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Abstract
A generalization of the Kaup–Newell spectral problem associated with sl (2, ) is introduced
and the corresponding generalized Kaup–Newell hierarchy of soliton equations is generated. Bi-
Hamiltonian structures of the resulting soliton hierarchy, leading to a common recursion
operator, are furnished by using the trace identity, and thus, the Liouville integrability is shown
for all systems in the new generalized soliton hierarchy. The involved bi-Hamiltonian property is
explored by using the computer algebra system Maple.
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1. Introduction

Soliton hierarchies are generated from matrix spectral pro-
blems or Lax pairs associated with matrix loop algebras (see,
e.g., [1–5]). Among celebrated examples, with dependent
variables less than three, are the Korteweg–de Vries hier-
archy [6], the Ablowitz–Kaup–Newell–Segur hierarchy [7],
the Dirac hierarchy [8], the Kaup–Newell hierarchy [9], the
Wadati–Konno–Ichikawa hierarchy [10] and the Boiti–
Pempinelli–Tu hierarchy [11]. They often possess bi-
Hamiltonian structures and are Liouville integrable. The
associated Hamiltonian structures can be furnished by the
variational identity [12, 13], particularly by the trace identity
when the underlying matrix loop algebra is semisimple [14].

Let us give an outline of the procedure for constructing
soliton hierarchies by zero curvature equations (see, e.g.,
[14, 15]). The beginning is to take a matrix loop algebra g̃,
associated with a matrix Lie algebra g with the commutator

g= − ∈A B AB BA A B[ , ] , , , (1.1)

and introduce spatial matrix spectral problem

gϕ ϕ λ= = ∈ ˜U U U u, ( , ) , (1.2)
x

where u is the potential vector and λ is the spectral parameter
(see, e.g., [16] for examples of block matrix loop algebras).
We then find a solution

g∑λ λ= = ∈ ⩾
⩾

−W W u W W i( , ) , , 0, (1.3)
i

i
i

i

0

0, 0,

to the stationary zero curvature equation

=W U W[ , ]. (1.4)x

Further, we try to formulate the temporal matrix spectral
problems

ϕ ϕ λ ϕ= = ⩾V V u m( , ) , 0, (1.5)
t

m m[ ] [ ]

m

by introducing the Lax matrices

gλ λ Δ Δ= = + ∈ ˜ ⩾
+( )V V u W m( , ) , , 0,m m m

m m
[ ] [ ]

+P denoting the polynomial part of P in λ, such that the

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 89 (2014) 085203 (8pp) doi:10.1088/0031-8949/89/8/085203

0031-8949/14/085203+08$33.00 © 2014 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:mawx@cas.usf.edu
http://dx.doi.org/10.1088/0031-8949/89/8/085203


compatibility conditions of equations (1.2) and (1.5), i.e., the
zero curvature equations

− + = ⩾⎡⎣ ⎤⎦U V U V m, 0, 0, (1.6)t x
m m[ ] [ ]

m

will engender a hierarchy of soliton equations:

= ⩾u K u m( ), 0. (1.7)t mm

Such a soliton hierarchy usually possesses a recursion
operator and Hamiltonian structures

Φ
δ
δ

= = = ⩾


u K u K J
u

m( ) , 0. (1.8)t m
m m

0m

The recursion operator Φ (see [17] for definition) is generated
from the stationary zero curvature equation (1.4) and the
Hamiltonian functionals mʼs can often be computed through
the trace identity [14, 15]:

∫δ
δ λ

λ
λ

λ

γ λ
λ

∂
∂

= ∂
∂

∂
∂

= −

γ γ−⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
u

U
W x

U

u
W

W

tr d tr ,

2

d

d
ln tr , (1.9)2

or generally, the variational identity [12, 13]:

∫δ
δ λ

λ
λ

λ

γ λ
λ

∂
∂

= ∂
∂

∂
∂

= −

γ γ−

u

U
W x

U

u
W

W W

, d , ,

2

d

d
ln , , (1.10)

where · ·, is a non-degenerate, symmetric and ad-invariant
bilinear form on the underlying matrix loop algebra g̃ [12, 13].

We shall make use of the three-dimensional special linear
Lie algebra sl(2, ), consisting of trace-free ×2 2 matrices.
This Lie algebra is simple and has the basis

=
−

= =
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥e e e1 0

0 1
, 0 1

0 0
, 0 0

1 0
, (1.11)1 2 3

whose commutator relations are

= = − =e e e e e e e e e[ , ] 2 , [ , ] 2 , [ , ] .1 2 2 1 3 3 2 3 1

Its derived algebra is itself, and so, it is three-dimensional,
too. The matrix loop algebra we shall adopt in what follows is



 ∑ λ= ∈ ⩾ ∈

∼

⩾

−⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭M M i n

sl(2, )

sl(2, ), 0, . (1.12)
i

i
n i

i

0

It is the space of all Laurent series in λ with coefficients in
sl (2, ) and a finite regular part. Particular examples of this

matrix loop algebra s̃l(2, ) contain matrices of the form

λ λ λ+ +e e em n l
1 2 3

with arbitrary integers m n l, , . The loop algebra s̃l(2, ) lays
a foundation for our study of soliton equations, from which
many well-known soliton hierarchies are generated (see,
e.g., [6–10]).

In this paper, we would like to consider a generalization
of the Kaup–Newell spectral problem, which is associated

with the matrix loop algebra s̃l(2, ), and compute an asso-
ciated hierarchy of bi-Hamiltonian soliton equations by zero
curvature equations. The corresponding bi-Hamiltonian
structures will be furnished by applying the trace identity and
a common recursion operator will be explicitly presented. All
soliton equations in the resulting soliton hierarchy will be
shown to be Liouville integrable. A few concluding remarks
will round off the paper.

The resulting hierarchy provides another concrete
example of soliton hierarchies associated with the matrix loop
algebra s̃l(2, ). The generalized Kaup–Newell spectral pro-
blem is formulated by adding a multiple of the product of the
two potentials to the e1-part of the Kaup–Newell spectral
problem, and interestingly, the perturbed spectral problem
still generates an integrable hierarchy represented by local
vector fields.

2. A generalization of the Kaup–Newell hierarchy

To present a generalized Kaup–Newell soliton hierarchy, let
us introduce a new matrix spectral problem:

ϕ ϕ λ ϕ ϕ
ϕ
ϕ

= = = =⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥U U u u

p
q( , ) , , , (2.1)

x
1

2

with the spectral matrix U being chosen as



λ α λ λ

λ α λ
λ λ α

= + + +

=
+

− −
∈ ∼⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

( )U pq e pe qe

pq p

q pq
sl(2, ), (2.2)

2
1 2 3

2

2

where α is an arbitrarily given constant. The case of α = 0,
where the perturbation αpq becomes zero, reduces to the
Kaup–Newell spectral problem [9].

First, we solve the stationary zero curvature
equation (1.4). The equation (1.4) reads as follows:

λ
λ λ α

λ λ α

= −
= − +
= − + −

⎧
⎨⎪

⎩⎪

a pc qb

b b pa pqb

c c qa pqc

( ),

2 2 2 ,

2 2 2 ,

(2.3)
x

x

x

2

2

if W is assumed to be

= + + = − ∈ ∼⎡⎣ ⎤⎦W ae be ce a b
c a sl(2, ). (2.4)1 2 3

Further let a b, and c possess the Laurent expansions:

∑

∑

∑

λ

λ

λ

=

=

=

⩾

−

⩾

− −

⩾

− −

a a

b b

c c

,

,

, (2.5)

i

i
i

i

i
i

i

i
i

0

2

0

2 1

0

2 1

and take the initial data

= = =a b p c q1, , , (2.6)0 0 0

which are required by the equations on the highest powers of

2
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λ in equation (2.3):

= − = =a pc qb b pa c qa, , .x0, 0 0 0 0 0 0

Then, the system in equation (2.3) becomes

α

α

α

= − + + −

= + −

= − + −

⩾

+

+ +

+ +

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

( ) ( )a qb pc pq qb pc

b b pa pqb

c c qa pqc

i

1

2
,

1

2
,

1

2
,

0, (2.7)

i x i x i x i i

i i x i i

i i x i i

1, , ,

1 , 1

1 , 1

the first of which is because from equation (2.3), we have

λ λ α λ λ α

λ α
λ α

+

= − + + − + −

= − + −
= − + −

( ) ( )
qb pc

q b pa pqb p c qa pqc

qb pc pq qb pc
a pq qb pc

2 2 2 2 2 2

2 ( ) 2 ( )
2 2 ( ).

x x

x

2 2

2

The recursion relations in equation (2.7) also tell that

= = ⩾+

+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

c

b L
c

b L
L L
L L

i, , 0, (2.8)
i

i

i

i

1

1

11 12

21 22

where

α α

α

α

α α

= − ∂ − − ∂ ∂ − ∂

= − ∂ ∂ + ∂

= − ∂ ∂ − ∂

= ∂ − − ∂ ∂ + ∂

− −

− −

− −

− −

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

L pq q p q p q

L q q q pq

L p p p p q

L pq p q p pq

1

2

1

2
,

1

2
,

1

2
,

1

2

1

2
.

(2.9)

11
1 1 2

12
1 1 2

21
1 1 2

22
1 1 2

While using the above recursion relations in equation (2.7),
we impose the following conditions on constants of integra-
tion:

= = = ⩾= = =a b c i0, 1, (2.10)i u i u i u0 0 0

to determine the sequence of | ⩾{ }a b c i, , 1i i i uniquely. This

way, the first two sets can be computed as follows:

α

α

α

α

α α α

α

α α α

= − = − −

= − − −

= − + +

= − + −

− + +

= + + +

+ + +

a pq b p p q p q

c q pq pq

a pq p q p q p q

b p pp q p q pp q

p q p q p q

c q pqq p q p q

pqq p q p q

1

2
,

1

2

1

2
,

1

2

1

2
;

1

4

1

4

3

8
,

1

4

3

4

3

8

3

2
1

2

3

2
,

1

4

3

4

3

8

1

2
3

2

3

2
.

x

x

x x

xx x x

x

xx x x

x

1 1
2 2

1
2 2

2
2 2 2 2

2
3 2

2 2 3 2 3 2

2
2 3 2

2 2 3 2 3

We saw above the localness of the first two sets of

| ⩾{ }a b c i, , 1i i i . This is not an accident. Actually, we have

the following result on the localness of the whole sequence of

| ⩾{ }a b c i, , 1i i i .

Proposition 2.1: Let a b c, ,0 0 0 be given by equation
(2.6). Then all functions ⩾a b c i, , , 1i i i , determined by
equation (2.7) under the conditions in equation (2.10), are
differential polynomials in u with respect to x, and so, they
are all local.

Proof. First from the stationary zero curvature equation
=W U W[ , ]x , we can compute that

= = =( ) ( )
x

W WW W U W
d

d
tr 2 tr 2 tr ( [ , ] ) 0,x

2

and so, noting = +( ) ( )W a bctr 22 2 , we have

+ = + ==( )a bc a bc 1, (2.11)u
2 2

0

the last step of which follows from the initial data in
equation (2.6). Now through the Laurent expansions in
equation (2.5), this gives

∑ ∑= − − ⩾
+ = ⩾ + = − ⩾

a a a b b i
1

2

1

2
, 1. (2.12)i

k l i k l

k l

k l i k l

k l

, , 1 1, , 0

Finally, based on this recursion relation in equation (2.12) and
the last two recursion relations in equation (2.7), an
application of the mathematical induction tells that all
functions ⩾a b c i, , , 1i i i , are differential polynomials in u
with respect to x, and thus, they are all local. The proof is
finished. □

Now, envisaged by the recursion relations in
equation (2.7), we, as usual, introduce



λ λ λ= =

− ∈ ⩾∼

+

+

+

+

+

( ) ( )W W W

a e msl(2, ), 0,

m m m

m

[ ] 2 1 2 2

1 1

and consequently, we have

λ α

λ α

−

=
−

+
⩾

⎡⎣ ⎤⎦
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

( )
( )

W U W

b pqb

c pqc
m

,

0 2

2 0
, 0.

x
m m

m x m

m x m

[ ] [ ]

,

,

This is not the same type matrix as the Gateaux derivative
operator ′U , and so, noting

λ λ= − +⎡⎣ ⎤⎦U e pe qe, 2 2 ,1 2 3

we take a sequence of Lax operators with modification terms:



λ Δ

δ

= +

= + ∈ ⩾∼

+

+
( )V W

W e msl(2, ), 0, (2.13)

m m
m

m
m

[ ] 2 2

[ ]
1

where δ ⩾m, 0,m are functions to be determined and

3
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Δ δ= − ⩾+( )a e m, 0m m m 1 1 . Then, we find that

δ λ α δ

λ α δ δ

−

=
− +

+ − −

⩾

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦

⎥⎥⎥⎥( )

V U V

b pqb p

c pqc q

m

,

2 2

2 2

,

0,

x
m m

m x m x m m

m x m m m x

[ ] [ ]

, ,

, ,

and therefore, the corresponding zero curvature

− + = ⩾⎡⎣ ⎤⎦U V U V m, 0, 0, (2.14)t x
m m[ ] [ ]

m

equivalently engender a hierarchy of equations:

α δ

α δ

α δ

= − +
= + −

=
⩾

⎧
⎨⎪

⎩⎪

p b pqb p

q c pqc q

pq

m

2 2 ,

2 2 ,

( ) ,

0. (2.15)
t m x m m

t m x m m

t m x

,

,

,

m

m

m

To make the third equation to be compatible with the other
two equations in the above system in equation (2.15), we
observe that

δ α

α α δ

α δ

α α α

α

= +

= − +

+ + −

= − + +

= − ⩾+

⎡⎣
⎤⎦

⎡⎣ ⎤⎦

( )
( )

( )
( ) ( )

p q pq

q b pqb p

p c pqc q

q b pqb p c pqc

a m

2 2

2 2

2 2

2 , 0,

m x t t

m x m m

m x m m

m x m m x m

m x

,

,

,

, ,

1,

m m

the last equality of which is a consequence of equation (2.7).
Hence, we can take

δ α= − ⩾+a m2 , 0, (2.16)m m 1

and then from the zero curvature equations (2.14), we obtain a
hierarchy of soliton equations

α α
α α

= =
− −
+ +

⩾+

+

⎡
⎣⎢

⎤
⎦⎥u K

b pqb pa

c pqc qa
m

2 4

2 4
, 0. (2.17)t m

m x m m

m x m m

, 1

, 1
m

All equations in this hierarchy are local since all functions
⩾a b c i, , , 1i i i , are differential polynomials in u. The first

nonlinear system in the soliton hierarchy equation (2.17) is as
follows:

α

α α α

α

α α α

= =

=

− − − −

− − −

− − − −

− + +

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

u
p
q K

p pp q p q pp q

p q p q p q

q pqq p q p q

pqq p q p q

1

2

1

2
2

2 2
1

2
1

2

1

2
2

2 2
1

2

. (2.18)

t
t

xx x x x

x

xx x x x

x

1

2

2 2 3 2 3 2

2 2

2 2 3 2 3

1

1

3. Liouville integrability

We shall show that all systems in the genelalized Kaup–Ne-
well soliton hierarchy in equation (2.17) are Liouville
integrable (see [18] for definition).

To this end, let us first furnish Hamiltonian structures for
the hierarchy in equation (2.17). We shall use the trace
identity in equation (1.9) (or generally, the variational identity
in equation (1.10)). It is direct to see that

λ
λ

λ

α λ
α

α
λ α

∂
∂

=
−

∂
∂

=
−

∂
∂

=
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

U p
q

U

p

q
q

U

q

p
p

2
2

,

0
,

0
,

and so, we have

λ
λ

α λ

α λ

∂
∂

= + +

∂
∂

= +

∂
∂

= +

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

W
U

a qb pc

W
U

p
qa c

W
U

q
pa b

tr 4 ,

tr 2 ,

tr 2 .

Now, the trace identity equation (1.9) in this situation gives

∫δ
δ

λ

λ
λ

λ
α λ
α λ

+ +

= ∂
∂

+
+

γ γ− ⎡
⎣⎢

⎤
⎦⎥

u
a qb pc x

qa c
pa b

(4 )d

2
2

. (3.1)

Balancing coefficients of λ ⩾− − m, 0,m2 1 in the equality
leads to

∫δ
δ

γ
α
α

+ +

= −
+
+

⩾

+

⎡
⎣⎢

⎤
⎦⎥

( )
u

a qb pc x

m
qa c

pa b
m

4 d

( 2 )
2

2
, 0.

m m m

m m

m m

1

The identity with m = 1 tells γ = 0, and thus, we obtain

δ
δ

α
α

=
+
+

⩾
⎡
⎣⎢

⎤
⎦⎥

u

qa c

pa b
m

2

2
, 0, (3.2)m

m m

m m

with the Hamiltonian functionals being defined by

∫

∫

α= +

= −
+ +

⩾+⎛
⎝⎜

⎞
⎠⎟





pq x

a qb pc

m
x m

(1 2 ) d ,

4

2
d , 1, (3.3)m

m m m

0

1

the first functional 0 of which was determined directly from

the vector α α+ +( )qa c pa b2 , 2
T

0 0 0 0 .
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Now, noting that

α
α

α α
α α

=
+
+

=
− ∂ ∂
− ∂ + ∂

⩾
− −

− −

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

c

b R
qa c

pa b

R
q p q q

p p p q
m

2

2
,

1 2 2

2 1 2
, 0, (3.4)

m

m

m m

m m

1 1

1 1

α

α

= − −
= − + +

⩾
+ + +

+ + +

⎪

⎪

⎧
⎨
⎩

p b pa pa

q c qa a
m

2 2 4 ,

2 2 4 ,
0, (3.5)

t m m m

t m m m

1 1 1

1 1 1

m

m

and

= ∂ − ⩾+
−

+ +( )a pc qb m, 0, (3.6)m m m1
1

1 1

we find that

α α
α α

α
α

=
− + ∂ + + ∂

− + + ∂ − + ∂

=
+
+

⩾

− −

− −

+

+

+ +

+ +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

K
p p p q

q p q q

c

b

J
qa c

pa b
m

2 (1 2 ) 2 2 (1 2 )

2 2 (1 2 ) 2 (1 2 )

2

2
, 0. (3.7)

m

m

m

m m

m m

1 1

1 1

1

1

1 1

1 1

with

α α
α α

=
− + ∂ + + ∂

− + + ∂ − + ∂

− −

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥J

p p p q

q p q q

2 (1 4 ) 2 2 (1 4 )

2 2 (1 4 ) 2 (1 4 )
, (3.8)

1 1

1 1

which is a Hamiltonian operator [19]. It follows then that the
soliton hierarchy in equation (2.17) has the Hamiltonian
structures:

δ
δ

= = ⩾+
u K J

u
m, 0, (3.9)t m

m 1

m

where the Hamiltonian operator is defined by equation (3.8)
and the Hamiltonian functionals mʼs are given by
equation (3.3).

The resulting functionals can generate infinitely many
conservation laws for each soliton system in the soliton
hierarchy in equation (2.17). We remark that differential
polynomial type conservation laws can also be computed
either by computer algebra codes (see, e.g., [20]) or from
some Riccati equation associated with the underlying matrix
spectral problem (see, e.g., [21–25]).

Obviously, we have

δ
δ

Ψ
δ
δ

Ψ= =+ − 
u u

R LR, , (3.10)m m1 1

where the inverse operator of R (see [19, 26] for other
applications of such an inverse operator) can be computed as
follows:

α α
α α

=
+ ∂ − ∂

∂ − ∂
−

− −

− −

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥R

q p q q

p p p q

1 2 2

2 1 2
. (3.11)1

1 1

1 1

Then, from Φ= ⩾+K K m, 0m m1 , and Ψ Φ=J J , we obtain a
common recursion operator for the soliton hierarchy in

equation (2.17):

Φ Ψ= =† † † − †( )R L R ,1

where †Q denotes the adjoint operator of Q. This recursion
operator can be explicitly computed as follows:

Φ
Φ Φ
Φ Φ=

⎡
⎣⎢

⎤
⎦⎥, (3.12)11 12

21 22

where

Φ α α α

α α
α α α

α α

Φ α α

α α α
α α
α α

Φ α α

α α α
α α
α α

Φ α α α

α α
α α α

α α

= ∂ − + ∂ ∂ − + ∂ ∂

+ + ∂
− ∂ − + ∂ ∂ ∂
− + ∂ ∂ ∂

= − ∂ ∂ − + ∂ ∂

+ + ∂ − ∂
− + ∂ ∂ ∂
− + ∂ ∂ ∂

= − ∂ ∂ − + ∂ ∂

− + ∂ + ∂
+ + ∂ ∂ ∂
+ + ∂ ∂ ∂

= − ∂ − + ∂ ∂ − + ∂ ∂

− + ∂
+ ∂ + + ∂ ∂ ∂
+ + ∂ ∂ ∂

− −

−

− − −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

−

− − −

− −

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

pq p q p q

p q q

p pq p q p q

p p q q

p p p p

p q p p p q

p q p p

p p q p

q q q q

pq q q pq

q q p q

q p q q

pq q p q p

pq p

q p q q q p p

q p q p

1

2

1

2
(1 2 )

(1 2 )

2 (1 2 )

(1 2 ) ,
1

2
(1 2 )

(1 2 ) 2

(1 2 )

(1 2 ) ,
1

2
(1 2 )

(1 2 ) 2

(1 2 )

(1 2 ) ,
1

2

1

2
(1 2 )

(1 2 )

2 (1 2 )

(1 2 ) .

(3.13)

11
1 1

2 1

2 1 2 1 1

1 1

12
1 1

2 1 2 1 2

1 1

1 1

21
1 1

2 1 2 1 2

1 1

1 1

22
1 1

2 1

2 1 2 1 1

1 1

Various recursion operators can be found through Lax
representations or by computer algebra codes for nonlinear
partial differential (see, e.g., [27, 28]). There are also direct
algorithms for computing symmetries of nonlinear systems of
differential equations (see, e.g., [29]).

It is now a straightforward computation to show that all
members in the soliton hierarchy in equation (2.17) are bi-
Hamiltonian:

δ
δ

δ
δ

= = = ⩾+ 
u K J

u
M

u
m, 0, (3.14)t m

m m1

m

where the second Hamiltonian operator (see [30, 31] for a bi-
Hamiltonian theory) reads

Φ= =
⎡
⎣⎢

⎤
⎦⎥M J

M M
M M

, (3.15)11 12

21 22
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with

α α
α α
α α

α α α
α
α α
α

α α α
α
α α
α

α α α
α
α α

= ∂ ∂ − ∂ ∂
+ ∂ + ∂
− ∂ ∂ ∂ − ∂ ∂ ∂

= ∂ − + ∂ ∂ + ∂ ∂
− ∂
− ∂ + ∂ ∂ ∂
+ ∂ ∂ ∂

= ∂ + − ∂ ∂ − ∂ ∂
− ∂
− ∂ + ∂ ∂ ∂
+ ∂ ∂ ∂

= ∂ ∂ − ∂ ∂ + ∂
+ ∂
− ∂ ∂ ∂ − ∂ ∂ ∂

− −

− −

− − − −

− −

−

− − −

− −

− −

−

− − −

− −

− − −

−

− − − −

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

M p p p p

p q p p p q

p p q p p q p p

M pq p q p q

p pq

p q q p p q q

p q p q

M pq q p q p

pq p

q p q q p q p

q q p p

M q q q q pq q

q pq

q p q q q q p q

2 2

4 4

4 4 ,

2 2 2

4

4 4

4 ,

2 2 2

4

4 4

4 ,

2 2 4

4

4 4 .

(3.16)

11
1 1

2 2 1 2 1 2

2 1 1 2 1 1

12
1 1

2 1 2

2 2 1 2 1 1

2 1 1

21
1 1

2 2 1

2 1 2 2 1 1

2 1 1

22
1 1 2 2 1

2 1 2

2 1 1 2 1 1

Thus, we see that the soliton hierarchy in equation (2.17) is
Liouville integrable, upon noticing that the vector fields

⩾K n, 1n , possess distinct differential orders and that the

common conserved functionals
=

∞{ }n n 0
and symmetries

=

∞{ }Kn n 0
commute:

∫ δ
δ

δ
δ

= = ⩾
⎛
⎝⎜

⎞
⎠⎟   

{ }
u

J
u

x k l, d 0, , 0, (3.17)k l J

k
T

l

∫ δ
δ

δ
δ

= = ⩾
⎛
⎝⎜

⎞
⎠⎟   

{ }
u

M
u

x k l, d 0, , 0, (3.18)k l M

k
T

l

and

= ′ − ′ = ⩾K K K u K K u K k l[ , ] ( )[ ] ( )[ ] 0, , 0. (3.19)k l k l l k

These commuting relations are also consequences of the
Virasoro algebra of Lax operators [32–34], which is much
easier to be established than a bi-Hamiltonian formulation
since it is long to show that J and M constitute a Hamiltonian
pair (see [30] for details on the bi-Hamiltonian theory).

4. Concluding remarks

Based on the matrix loop algebra s̃l(2, ), we introduced a
generalization of the Kaup–Newell spectral problem, and
generated a hierarchy of soliton differential equations from
the associated zero curvature equations. The resulting soliton
equations are bi-Hamiltonian and Liouville integrable, and
their common Hamiltonian pair and recursion operator were
explicitly given. The Kaup–Newell soliton hierarchy is the
special case with α = 0 of the resulting generalized soliton
hierarchy.

A hierarchy of generalized AKNS equations was simi-
larly made and its nonlinearization was carried out previously
in [35]. Very recently, the special orthogonal Lie algebra so

(3, ) has also been used to generate new soliton hierarchies

[36–38]. Among typical discussed spectral matrices are the
following three:

λ λ

λ λ λ λ
λ λ λ λ

= + +

= + +
= + +

U u e pe qe

U u e pe qe

U u e pe qe

( , ) ,

( , ) ,

( , ) ,

1 2 3

2
1 2 3

1 2 3

where =u p q( , )T and e e,1 2 and e3 are the basis matrices of so
(3, ):

=
−

= −

=
−

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

e

e

e

0 0 1
0 0 0
1 0 0

,

0 0 0
0 0 1
0 1 0

,

0 1 0
1 0 0
0 0 0

.

1

2

3

There are many other higher-order matrix spectral problems
which lead to soliton hierarchies (see, e.g., [39–44]).

There has also been a growing interest in generating
hierarchies of integrable couplings [45] from matrix spectral
problems associated with non-semisimple matrix loop alge-
bras [46]. Integrable couplings show very rich structures,
bringing us inspiring thoughts and ideas to classify multi-
component integrable systems [47]. Bi-integrable couplings
and tri-integrable couplings do exhibit diverse nice structures
on recursion operators in block matrix form [13, 47]. It should
be significantly important to explore more algebraic and
geometric mathematical structures on integrable couplings.
There are many interesting questions on integrable couplings,
which are open to us. For example, is there any Hamiltonian
structure for the bi-integrable coupling

= = ′ = ′u K u v K u v w K u w( ), ( ) [ ], ( ) [ ],t t t

where ′K denotes the Gateaux derivative and =u Kt is
assumed to be Hamiltonian? How can one generally solve the
perturbation system

= = ′u K u v K u v( ), ( ) [ ],t t

even in the KdV case with = +K u uu u( ) 6 x xxx, which gives

= + = +u uu u v uv v6 , 6 ( ) ?t x xxx t x xxx

There are, though, plenty of particular solutions to the per-
turbation system, and one immediate solution is to take v as a
symmetry of =u K u( )t .
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