZR1414100), Zhejiang Innovation Project of China (Grant No. T200905), and the First-class Discipline of Universities in Shanghai and the Shanghai Univ. Leading Academic Discipline Project (No. A.13-0101-12-004). The authors are also grateful to E. A. Appiah, X. Gu, H. C. Ma, S. Manukure, M. McAnally, Y. Q. Yao and Y. Zhou for their stimulating discussions.

REFERENCES

- [1] M. J. Ablowitz and P. A. Clarkson: *Solitons, Nonlinear Evolution Equations and Inverse Scattering*, Cambridge University Press, Cambridge 1991.
- [2] F. Calogero and A. Degasperis: *Spectral Transform and Solitons*, Elsevier, North Holland 2011.
- [3] D. Y. Chen: *Introduction to Solitons*, Science Press, Beijing 2006.
- [4] V. G. Drinfel'd and V. V. Sokolov: Equations of Korteweg-de Vries type and simple Lie algebras, *Soviet Math. Dokl.* **23** (1991), 457–462.
- [5] S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov: *Theory of Solitons - The Inverse Scattering Method*, Consultants Bureau/A Division of Plenum Publishing Corporation, New York 1984.
- [6] G. Z. Tu: On Liouville integrability of zero-curvature equations and the Yang hierarchy, *J. Phys. A: Math. Gen.* **22** (1989), 2375–2392.
- [7] G. Z. Tu: A trace identity and its applications to the theory of discrete integrable systems, *J. Phys. A: Math. Gen.* **23** (1990), 3903–3922.
- [8] W. X. Ma and M. Chen: Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras, *J. Phys. A: Math. Gen.* **39** (2006), 10787–10801.
- [9] W. X. Ma: A discrete variational identity on semi-direct sums of Lie algebras, *J. Phys. A: Math. Theoret.* **40** (2007), 15055–15069.
- [10] W. X. Ma: A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, *Chin. Ann. Math. A* **13** (1992), 115–123; *Chin. J. Contemp. Math.* **13** (1992), 79–89.
- [11] P. D. Lax: Integrals of nonlinear equations of evolution and solitary waves, *Commun. Pure Appl. Math.* **21** (1968), 467–490.
- [12] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur: The inverse scattering transform-Fourier analysis for nonlinear problems, *Stud. Appl. Math.* **53** (1974), 249–315.
- [13] H. Grosse: New solitons connected to the Dirac equation, *Phys. Rep.* **134** (1986), 297–304.
- [14] D. J. Kaup and A. C. Newell: An exact solution for a derivative nonlinear Schrödinger equation, *J. Math. Phys.* **19** (1978), 798–801.
- [15] M. Wadati, K. Konno and Y. H. Ichikawa: New integrable nonlinear evolution equations, *J. Phys. Soc. Jpn.* **47** (1979), 1698–1700.

- [16] M. Boiti, F. Pempinelli and G. Z. Tu: Canonical structure of soliton equations via isospectral eigenvalue problems, *Nuovo Cimento B* **79** (1984), 231–265.
- [17] W. X. Ma: A soliton hierarchy associated with $\text{so}(3, \mathbb{R})$, *Appl. Math. Comput.* **220** (2013), 117–122.
- [18] W. X. Ma: A spectral problem based on $\text{so}(3, \mathbb{R})$ and its associated commuting soliton equations, *J. Math. Phys.* **54** (2013), 103509, 8 pp.
- [19] W. X. Ma, S. Manukure and H. C. Zheng: A counterpart of the Wadati-Konno-Ichikawa soliton hierarchy associated with $\text{so}(3, \mathbb{R})$, *Z. Naturforsch. A* **69** (2014), 411–419.
- [20] C. X. Li, S. F. Shen, W. X. Ma and S. M. Yu: Integrable generalizations of the two new soliton hierarchies of AKNS and KN types associated with $\text{so}(3, \mathbb{R})$ (arXiv:1406.1326, preprint, 2014).
- [21] S. Manukure and W. X. Ma: A soliton hierarchy associated with a new spectral problem and its Hamiltonian structure (preprint, 2014).
- [22] W. Y. Zhang and W. X. Ma: An $\text{so}(3, \mathbb{R})$ counterpart of the Diract soliton hierarchy and its bi-integrable couplings, *Int. J. Theor. Phys.* **53** (2014), 4211–4222.
- [23] L. A. Takhtajan: Integration of the continuous Heisenberg spin chain through the inverse scattering method, *Phys. Lett. A* **64** (1977), 235–237.
- [24] V. E. Zaharov and L. A. Tahtadžjan: Equivalence of a nonlinear Schrödinger equation and a Heisenberg ferromagnet equation, *Teoret. Mat. Fiz.* **38** (1979), 26–35.
- [25] C. W. Cao: Parametric representation of the finite-band solution of the Heisenberg equation, *Phys. Lett. A* **184** (1994), 333–338.
- [26] D. L. Du: Complex form, reduction and Lie-Poisson structure for the nonlinearized spectral problem of the Heisenberg hierarchy, *Phys. A* **303** (2002), 439–456.
- [27] H. Z. Li, B. Tian, R. Guo, Y. S. Xue and F. H. Qi: Gauge transformation between the first-order nonisospectral and isospectral Heisenberg hierarchies, *Appl. Math. Comput.* **218** (2012), 7694–7699.
- [28] W. X. Ma: Integrable couplings and matrix loop algebras, in: W. X. Ma and D. Kaup (Eds.), *Proceedings of the 2nd International Workshop on Nonlinear and Modern Mathematical Physics*, AIP Conference Proceedings, Vol. 1562. American Institute of Physics, Melville, NY, pp. 105–122 (2013).
- [29] W. Hereman, P. J. Adams, H. L. Eklund, M. S. Hickman and B. M. Herbst: Direct methods and symbolic software for conservation laws of nonlinear equations, in: *Advances in Nonlinear Waves and Symbolic Computation*, loose errata. Nova Sci. Publ., New York, pp. 19–78 (2009).
- [30] R. M. Miura, C. S. Gardner and M. D. Kruskal: Korteweg-de Vries equation and generalizations II - Existence of conservation laws and constants of motion, *J. Math. Phys.* **9** (1968), 1204–1209.
- [31] G. Falqui, F. Magri and M. Pedroni: Bi-Hamiltonian geometry, Darboux coverings, and linearization of the KP hierarchy, *Commun. Math. Phys.* **197** (1998), 303–324.
- [32] P. Casati, A. Della Vedova and G. Ortenzi: The soliton equations associated with the affine Kac-Moody Lie algebra $G_2^{(1)}$, *J. Geom. Phys.* **58** (2008), 377–386.
- [33] W. X. Ma: The algebraic structures of isospectral Lax operators and applications to integrable equations, *J. Phys. A: Math. Gen.* **25** (1992), 5329–5343.
- [34] W. X. Ma: Lax representations and Lax operator algebras of isospectral and nonisospectral hierarchies of evolution equations, *J. Math. Phys.* **33** (1992), 2464–2476.
- [35] W. X. Ma: Lie algebra structures associated with zero curvature equations and generalized zero curvature equations, *British J. Appl. Sci. Tech.* **3** (2013), 1336–1344.
- [36] A. P. Fordy: Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces, *J. Phys. A: Math. Gen.* **17** (1984), 1235–1245.
- [37] W. X. Ma: Binary Bargmann symmetry constraints of soliton equations, *Nonlinear Anal.* **47** (2001), 5199–5211.
- [38] W. X. Ma and R. G. Zhou: Adjoint symmetry constraints of multicomponent AKNS equations, *Chin. Ann. Math. Ser. B* **23** (2002), 373–384.
- [39] C. X. Li: A hierarchy of coupled Korteweg-de Vries equations and the corresponding finite-dimensional integrable system, *J. Phys. Soc. Jpn.* **73** (2004), 327–331.
- [40] X. G. Geng and D. L. Du: Two hierarchies of new nonlinear evolution equations associated with 3×3 matrix spectral problems, *Chaos Solitons Fractals* **29** (2006), 1165–1172.

- [41] Y. F. Zhang and H. W. Tam: Four Lie algebras associated with R^6 and their applications, *J. Math. Phys.* **51** (2010), 093514, 30 pp.
- [42] W. X. Ma and B. Fuchssteiner: Integrable theory of the perturbation equations, *Chaos Solitons Fractals* **7** (1996), 1227–1250.
- [43] Y. F. Zhang: A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system, *Chaos Solitons Fractals* **21** (2004), 305–310.
- [44] Z. Li and H. H. Dong: Two integrable couplings of the Tu hierarchy and their Hamiltonian structures, *Comput. Math. Appl.* **55** (2008), 2643–2652.
- [45] B. L. Feng and J. Q. Liu: A new Lie algebra along with its induced Lie algebra and associated with applications, *Commun. Nonlinear Sci. Numer. Simul.* **16** (2011), 1734–1741.
- [46] W. X. Ma and X. X. Xu and Y. F. Zhang: Semi-direct sums of Lie algebras and continuous integrable couplings, *Phys. Lett. A* **351** (2006), 125–130.
- [47] W. X. Ma, J. H. Meng and H. Q. Zhang: Integrable couplings, variational identities and Hamiltonian formulations, *Global J. Math. Sci.* **1** (2012), 1–17.
- [48] W. X. Ma: Enlarging spectral problems to construct integrable couplings of soliton equations, *Phys. Lett. A* **316** (2003), 72–76.
- [49] W. X. Ma and L. Gao: Coupling integrable couplings, *Modern Phys. Lett. B* **23** (2009), 1847–1860.