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Abstract

The unidirectional propagation of long waves in certain nonlinear dispersive waves
is explained by the (2 + 1) pKP equation, this equation admits infinite number of
infinitesimals. We explored new Lie vectors thorough the commutative product prop-
erties. Using the Lie reduction stages and some assistant methods to solve the reduced
ODEs, Exploiting a set of new solutions. Exploring a set of non-singular local multipli-
ers; generating a set of local conservation laws for the studied equation. The nonlocally
related (PDE) systems are found. Four nonlocally related systems are discussed reveal
twenty-one interesting closed form solutions for this equation. We investigate new
various solitons solutions as one soliton, many soliton waves move together, two and
three Lump soliton solutions. Though three dimensions plots some selected solutions
are plotted.
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1 Introduction

Partial derivatives are an excellent method for explaining the memory and genetic
characteristics of various materials and processes. Today, Partial differential equation
(PDE) plays an important role in number of fields such as mathematics and dynamic
systems [1, 2]. Non-integer order derivatives and integrals have proved to be more use-
ful in the formulating certain electrochemical problems than conventional models [3].
Partial differential equations (PDEs) provide a powerful tool for modeling a variety
of potentially emerging phenomena with a wide range of applications across applied
sciences, engineering and physics. It is the classical generalization of the calculation
that involves operators of integration of non-integer orders and differentiation. They
are valuable and efficient tools in both theoretical and technological fields to tackle the
complexity and non-linearity of specific problems, including chemical science, fluid
flow, fiber optics, signaling system, polymers, device recognition, elastic materials and
so on. [4-5]. A great deal of attention has been paid to managing partial differential
equations (PDEs). Specifically, fractional-order partial differential equations (PDEs)
are increasingly described in visco-elasticity, mathematical biology, finance [6-8], air-
plane designing, traffic, population and particle chemistry [9-11]. Elasticity, plasma,
fluid mechanics, optical fiber, and other disciplines of mathematics and physics involve
wave phenomena. The (2 + 1) pKP equation, which addresses dissipation as well as
nonlinearity and dispersion in the simulation of unidirectional plane waves, is defined
as follows [12]. This paper study the (2 + 1) pKP Egs. [13, 14]:

Uxt + Ol lyy + Bllyyxx + Yiuyy = 0. (D

Nonlinearity, dispersive, and dissipative effects are all included in Eq. (1). Cracked
rock, thermodynamics, acoustic waves in a harmonic crystal [15], acoustic-gravity
waves in fluids, and other applications of the (2 + 1) pKP equation and their special
cases can be found in engineering and science. The water wave model is notoriously
difficult to solve analytically. So, several investigations have been done in recent years
to determine the numerical solution of water wave model, (see, for example, [16, 17]
and the references therein). Researchers introduced many different methods to develop
an approximate analytical solution for the partial differential equation and systems,
such as Painlevé analysis, Hirota bilinear method [18, 19], Darboux transformation
by [20], Béacklund transformation [21]. The (2 + 1) pKP equation was proposed to
discuss the dynamic physical system.

Many scholars contributed by developing new analytical and numerical schemes
to solve the boundary model [22, 23] implemented hirota bilinear method for the
simulations of (2 + 1) pKP equation. The sine-Gordon expansion method has been
implemented to investigate the exact solution of the Tzitzéica type equations in [24].
The dynamical behavior of mixed-type soliton solutions has been established in [25]
to constitute analytical solution of the (2 + 1)-dimensional potential Kadomtsev-
Petviashvili (pKP).
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2 Exploring Novel Point Symmetries for the (2 + 1) pKP Equation

The point symmetries of the (2 + 1) pKP Eq. (1) are found as:

X = Lf{_)ﬂf{/ i+2yf1
3 6y | ox 3 9y
0 D (Y
Xo= =2 —+ fr(t)—+
2y ox ay 2ay 120()/ u’

9 2 " 9
f;(z)5+< fi- f3>—,

—u Xzf{/ xy f/// y f////
— i+ +
3 6o 6oy T2ay? u

@

X3

2y | du

Il
X = (fa@+yf5@) 5

There are an infinite number of possibilities for these vectors due to the existence of
the arbitrary functions f; (¢), i = 1...5. We derive optimal values for these functions
first, by evaluating the commutative product of these infinitesimals as listed in Table 1.

where;

/ / " 1
—yfi' f2 Yflfz Yf2f1 ;2 /
a) = - + sax= fifs — = af1s
6y 2 3y 3
—2yf /f// V3f /f/// '2f fW 3 f f//// ,Zf /f// 3 £ f/// xyf /f// 3f /f/// 4 ’3f f////
a3 = ..12+. LJy Y +y 1 Y 1.2+} 1 +}2.17,V 2 )1 W
- 3ay 6ay? 20y 12ay? 6oy 36ay2 6oy 6ay? T2ay?
f3f1
aq = f1f3
ol 2 ¢l gl 2 ¢l gl 11 2 o111 o ol 2 " ol ol 2 ¢l gl
9 _xf1f37."f1f372} /3 +xf1f3 Y f1/3 7xf3f| 42 Y f3fi +Xf|f37Yf1f3
57 T3a 6oy 3ay o 2ay 3a 2ay 3a 6ay
NEPSDVER S .
ag = yfs f{+ fify+ 3 faf] + 1S5 3

Y o 2y ”
J/fzf3 3ayf2f3~

Table 1 Commutator table

X1 X2 X3 X4
i) ) d d ) o)
X1 0 agy tazgy tazyy, as5; +asg, i m
J i) 9 i) 9
X; —algy —@gy; ~ By, 0 a5, sy,
9 9 15 9 9
X3 —a43c —asyy, —75—3——415@ 0 0

Xy —a 3y *fzfs% 0 0
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Simplifying Table 1 by setting the values for a’s, generates a nonlinear system of
ODEs;

2 1
fr=ffr— gf{fz, = Af5- gf{f&
/ 1 / ! 4 2 "
fr= §f2f1 +fify — §f2f1 ,
fa+yfs = fofs, 4

1 /
fa+yfs =yfifs+yfsfi+ 3/ S

Solving this system of differential equations manually and the assumption of some
values, results in;

fi=73t

1yOr?3 —4) 1y —9yi2/3 — 41 + 4y)
18 ays5A 74T 18 ayt3/3

f5s= (&)

fri=tivs, =1
Substituting from (5) in (2), we explore the four unknown Lie infinitesimals then
simplifies Table 1 to an optimized form described in Table 2.

Theorem 1 If we start from the commutative product between the known vectors
and through algebraic calculations, we can say the Lie infinitesimals for the (2 +
1)-dimensional potential Kadomtsev-Petviashvili (pKP) are;

a a d a
X1=x—+2y—+3t— —u—,
ox ay ot du
-y d a
o L1
2y ox ay

X3

1 1\ 9 x(1 1 2 y? 9 (6)
—t+t3 | —+ |-+ )+ —,
2 ax \3\2 3 ayt3 ) du

1 y9/3 —9yt?3 —4r+4y) 1 y>9r?3 —4)\ o
Xa=\|— + — —.
18 aytd/3 18  aytd/3 ou

3 Reduction the Independent, Dependent Variables and Generating
new Solutions for the (2 + 1) pKP Equation

Suppose that, « = —3, § = y = 1 and substitute in (1) and the infinitesimals in
Eq. (6).
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Table 2 Commutator table after optimization

X1 X» X3 X4
X1 0 X) X3 X4
X2 -X» 0 X4 X4
X3 -X3 —-X4
X4 —Xy —X4

3.1 Casel

9

i i =3 40 400 L 0
Using the transformation X = 5= + gy + 24+ 5,

So, the characteristic equation will be;

dx dy dt du

= 7
1 1 2 1 @
Solving this equation leads to;
u(t, x,y)=F(r,s)+x (8)
where F(r, s) is a new independent variable and;
r=—-x+y,s=-2x+t ©)

Using the new similarity and the dependent variables, Eq. (1) will be reduced to;

Frprr +8F ppps + 24 F,p55 + 32 Fp 555 + 16 Fg50 + 35, Fy + 6F Frp — 2Fy
+12F, Foy + 24F Fys — 13F, + 12F, Fyg + 24F, Fy — 14F;s =0 (10)

The reduced Eq. (10) has four Lie vectors; we can select a combination between
them as follow;

g 0 ad

V=—+—+—.
or ods Od0F

(11)
Using this vector, so, Eq. (10) can be reduced to the following nonlinear ODE;
Oy + 360nn6y =0 (12)

Where

n=—-r+s,0n)=F(@r,s)—r (13)
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This equation has no analytical solution, so we try to solve it using the integrating
factors as follow;

e Integrating factors.

Integrate (12) once with respect to 7, set the integration constant equal to zero;

3 2
O = =30, (14)

Secondly, multiply Eq. (12) by (6,) then integrate once with respect ton,
1 3.2
Onim = E(—ZG,7 +6,,) (15)

Equating Eq. (14) to Eq. (15), results in;
3 2 _
0, +6,,=0 (16)

By solving this equation;

4
o(n) = +c2,
n+cg

Then back substitution using (13), (9) and (8), we could obtain an invariant solution
of the pKP equation of the form;

4
tLx,)=———+e )+ 17
u(t, x, y) (—x—y+t+c1 Cz> y (17

The result is depicted in Fig. 1.
The profile plots show one soliton solution which that by increasing the time the
amplitude is decreasing and the wave moving without and distortion in it.

3.2 Casell

Using the transformation & = x + y + ¢, u(x, y, t) = u(&)in Eq. (1);
So, the Eq. (1) will be;

Uge +ouglgs + Pugege + yuge =0 (18)
Solving this equation using Riccati equation method and follow the algorithm
in [26];
Assume

u(E) = ¢'(6) = ap(&)* +be(£) + ¢ (19)
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Fig. 1 Three dimensional plots for u(z, y, x)atc; = ¢y =landat =0,br =3 ander =5

where ¢ (&) satisfies the Riccati equation and a, b, ¢ are constants which will deter-
minate later;

Substituting from (19) in to (18) and set the coefficients ofp (& )to be zero, we obtain
an algebraic system in a, b, ¢ . By Solving the determinate system, we obtain sets of
solutions;

be(1+b*B +c(a +8ap) +1) =0,

(b*B +2ac(1 + c(a +8aB) + 1) + b*(1 +2c(a + 11af) + 1)) = 0,
b(b*a +60a*c +3a(1 +2ca + 5b*B + 1)) = 0,

2a(2b%a +20a°ch + a(l + 2ca +25b°B + 1)) = 0,

5a*b(a + 12ap) = 0,

2a%(a + 12aB = 0.

(20)
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This system has some solutions as;
Case 1

3a +b2B+ 1)

o
0,a=——, 0,c= 21
B#0,a 128 a#0, ¢ o (21)
Substitute in Eq. (19) and solve the equation;
pp VBV THan| (-5 4 120 /BVTHAC) |
pE)=6 —+ (22)
o o
Back substitution stage;
«/_ 1 (x+y+0)/ 141 «/_
b8 /B+/1+ Atan 5 —T+12a\/ﬁ 1+1C
u(t,y, x) =6 —+
o o
(23)
Case 2
o Zﬁ«/a +ak
0,a =——, 0,b=F""" """ ¢c=0 24
B#0,a 128 o F# F Ja c (24)
Substitute in Eq. (19) and solve the equation;
—V3gpEQ+y)
243 VAT B =182 (1+y)
Ve = 24/3a(1+y)C *ﬁ%é(lﬂ/) 2
— o(1+y ——
EPVaE +ea‘/—nl75<1+y>a3/2
Back substitution stage;
—ﬁ&(mm(lw)
24/3e VEN/ 131 5\/_%(1“/)
u(t,y, x) = (26)

—V3& (ey+)(1+y)
—2/3a(l+y)C e T

[
NI Lo T 43

The result in (26) plotted in Fig. 2, as follow;
The results depicted in Fig. 2 shows a train of peaks decreasing with time without
and distorting in its properties.
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Fig. 2 Three dimensional plots foru(¢, y, x)atf =1, a =1,y =1,c=1,at =0,bt =2andct =10

4 Nonlocal Potential Transformation Method

Bluman and Kumei [27] explored a method for finding a nonlocally potential system
when at least one equation of a given system of PDEs is written in a conserved
form. This conserved form naturally leads to find the auxiliary potential variables and
to construct an auxiliary system of PDEs which is the potential system. Nonlocally
related systems are important in the construction of solutions for a given system of
PDE:s that arise from symmetry reductions due to the nonlocal symmetries but do not
arise as invariant solutions from symmetry reductions due to point symmetries. In the
following section, we will get the conservation laws for Eq. (1);

4.1 Conservative Forms for the (2 + 1)-dimensional pKP Equation

We start with detecting a set of local multipliers A (¢, x, ¥, U) by applying a direct
method based on Euler operator as follows;

Ey(Nj(t, x, y, U (Ui + aUxUxy + BUxrxx + yUyy)) = 0. (27)
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Table 3 Conservation laws corresponding to the multipliers

Multiplier Conservation law

AL=1 (wx)s + (§ux? + Buan) -+ (vuy), =0.

Ay =t (tux),+(%tuxz+ﬁtu”x —u)x+(ytuy)>v =0.

N3 =Yy ux), + <%y”xz "'.B)’”xxx>)C + ()/yuy - V”)y =0.

Ay =ty (tyux); + (%tyuA~2 + Btyuyxx — yu)x + (ytyuy - ytu)y =0.

Solving (26), with the aid of the symbolic computation software Maple, reveals a set
of determining equations, whose solution leads to a family of conservation multipliers;

Nj(t, x, y, U)y=F1(@®t)y + F2(1) (28)

where F'1, and F2 are arbitrary functions. Consequently, we have the following local
multipliers:

AM=1 A=t A3=Yy, Aga =t). 29)

Theorem 2 Conservation laws corresponding to multipliers A;, j = 1, 0.4 are pre-
sented in Table 3.

4.2 Potential Systems

Consider a scalar PDE which can be expressed as a conservation law:

> D fi(x, ug—1) =0. (30)

i=1

with independent variable x = (x, x2, ..., x,) and a single dependent variable
u; This conserved form allows us to introduce (n — 1) new variable v = (v, v®,
ceeh v("_l)). These (n — 1) variables are used to build up a new system of equations,
which are the potential systems. Explicitly, we find:

£ ug-n) = vy,

fl(x, u(k_l)) = (—1)171 {v(l) + v(lfl)}l <l <n, 31

XI+1 X—1

1 (n—1
i (x, ug—n) = (= D" lv;(cf,l_] ).

e For the first integrating multiplier A (z, x, y, u) = 1,
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&)

Ux = Vx ",
1//1(1‘, x, ysu, v, vz) =1 Su? + Buyyx = —(vf) + vf”), (32)
bl
yuy = v,
tux = U.)(C3)’
w2<t, X, yiu, v, v4> = %tuxz + Btusyx — U = —(v§4) + v,(3)>, (33)
Yty = v,
YUy = U)(cS)
P (1 ysu 0% ) = 3 Sy 4 By = = (o7 +07), 34
6
yyuy —yu = vl
tyuy = vy,
1/f4(t, X, yiu, v, vg) ={ $tyu? ++Btyurcy — yu = —(vﬁg) + vf7)), 35)

yiyuy — ytu = v)(cg).

where, (v(l), v®, ., v(g)) are the potential variables.

4.3 Point Symmetries and Invariant Solutions of the Auxiliary Potential Systems:

Point symmetries and their invariant solutions corresponding to the four potential
systems will be discussed in this section.

Theorem 3 Invariant solutions corresponding to potential system.

The symmetries of the potential system (32) /!, are:

c1x i’ 2ci
& = 3 ))27+f2(f), & = Ty‘Ffl(f), & =cit+ca, My
3 m " N ’
¥’ fi xy fi R xf cu
= = — + 25 1y )+ f1 () — —,
Ray?  2ay 20y a Y0+ fa®) 3

viet  xyf” xf)

d
= —— + —+ — , 1),
Nvl 3 20(]/ o dy fS (y ) Nv2

_ AT AT v f S LN (_g . )+ 3@ wer  fo®
4ay 4ay ay 12y 12y 2 ! 12 18 12

(36)
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Starting with the vector S| = % to reduce the potential system ! to a system of
nonlinear ODEs

o 2

E(Hln) +BH1y, =0
Hl, = H2, .
o 5 37
E(Hl,,) +BH1y, =0

H3,=0
where n = x, Hl(n) = u(t, y, x), H2(n) = vl(@, y, x), H3(n) = u(t, y,
x).Solving for H1(n) using the integrating factor method. With the aid of maple,
we deduce the Integrating Factors of (37)

w=Hl,, (38)

Multiplying by n Eq. (36) can be rewritten as

o 3 2
{ 3 (H1y)"+ (H1y)"+C1 =0, (39)

1
H1(n) = (-3C1Ba?)* x L+ C,

Then back substitution for n = x, H1(n) = u(¢, y, x) we could obtain an invariant
solution of the pKP equation of the form;

u(t, x, y) = (—301,3042)52 +C (40)

In the same manner, we obtained also the following invariant solutions for the pKP
equation

u(t, x,y) = Cy,

u(t, x, y) = F(2)

¢ ) —6x c
u(t, x, = —
y = 1
128
u(t,x,y) = ——+C
a(xr+Cy)
u(t, x,y)=-3 +Cy 41
—3x—1
u([, x’ y) —_ (t‘x—)y+C2
Y
(t—=3x—-1)y

ut, y,x) = ———+Cr+x
14
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_ 3x ot Cy
u(t, y,x)—g—g"'m
1/3
—3C; Ba? 12
u(t7 y’-x) = (U?X#'Fcz'i'%

It is noted that there exist some solutions of the potential system that do not solve
the original pKP Eq. (1), as

Co(— \/ﬁ 2yx—14y)Ca4+2C
(12C2ﬁm”h< 2 (—y40/(=16C22 By +1)+ 2y x—147) ot 1y))+C3oc

2y

u(t, x, y) =
(42)

For the rest of auxiliary systems, we will mention only the Invariant solutions u(,
x, y)that satisfy the original pKP equation. The result in Eq. (42) is plotted in Fig. 3
as follow;

This result imply two and three Lump soliton solutions moves together. When time
t increases to big enough, the lump solitary wave solution disappears.

Theorem 4 Invariant solutions corresponding to potential system

u(t, x, y) = C

u(t, x,y)=F() 43)
C

u(t, x, y) = —f
t3

Theorem 5 Invariant solutions corresponding to potential system

u(t, x,y) = Cry

Ciyy+1
u(t, X, y) — L
C
it x, y) = == (44)
2CHay + x>
S T

1 t2
u(t, x, y) = (—3C1,3012)3 * d +Ch+ Ty
o

Theorem 5 Invariant solutions corresponding to potential system

u(t, x, y) = F(t)y
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Fig. 3 Three dimensional plots foru(¢, y, x) ate = =3, =1,y =1,C; =1, C; = 1, C3 = Oand

at=0,br=1,¢ct=5

t(Czoty + xz)y —xy?

(45)

u(t, x,y) = arly

5 Conclusion

The (2 + 1) pKP equation) admits infinite number of infinitesimals through the com-
mutative product between those vectors; we determined the optimal functions forms.
Based on our method, we are examining new Lie vectors and via applying the inte-
grating factor method single and double combinations of vectors, we are generating
new solitary wave solutions.

We are exploiting a set of non-singular local multipliers; we present a set of local
conservation laws for the studied equation. The nonlocally related (PDE) systems are
found. Four nonlocally related systems are discussed reveal twenty-one interesting
closed form solutions for this equation.
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The summery of our results as follow;

Figure (1.1,1.2, 1.3) shows one soliton solution that the amplitude decreasing with
increasing the time and the wave peaks moves to lift direction.

Figure (2.1, 2.2, 2.3) represent soliton wave peaks that decreasing with increasing
time.

Figure (3.1, 3.2) represent three Lump solitons solutions. They travel with decreas-
ing in their amplitudes.
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