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Abstract
The unidirectional propagation of long waves in certain nonlinear dispersive waves
is explained by the (2 + 1) pKP equation, this equation admits infinite number of
infinitesimals. We explored new Lie vectors thorough the commutative product prop-
erties. Using the Lie reduction stages and some assistant methods to solve the reduced
ODEs, Exploiting a set of new solutions. Exploring a set of non-singular localmultipli-
ers; generating a set of local conservation laws for the studied equation. The nonlocally
related (PDE) systems are found. Four nonlocally related systems are discussed reveal
twenty-one interesting closed form solutions for this equation. We investigate new
various solitons solutions as one soliton, many soliton waves move together, two and
three Lump soliton solutions. Though three dimensions plots some selected solutions
are plotted.
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1 Introduction

Partial derivatives are an excellent method for explaining the memory and genetic
characteristics of various materials and processes. Today, Partial differential equation
(PDE) plays an important role in number of fields such as mathematics and dynamic
systems [1, 2]. Non-integer order derivatives and integrals have proved to bemore use-
ful in the formulating certain electrochemical problems than conventional models [3].
Partial differential equations (PDEs) provide a powerful tool for modeling a variety
of potentially emerging phenomena with a wide range of applications across applied
sciences, engineering and physics. It is the classical generalization of the calculation
that involves operators of integration of non-integer orders and differentiation. They
are valuable and efficient tools in both theoretical and technological fields to tackle the
complexity and non-linearity of specific problems, including chemical science, fluid
flow, fiber optics, signaling system, polymers, device recognition, elasticmaterials and
so on. [4–5]. A great deal of attention has been paid to managing partial differential
equations (PDEs). Specifically, fractional-order partial differential equations (PDEs)
are increasingly described in visco-elasticity, mathematical biology, finance [6–8], air-
plane designing, traffic, population and particle chemistry [9–11]. Elasticity, plasma,
fluidmechanics, optical fiber, and other disciplines ofmathematics and physics involve
wave phenomena. The (2 + 1) pKP equation, which addresses dissipation as well as
nonlinearity and dispersion in the simulation of unidirectional plane waves, is defined
as follows [12]. This paper study the (2 + 1) pKP Eqs. [13, 14]:

uxt + αuxuxx + βuxxxx + γ uyy � 0. (1)

Nonlinearity, dispersive, and dissipative effects are all included in Eq. (1). Cracked
rock, thermodynamics, acoustic waves in a harmonic crystal [15], acoustic-gravity
waves in fluids, and other applications of the (2 + 1) pKP equation and their special
cases can be found in engineering and science. The water wave model is notoriously
difficult to solve analytically. So, several investigations have been done in recent years
to determine the numerical solution of water wave model, (see, for example, [16, 17]
and the references therein). Researchers introducedmany differentmethods to develop
an approximate analytical solution for the partial differential equation and systems,
such as Painlevé analysis, Hirota bilinear method [18, 19], Darboux transformation
by [20], Bäcklund transformation [21]. The (2 + 1) pKP equation was proposed to
discuss the dynamic physical system.

Many scholars contributed by developing new analytical and numerical schemes
to solve the boundary model [22, 23] implemented hirota bilinear method for the
simulations of (2 + 1) pKP equation. The sine-Gordon expansion method has been
implemented to investigate the exact solution of the Tzitzéica type equations in [24].
The dynamical behavior of mixed-type soliton solutions has been established in [25]
to constitute analytical solution of the (2 + 1)-dimensional potential Kadomtsev-
Petviashvili (pKP).
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2 Exploring Novel Point Symmetries for the (2 + 1) pKP Equation

The point symmetries of the (2 + 1) pKP Eq. (1) are found as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 �
(
x f ′

1

3
− y2 f ′′

1

6γ

)
∂

∂x
+
2y f ′

1

3

∂

∂y
+ f1(t)

∂

∂t
+

(
−u

3
f ′
1 +

x2 f ′′
1

6α
− xy2 f ′′′

1

6αγ
+

y4 f ′′′′
1

72αγ 2

)
∂

∂u
,

X2 � −y f ′
2

2γ

∂

∂x
+ f2(t)

∂

∂y
+

(
−y2 f ′′

2

2αγ
+

y3 f ′′′
2

12αγ 2

)
∂

∂u
,

X3 � f3(t)
∂

∂x
+

(
x

3
f ′
3 − y2 f ′′

3

2αγ

)
∂

∂u
,

X4 � ( f4(t) + y f5(t))
∂

∂u
.

(2)

There are an infinite number of possibilities for these vectors due to the existence of
the arbitrary functions fi (t), i � 1 . . . 5. We derive optimal values for these functions
first, by evaluating the commutative product of these infinitesimals as listed in Table 1.

where;

a1 � −y f1′ f2′

6γ
− y f1 f ′′

2

2
+
y f2 f ′′

1

3γ
, a2 � f1 f

′
2 − 2

3
f2 f

′
1,

a3 � −2y f1
′ f ′′2

3αγ
+

y3 f1
′ f ′′′2

6αγ 2
− y2 f1 f

′′′
2

2αγ
+

y3 f1 f
′′′′
2

12αγ 2
− y2 f1

′ f ′′2
6αγ

+
y3 f1

′ f ′′′2
36αγ 2

+
xy f2

′ f ′′1
6αγ

− y3 f2
′ f ′′′1

6αγ 2
− 4y3 f2 f ′′′′1

72αγ 2
,

a4 � f1 f
′
3 − f3 f ′

1

3
,

a5 � x f ′1 f ′3
3α

− y2 f ′′1 f ′3
6αγ

− 2y2 f ′1 f ′′3
3αγ

+
x f1 f

′′
3

α
− y2 f1 f

′′′
3

2αγ
− x f3 f

′′
1

3α
+

y2 f3 f
′′′
1

2αγ
+
x f ′1 f ′3
3α

− y2 f ′1 f ′′3
6αγ

,

a6 � y f5 f
′
1 + f1 f

′
4 +

1

3
f4 f ′1 + y f1 f

′
5 (3)

a7 � −y

3αγ
f ′
2 f

′
3 − 2y

3αγ
f2 f

′′
3 .

Table 1 Commutator table

X1 X2 X3 X4

X1 0 a1
∂
∂x + a2

∂
∂y + a3

∂
∂u a4

∂
∂x + a5

∂
∂u a6

∂
∂u

X2 −a1
∂
∂x − a2

∂
∂y − a3

∂
∂u 0 a7

∂
∂u f2 f5

∂
∂u

X3 −a4
∂
∂x − a5

∂
∂u − f ′5

t
∂
∂x − 3 ∂

∂y − a5
∂
∂u 0 0

X4 −a6
∂
∂u − f 2 f5

∂
∂u 0 0
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Simplifying Table 1 by setting the values for a’s, generates a nonlinear system of
ODEs;

f2 � f1 f
′
2 − 2

3
f ′
1 f2, f3 � f1 f

′
3 − 1

3
f ′
1 f3,

f ′
2 � 1

3
f ′
2 f

′
1 + f1 f

′′
2 − 2

3
f2 f

′′
1 ,

f4 + y f5 � f2 f5, (4)

f4 + y f5 � y f ′
1 f5 + y f ′

5 f1 +
1

3
f
′

1
f4,

Solving this system of differential equations manually and the assumption of some
values, results in;

f1 � 3t

f5 � 1

18

y(9t2/3 − 4)

αγ t5/3
, f 4 � 1

18

y(9t5/3 − 9yt2/3 − 4t + 4y)

αγ t5/3
(5)

f3 � 1
2 t + t

1
3 , f2 � t

Substituting from (5) in (2), we explore the four unknown Lie infinitesimals then
simplifies Table 1 to an optimized form described in Table 2.

Theorem 1 If we start from the commutative product between the known vectors
and through algebraic calculations, we can say the Lie infinitesimals for the (2 +
1)-dimensional potential Kadomtsev-Petviashvili (pKP) are;

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 � x
∂

∂x
+ 2y

∂

∂y
+ 3t

∂

∂t
− u

∂

∂u
,

X2 � −y

2γ

∂

∂x
+ t

∂

∂y
,

X3 �
(
1

2
t + t

1
3

)
∂

∂x
+

(
x

3

(
1

2
+
1

3
t

−2
3

)

+
y2

9αγ t
5
3

)
∂

∂u
,

X4 �
(

1

18

y(9t5/3 − 9yt2/3 − 4t + 4y)

αγ t5/3
+

1

18

y2(9t2/3 − 4)

αγ t5/3

)
∂

∂u
.

(6)

3 Reduction the Independent, Dependent Variables and Generating
new Solutions for the (2 + 1) pKP Equation

Suppose that, α � −3, β � γ � 1 and substitute in (1) and the infinitesimals in
Eq. (6).
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Table 2 Commutator table after optimization

X1 X2 X3 X4

X1 0 X2 X3 X4

X2 −X2 0 X4 X4

X3 −X3 −X4 0 0

X4 −X4 −X4 0 0

3.1 Case I

Using the transformation X � ∂
∂x + ∂

∂y + 2 ∂
∂t +

∂
∂u

So, the characteristic equation will be;

dx

1
� dy

1
� dt

2
� du

1
(7)

Solving this equation leads to;

u(t , x , y) � F(r , s) + x (8)

where F(r , s) is a new independent variable and;

r � −x + y, s � −2x + t (9)

Using the new similarity and the dependent variables, Eq. (1) will be reduced to;

(10)

Frrrr + 8Frrrs + 24Frrss + 32Frsss + 16Fssss + 3Frr Fr + 6Fs Frr − 2Frr

+ 12Fr Frs + 24Fs Frs − 13Frs + 12Fr Fss + 24Fs Fss − 14Fss � 0

The reduced Eq. (10) has four Lie vectors; we can select a combination between
them as follow;

V � ∂

∂r
+

∂

∂s
+

∂

∂F
. (11)

Using this vector, so, Eq. (10) can be reduced to the following nonlinear ODE;

θηηηη + 3θηηθη � 0 (12)

Where

η � −r + s, θ(η) � F(r , s) − r (13)
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This equation has no analytical solution, so we try to solve it using the integrating
factors as follow;

• Integrating factors.

Integrate (12) once with respect to η, set the integration constant equal to zero;

θηηη � −3

2
θ

η

2

(14)

Secondly, multiply Eq. (12) by
(
θη

)
then integrate once with respect toη,

θηηη � 1

2θη

(−2θ3η + θ2ηη) (15)

Equating Eq. (14) to Eq. (15), results in;

θ3η + θ2ηη � 0 (16)

By solving this equation;

θ(η) � 4

η + c1
+ c2,

Then back substitution using (13), (9) and (8), we could obtain an invariant solution
of the pKP equation of the form;

u(t , x , y) �
(

4

−x − y + t + c1
+ c2

)

+ y (17)

The result is depicted in Fig. 1.
The profile plots show one soliton solution which that by increasing the time the

amplitude is decreasing and the wave moving without and distortion in it.

3.2 Case II

Using the transformation ξ � x + y + t , u(x , y, t) � u(ξ)in Eq. (1);

So, the Eq. (1) will be;

uξξ + αuξuξξ + βuξξξξ + γ uξξ � 0 (18)

Solving this equation using Riccati equation method and follow the algorithm
in [26];

Assume

u(ξ) � ϕ′(ξ) � aϕ(ξ)2 + bϕ(ξ) + c (19)
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Fig. 1 Three dimensional plots for u(t , y, x) at c1 � c2 � 1 and a t � 0,b t � 3 andct � 5

where ϕ(ξ) satisfies the Riccati equation and a, b, c are constants which will deter-
minate later;

Substituting from (19) in to (18) and set the coefficients ofϕ(ξ)to be zero, we obtain
an algebraic system in a, b, c . By Solving the determinate system, we obtain sets of
solutions;

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bc
(
1 + b2β + c(α + 8aβ) + λ

) � 0,
(
b4β + 2ac(1 + c(α + 8aβ) + λ) + b2(1 + 2c(α + 11aβ) + λ)

) � 0,

b
(
b2α + 60a2cβ + 3a

(
1 + 2cα + 5b2β + λ

)) � 0,

2a(2b2α + 20a2cβ + a(1 + 2cα + 25b2β + λ)) � 0,

5a2b(α + 12aβ) � 0,

2a3(α + 12aβ � 0.

(20)
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This system has some solutions as;

Case 1

β �� 0, a � − α

12β
, α �� 0, c � −3(1 + b2β + λ)

α
(21)

Substitute in Eq. (19) and solve the equation;

ϕ(ξ) � 6

⎛

⎝
bβ

α
+

√
β
√
1 + λtan

[
1
2

(
− ξ

√
1+λ√
β

+ 12α
√

β
√
1 + λC

)]

α

⎞

⎠ (22)

Back substitution stage;

u(t , y, x) � 6

⎛

⎝
bβ

α
+

√
β
√
1 + λtan

[
1
2

(
− (x+y+t)

√
1+λ√

β
+ 12α

√
β
√
1 + λC

)]

α

⎞

⎠

(23)

Case 2

β �� 0, a � − α

12β
, α �� 0, b � ∓2

√
3
√
a + aλ√
α

, c � 0 (24)

Substitute in Eq. (19) and solve the equation;

ϕ(ξ) �
24

√
3e

−√
3 α
6β ξ (1+γ )

√
α
√
a(1+γ ) β

√
− α

12β (1 + γ )

−e

−2
√
3α(1+γ )C√− α
12β (1+γ ) + e

−√
3 α
6β ξ (1+γ )

α

√

− 1
12β (1+γ )

α3/2

(25)

Back substitution stage;

u(t , y, x) �
24

√
3e

−√
3 α
6β (x+y+t)(1+γ )

√
α
√− α

12β (1+γ )
β
√

− α
12β (1 + γ )

−e

−2
√
3α(1+γ )C√− α
12β (1+γ ) + e

−√
3 α
6β (x+y+t)(1+γ )

α

√

− 1
12β (1+γ )

α3/2

(26)

The result in (26) plotted in Fig. 2, as follow;
The results depicted in Fig. 2 shows a train of peaks decreasing with time without

and distorting in its properties.
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Fig. 2 Three dimensional plots foru(t , y, x) at β � 1, α � 1, γ � 1, c � 1, a t � 0,b t � 2 and c t � 10

4 Nonlocal Potential TransformationMethod

Bluman and Kumei [27] explored a method for finding a nonlocally potential system
when at least one equation of a given system of PDEs is written in a conserved
form. This conserved form naturally leads to find the auxiliary potential variables and
to construct an auxiliary system of PDEs which is the potential system. Nonlocally
related systems are important in the construction of solutions for a given system of
PDEs that arise from symmetry reductions due to the nonlocal symmetries but do not
arise as invariant solutions from symmetry reductions due to point symmetries. In the
following section, we will get the conservation laws for Eq. (1);

4.1 Conservative Forms for the (2 + 1)-dimensional pKP Equation

We start with detecting a set of local multipliers ∧ j (t , x , y, U ) by applying a direct
method based on Euler operator as follows;

Eu
(∧ j (t , x , y, U )

(
Uxt + αUxUxx + βUxxxx + γUyy

)) � 0. (27)



    2 Page 10 of 16 W.-X. Ma et al.

Table 3 Conservation laws corresponding to the multipliers

Multiplier Conservation law

∧1 � 1 (ux )t +
(

α
2 ux

2 + βuxxx
)

x
+

(
γ uy

)

y � 0.

∧2 � t (tux )t +
(

α
2 tux

2 + βtuxxx − u
)

x
+

(
γ tuy

)

y � 0.

∧3 � y (yux )t +
(

α
2 yux

2 + βyuxxx
)

x
+

(
γ yuy − γ u

)

y � 0.

∧4 � t y (t yux )t +
(

α
2 t yux

2 + βt yuxxx − yu
)

x
+

(
γ t yuy − γ tu

)

y � 0.

Solving (26), with the aid of the symbolic computation softwareMaple, reveals a set
of determining equations, whose solution leads to a family of conservationmultipliers;

∧ j (t , x , y, U ) � F1(t)y + F2(t) (28)

where F1, and F2 are arbitrary functions. Consequently, we have the following local
multipliers:

∧1 � 1, ∧2 � t , ∧3 � y, ∧4 � t y. (29)

Theorem 2 Conservation laws corresponding to multipliers ∧ j , j � 1, 0.4 are pre-
sented in Table 3.

4.2 Potential Systems

Consider a scalar PDE which can be expressed as a conservation law:

n∑

i�1

Di f
i (x , u(k−1)

) � 0. (30)

with independent variable x � (x1, x2, . . . , xn) and a single dependent variable
u; This conserved form allows us to introduce (n − 1) new variable v � (

v(1), v(2),
. . . , v(n−1)

)
. These (n − 1) variables are used to build up a new system of equations,

which are the potential systems. Explicitly, we find:
f 1

(
x , u(k−1)

) � v
(1)
x2 ,

f l
(
x , u(k−1)

) � (−1)l−1
{
v(l)
xl+1 + v(l−1)

xl−1

}
1 < l < n, (31)

f n
(
x , u(k−1)

) � ( − 1)n−1v
(n−1)
xn−1 .

• For the first integrating multiplier ∧1(t , x , y, u) � 1,
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ψ1
(
t , x , y; u, v1, v2

)
�

⎧
⎪⎨

⎪⎩

ux � v
(1)
x ,

α
2 ux

2 + βuxxx � −
(
v

(2)
y + v

(1)
t

)
,

γ uy � v
(2)
x .

(32)

ψ2
(
t , x , y; u, v3, v4

)
�

⎧
⎪⎨

⎪⎩

tux � v
(3)
x ,

α
2 tux

2 + βtuxxx − u � −
(
v

(4)
y + v

(3)
t

)
,

γ tuy � v
(4)
x .

(33)

ψ3
(
t , x , y; u, v5, v6

)
�

⎧
⎪⎨

⎪⎩

yux � v
(5)
x ,

α
2 yux

2 + βyuxxx � −
(
v

(6)
y + v

(5)
t

)
,

γ yuy − γ u � v
(6)
x .

(34)

ψ4
(
t , x , y; u, v7, v8

)
�

⎧
⎪⎨

⎪⎩

t yux � v
(7)
x ,

α
2 t yux

2 + +βt yuxxx − yu � −
(
v

(8)
y + v

(7)
t

)
,

γ t yuy − γ tu � v
(8)
x .

(35)

where,
(
v(1), v(2), . . . , v(8)

)
are the potential variables.

4.3 Point Symmetries and Invariant Solutions of the Auxiliary Potential Systems:

Point symmetries and their invariant solutions corresponding to the four potential
systems will be discussed in this section.

Theorem 3 Invariant solutions corresponding to potential system.

The symmetries of the potential system (32) ψ1, are:

ξx � c1x

3
− y f1′

2γ
+ f2 (t) , ξy � 2c1y

3
+ f1 (t) , ξt � c1t + c2, ηu

� y3 f1′′′

12αγ 2 − xy f1′′

2αγ
− y2 f2′′

2αγ
+
x f2′

α
+ y f3 (t) + f4 (t) − c1u

3
,

ηv1 � −v1c1
3

− xy f1′′

2αγ
+
x f2′

α
+

d

dy
f5 (y, t) , ηv2

� xy2 f1′′′

4αγ
− x2 f1′′

4αγ
− xy f2′′

αγ
− f5′

12γ
+

f1′

12γ

(
−u

2
+ v1

)
+
x f3 (t)

12
− v2c1

18
+

f6 (t)

12

(36)



    2 Page 12 of 16 W.-X. Ma et al.

Starting with the vector S1 � ∂
∂t to reduce the potential system ψ1 to a system of

nonlinear ODEs
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

α

2

(
H1η

)2 + βH1ηηη � 0

H1η � H2η

α

2

(
H1η

)2 + βH1ηηη � 0

H3η � 0

(37)

where η � x , H1(η) � u(t , y, x), H2(η) � v1(t , y, x), H3(η) � u(t , y,
x).Solving for H1(η) using the integrating factor method. With the aid of maple,
we deduce the Integrating Factors of (37)

μ � H1ηη (38)

Multiplying by μ Eq. (36) can be rewritten as

{
α
3β

(
H1η

)3 +
(
H1ηη

)2 + C1 � 0,

H1(η) � (−3C1βα2
) 1
3 ∗ η

α
+ C2

(39)

Then back substitution for η � x , H1(η) � u(t , y, x)we could obtain an invariant
solution of the pKP equation of the form;

u(t , x , y) �
(
−3C1βα2

) 1
3 x

α
+ C2 (40)

In the same manner, we obtained also the following invariant solutions for the pKP
equation

u(t , x , y) � C1,

u(t , x , y) � F(t)

u(t , x , y) � −6x√−6α
− C1

u(t , x , y) � 12β

α(x + C1)
+ C2

u(t , x , y) � −3
(t − x)

α
+ C4 (41)

u(t , x , y) � (t − 3x − 1)y

γ
+ C2

u(t , y, x) � (t − 3x − 1)y

γ
+ C2 + x
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u(t , y, x) � 3x

2α
− 9t

8α
+

C2

t1/3

u(t , y, x) �
(−3C1βα2

)1/3
y

α
+ C2 +

t2y

2

It is noted that there exist some solutions of the potential system that do not solve
the original pKP Eq. (1), as

u(t , x , y) �

(

12C2βtanh

(
C2(−y+t)

√(−16C2
2βγ+1

)
+(2γ x−t+y)C2+2C1γ

2γ

))

+ C3α

α
(42)

For the rest of auxiliary systems, we will mention only the Invariant solutions u(t ,
x , y)that satisfy the original pKP equation. The result in Eq. (42) is plotted in Fig. 3
as follow;

This result imply two and three Lump soliton solutions moves together. When time
t increases to big enough, the lump solitary wave solution disappears.

Theorem 4 Invariant solutions corresponding to potential system

u(t , x , y) � C1

u(t , x , y) � F(t) (43)

u(t , x , y) � C3

t
1
3

Theorem 5 Invariant solutions corresponding to potential system

u(t , x , y) � C1y

u(t , x , y) � C1γ y + 1

γ

u(t , x , y) � C1y

t
(44)

u(t , x , y) � 2C2αy + x2

2αt

u(t , x , y) �
(
−3C1βα2

) 1
3 ∗ x

α
+ C2 +

t2y

2

Theorem 5 Invariant solutions corresponding to potential system

u(t , x , y) � F(t)y
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Fig. 3 Three dimensional plots foru(t , y, x) at α � −3, β � 1, γ � 1, C1 � 1, C2 � 1, C3 � 0and
a t � 0, b t � 1, c t � 5

u(t , x , y) � t
(
C2αy + x2

)
γ − xy2

αt2γ
(45)

5 Conclusion

The (2 + 1) pKP equation) admits infinite number of infinitesimals through the com-
mutative product between those vectors; we determined the optimal functions forms.
Based on our method, we are examining new Lie vectors and via applying the inte-
grating factor method single and double combinations of vectors, we are generating
new solitary wave solutions.

We are exploiting a set of non-singular local multipliers; we present a set of local
conservation laws for the studied equation. The nonlocally related (PDE) systems are
found. Four nonlocally related systems are discussed reveal twenty-one interesting
closed form solutions for this equation.
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The summery of our results as follow;

• Figure (1.1,1.2, 1.3) shows one soliton solution that the amplitude decreasing with
increasing the time and the wave peaks moves to lift direction.

• Figure (2.1, 2.2, 2.3) represent soliton wave peaks that decreasing with increasing
time.

• Figure (3.1, 3.2) represent three Lump solitons solutions. They travel with decreas-
ing in their amplitudes.
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