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Abstract 

An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of AKNS systems. The corresponding 
Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, finite-dimensional integrable Hamiltonian 
systems in the Liouville sense and thus an involutive representation of solutions of AKNS systems is obtained. The purpose of 
this Letter is to elucidate that the nonlinearization method (i.e. a kind of symmetry constraint method) of integrable systems 
can be applied to the Lax pairs and the adjoint Lax pairs associated with integrable systems. 

1. Introduction 

The symmetry constraints give the interrelations between higher-dimensional integrable systems and lower- 
dimensional integrable systems and provide a direct method to construct solutions of higher-dimensional inte- 
grable systems by solving lower-dimensional integrable systems. The interesting symmetry constraints are those 
on the eigenfunctions of Lax pairs and the potentials of integrable systems [ 1,2 ]. The theory includes two lines: 
constraining ( 1 + 1 )-dimensional integrable systems to finite-dimensional integrable systems (see, for example, 
Refs. [ 1,3-6 ] ) and constraining ( 1 + 2)-dimensional  integrable systems to ( 1 + 1 )-dimensional integrable sys- 
tems (see, for example, Refs. [2,7,8 ] ). Its key is to search for proper symmetry constraints. Two such simplest 
examples in the cases o f  the KdV and KP equations are as follows, 

N d 
ux(x, t) =0  E Ey0~, Ej =const ,  0 =  d x '  (1 . l )  

j f f i  1 

where ej are the eigenfunctions with eigenvalues 2j governed by the spectral problem (i.e. the spatial part of the 
Lax pair) ¢x~=20+ u¢, and 
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N d (1.2) ux(x, y, t) =0 ~, Ej¢j~ 6, Ej=const,  0= ~ ,  
j= 1 

where cj and ~-are the eigenfunctions governed respectively by the spectral problem Cy= ¢ ~ +  u¢ and the adjoint 
spectral problem ~y= - ¢ /~ -  u~. 

It is known [ 9 ] that for a hierarchy of ( 1 + 1 )-dimensional integrable systems 

j SHn J L  n 5Ho 
u t . = K n =  -~u = 8u ' n>~O , (1.3) 

possessing the Lax pairs g~= U(u, 2)¢~, g~t, = V(~) (u, 2)~, the set of solutions of 

8Io Ej ~--uu ' Ej = const, 

where Ij, 0 ~ j  <~ N, and N conserved densities of (1.3), determines an invariant submanifold of (1.3) and thus 
leads to important symmetry constraints, 

~u 8H~ A ~;tj 
K,, = ,.., EjJ or - j=l -~  j~ EY~u, n>~O, (1.4) 

where ;tj, 1 <~N<<.N, are all the eigenvalues of the spectral problem ~x = U(u, 2)¢. Under the constraint of (1.4), 
the Lax pairs of (1.3) are nordinearized into a finite-dimensional integrable Hamiltonian system and a hier- 
archy of finite-dimensional integrable Hamiltonian systems, together with the symmetry constraint (1.4). 
Moreover the flows of these systems are certain to commute mutually. 

In this Letter we shall show by an example of the AKNS case that the symmetry constraint (1.4) can be 
applied to discuss the nonlinearization problem of the Lax pairs and the adjoint Lax pairs associated with ( 1 + 1 )- 
dimensional integrable systems. By taking the Bargmann constraint associated with AKNS systems [ 10 ], we 
successfully generate a new involutive system with 43/dependent variables and thus establish an involutive 
representation of solutions of AKNS systems. In Section 2 we first propose some required fundamental proper- 
ties related to the adjoint representation equation Vx= [ U, V]. Then, in Section 3, we consider the Bargmann 
constraint problem of the Lax pairs and the adjoint Lax pairs of the AKNS systems in detail, 

2. Some basic properties 

Let ~ denote the differential algebra of differential functions u=  u(x, t) and write 

d 
~ - -  ~ 3e'rtk), 3e'rtk ) ={(p'Jok)r×rl p 0 ~ } ,  0= ~X' 

kffiO 

~=~®C[L,~- ' ]=  ~ ~'Ck), ~k)=~'tk)®C[L;t-']. 
kffiO 

In this section we want to discuss some basic properties connected with a general spectral problem, 

~x= U¢= U(u, 2)f), U~ ~r<o) , 

and its adjoint representation equation 

vx--[u, v], v=v(u,~)~:r~o). 

(2.1) 

(2.2) 

Proposition 2.1. Let U, V, We ~'< o). If  the adjoint representation equation ( 2.2 ) and the zero curvature equation 
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Ut-  Wx+ [U, W] =0 (2.3) 

bold, then the matrix A = V,-  [ W, V] also satisfies the adjoint representation equation (2.2). 

Proof. By using (2.2) and (2.3), we have 

Ax=V,x-[Wx, V]-[W, V~] = [Ut, V]+ [U, V , ] - [  Wx, V]-[W, [U, V]] 

= [Wx-  [U, W], V]+ [U, V,l -[W~,  v ] - [ W ,  [U, V ] ] = - [ [ V ,  W], U]+ [U, V,]=[U,A].  

The proof is completed. 

We note that the spectral problem (2.1) generally possesses the uniqueness property [ l l ] :  if Vx= 
[ U, V], Ve 7"~o) and V[ ,=o=0, then V=0. This property corresponds to the uniqueness of the associated inte- 
grable hierarchy of (2.1) and thus we call it the uniqueness property. The following result is a direct corollary 
of proposition 2.1 and the uniqueness property. 

Corollary 2.1. For the spectral problem (2.1) possessing the above uniqueness property, we have A= 
Vt-[W,  V]=OifA[,=o=(Vt-[W,  V]) [,=o=0. 

The above result plays a dominant role in the deduction of commutability of the associated flows and the 
constrained flows. 

Proposition 2.2. If U, V~7~0) satisfy the adjoint representation equation (2.2), then we have (V ' )x= 
[u, v'],n>.l. 

Proof. It follows from Vx= [ U, V] that 

i ' i ' ( ~ ) x =  v . . . v v y . . . v - _  v . . . v ( u v - v u ) ~ . . v  = u v ~ - v , u = [ u ,  V"l , n ~  l , 
i ~  1 _ _ ~ _ _  i ~  I 

n n 

which c0mpletes the proof. 

For the spectral problem (2.1) we introduce its adjoint spectral problem 

¥~ = U ' g =  - U ' r g ,  ( 2 . 4 )  

where T means transposition of  the matrix. Obviously 

U, -Wx+[U,W]=O ~ U~, -W*+[U*,W*]=O,  W * = - W  T. (2.5) 

Moreover, we can easily reach the following conclusion. 

Proposition 2.3. Let ¢= (¢~, ..., CA T and g=  (g~, ..., gr) a" satisfy (2.1) and (2.4), respectively, and set 
p=¢ga-= (¢~gOr×- Then we have /7=  [ U, P]. 

Proposition 2.4. Let U, V, W~ ~ o ) .  Then the compatibility condition of the system 

V~=[U, V], V,= [ W, V] (2.6) 

is the equation 

[U,-W~+[U,  W], V]=0.  (2.7) 
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Proof. By (2.6), we have 

v~,=[u,, v]+ [u, V,l=[U,, v]+ [u, [w, v]], v,~=[wx, v]+ [w, vx]= [wx, v]+ [w, [u, Vl]. 

Therefore V~,= Vxt is equivalent to Eq. (2.7). The proof is completed. 

This proposition shows that when Ut- Wx+ [ U, W] =0, (2.6) is integrable for V. 

3. A symmetry constraints of the AKNS case 

We consider the AKNS spectral problem 

¢x=u¢, u=U(u,,~)= ,~ , 

and its adjoint spectral problem 

O=(Ol'~'\qk2/ U=(W v ) , (3.1) 

(3.2) 

Let us first recall the construction of AKNS systems [ 10,12 ]. Setting 

V = (  a __ba)=t=~o(:: biai)~-~ , (3.3) 

we see that the adjoint representation equation Vx= [ U, V] becomes 

a~x=vci-wbi, i>~O , (3.4a) 

bix= - 2hi+ 1 - 2vai, i>~0, (3.4b) 

ci~ =2c~+t +2wai, i>~O. (3.4c) 

We choose ao = - 1, bo = Co = 0 and assume a~ I u = o = b~ I u = o = c,- [ u = o = 0, i >t 1 (or equivalently select constants of 
integration to be zero). In this way, the recursion relation (3.4) uniquely gives a series of polynomial functions 
with respect to u, Ux, .... For example, we have 

al =0, bl =v, c1 =w, a~=½(vw), b2=-½v~, c2=½w~. 

Moreover we have a2+ be= 1 since (a2+bc)x= ½ tr( V2)x= ½ tr[ U, V 2 ] - 0  and (aZ+bc) I.=o= 1. At this point, 
the compatibility conditions of Lax pairs, 

O~=UO, O,.=VC")O, V~")= (;t"V) +, n>_.0, (3.5) 

where the plus denotes the choice of the non-negative power of 2, determine a hierarchy of AKNS systems, 

ut ,= n>~0 (3.6) 
w , -  - \  2c,+t , I -  \ v ] -  6u ' 

where the Hamiltonian operator J, the recursion operator L and the Hamiltonian functions H,  read as 

t=~  _vO_l• _½0.~1)O_lw] nrt = ~-~--~ a,+u, n~>0. (3.7) 
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I B~2j,/, j = l , 2  ..... N ,  (3.15b) 
~'2:./ x = 

(0,,'~ = V(.,(u, 2j) . n ( :~  ) j =  1, 2, N ,  (3.16a, kC~J,. ' .... 

[ ~ u ) ,  j =  1, 2, N,  (3.16b) (~¢lj~ =__(v,n)) T(u,~j)IB~/2j 
\ v/2j / t, "'" 

where the subscript B means substitution of (3.14) into the expression. System (3.15 ) is an ordinary differential 
equation and systems (3.16) for n >i 0 are a hierarchy of nonlinear partial differential equations. Evidently, 
(3.15 ) may be expressed as the Hamiltonian form 

OH OH 
~.x= - 0~vi, ~i~,- 0 ~ ,  i = 1 , 2 ,  (3.17) 

with the Hamiltonian function H =  (A ~v2, ~2)  - (A~I, ~l  ) + ( 7t2, O1 ) ( ~v, O2), A =diag(2~, 22, ..., 2N). In 
what follows we want to show that (3.17 ) is a finite-dimensional integrable system in the LiouviUe sense [ 14 ] 
and that under the control of (3.17), systems (3.16) for n t> 0 are also a hierarchy of finite-dimensional integra- 
ble systems in the Liouville sense [ 14 ]. 

By using (3.10) under the constraint (3.14) we have 

bn+l ~,  5 ]=  - \(A~t2,  ~1 >]-\(An~['t2, ~l~, >,]' n>_-0 ; (3.18a) 

and thus 

a,+l =O-l(vc,+t - w b , + t ) = ½ ( ( A " ~ l ,  ~1 ) - (An~2, q)z) ), n~>0. (3.18b) 

By proposition 2.2 we see that ( V2)x = [ U, V2]. Therefore 

d Fx= (½ tr V2)x= ~ (a2+bc)=O,  

i.e. F is a generating function of integrals of motion for (3.17). After setting F =  Yn~,o Fall -", we obtain the 
following expressions, 

F , =  ~, (a ia ,_ i+bic ._ i ) ,  (3.19) 
i = 0  

F o - - -  1, FI = ( ~t'/2, (~2) -- ( ~1, t~l >,  (3.20a) 
n - - I  

F , =  ~, ( a i a n _ i + b : , _ i ) - 2 a ,  i~l 
n--I 

= ~ [14((Ai- '~J, ,c1)t)-(Ai- tY-/2,~I)2>)((An-i- l~-/ , , (J) l>-(An-i- t~-t2,~2>) 
i=l 

+(Ai - l t l J2 , ( J ) l ) (Zn - i - l~J1 , ( J )2 ) ]+(An- l t IX2 ,  t ~ 2 ) - ( A n - 1 t [ / l , ( I ) l )  , n>_.2. (3.20b) 

Here the polynomial functions F~, n >1 0, include 4N dependem variables. It is worth saying that we should not 
obtain new integrals of motion of (3.17) beginning with the generating functions ( 1 / n ) t r V  ~ since 
V3= (a2+bc) V. 

Let us now consider the time part (3.16) of constrained Lax pairs. A direct calculation may give that systems 
(3.16) for n I> 0 are cast into 
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OF.+ 1 ~it. = OF.+1 On.= i=  1, 2, n>~0 (3.21) 
aOi ' O K  ' ' 

when (~gl, ~2, O1, 02) satisfies the spatial part (3.15) of constrained Lax pairs and possesses the property 
liml~l~oo ~=limlxl_oo O~=0, i=  1, 2. For example, from (3.16) and (3.18) we have 

iffiO i : 0  i :  1 i :  1 

=A"~I- ~ ½( <A'-I~pI, 01>-<A'-'~P2, 02> )A"-'~PI - ~, <Ai-l~JI, 02>An-i~J2 
i = 1  i : 1  

OF.+ 1 
= n > ~ l  . 

0 0 1  ' 

Similarly, using (3.8), we know that F =  ½ tr V 2 is also a generating function of integrals of motion for (3.21 ). 
Therefore 

{Fm+I,F.+I}= O Ot---~ Fm+1 =0, m, n~>O, (3.22) 

where the Poisson bracket is defined by 

~ ,g}=  ~ ~ ( Of Og Of Og ) (3,23) 
, -1 , :1  0¢,o 

The involution (3.22)~of the polynomial functions F., n >I 1, may also be verified by direct computation, and 
thus does not depend on any boundary condition of ~ ,  0 .  i= 1, 2. In addition, it is easy to prove that 

VF.= (  (OF./O~I) T, (OF./O~I'2) T, (OF./a01) T, (OF./OO2)T), l <~n<2N, 

are linearly independent by observing that 

OF. I =_A._1~1, OFn O,= Oaf0 __A ._ 1~t/2 ' 
001 ~ , f f i ~ = o  002 - 

n>~l, (3.24) 

and that the Vandermode determinant V(21, ..., k s ) ~ 0 .  Hence (3.15) and (3.16) are all finite-dimensional 
integrable systems in the Liouville sense [ 14]. Moreover when ~1 (x, t,), ~2(x, t,), OI (x, t , ) a n d  02(x, t,) 
with the property lira ixl ~ ~o ~ = lim i xl ~o~ Oi = 0, i = 1, 2, are an involutive solution [ 15 ] of the consistent sys- 
tems (3.15 ) and ( 3.16 ), u = ( < ~2, O1 >, < ~PI, O2 > ) T solves the nth AKNS system ut, = K,. This gives an invo- 
lutive representation [ 15 ] of solutions of AKNS systems. 

In what follows we consider the general case without the zero boundary conditions. In this case from (3.11 ) 
we have 

\01¥2/  \~! ~v2/ \ v / '  (3.25) 

where E is an integral of motion of (3.11 ). Therefore, under the constraint (3.14), we obtain 

b .+ l ]  \ v / -  \<  qJ2, O1 = i=o~i\<A~-iqJ2, O1 >]'  n>~0. (3.26) 

Here lo = 1 and I .  1 ~< i < n, are integrals o f  motion of  (3.15 ). From (3.4a) ,  we can calculate that 
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a.+t=O-t(vc.+,--wb.+l)=½ f Ii(<A"-i~",,~t>-<A"-i~2,~2>)+Q,,+t, n>~O, (3.27) 
i : 0  

where Q,+t is also an integral of  motion of (3.15). Equalities (3.4b) and (3.4c) require that Q ,=  - I , ,  n>_- 1, 
and thus the quantity at =0  leads to It = - ½F~. Furthermore, by a2+bc= 1 we obtain 

n - - I  

2 a . =  ~ (ata._i+b~c._D, n>~2. 
i ffi I 

The substitution of (3.26) and (3.27) into the above equality gives rise to 

n - t  

Y'. It( <A"-t-'~t, ~,>-<A"-t-'~t2, ~ 2 > ) - 2 I .  
/ r i O  

) = ~. -~ Ik( Ai-t-k~['I,,~t>--<Ai-t-k~P2, t]~2>)--2I i 
l f f i l  \ k = O  

[ . - -  i-- t ) 

X[  t~=o I,( <A"-i-t-t~Pt, ~ t> -<A" - i - t - t~2 ,  ~2> )-21._i 

n - - t  i - - t  . - - i - - I  
+ ~ ~ Ik<Ai--t--k~'~2,~l> ~ Ii<An-i-t-l~*l,~2> , n>>.2. (3.28) 

/ f f i t  kffiO IffiO 

Interchanging the summations in this equality, i.e. 

n - - l i - - I  n - -2  n - - I  n - - l n - - i - - I  . - - 2 n - - l - - I  n - - l i - - l . - - i - - I  

z z :r. y :z 
i f f i l  k m O  k l O  i 1 ~ i f f i l  IffiO IffiO i = 1  i f f i l  k i O  lffiO 

we may acquire by a direct but lengthy computation that 

. - - 1  

I .=-½ Z IkItF.-(k+O--½ Z I,I._,, n>~2. 
k + l , n - - I  i = 1  

k , l~  O 

Based upon this equality and 11 = - ½Ft we can easily obtain 

n--2  ( n - - 2 ) - - k n - - ( l + l )  

Z Z , 
kffiO tffiO iffik+ 1 

(3.29) 

In= ~ d,, X F,...F~,,,, n>~l, 
min i  il + . . . + i m = .  

il ,....ira ~ 1 

where the constants dm are defined by 

dl : - ½ ,  d2=t, d m = - d m - , - t  
m - - 2  m - - I  

~, d,d,,,_~_,-t E d,d,,_,, 
$ ~ 1  s = l  

m~>3. 

(3.30) 

(3.31) 

At this stage the time parts (3.16 ) of the constrained Lax pairs and adjoint Lax pairs may be cast into the form 

OH. ~tt =_  Olin ~it. = i=1,2 (3.32a) 
O ~  ' O ~  ' ' 

H,= ~ dm ~ F,,...F,,,,+,(do=l), n>~O. (3.32b) 
m=O m - ~  1 il +.. .+im+l f f i .+ l 

i l  ,..-,/'m+ 1 ~ l 

For instance, for n ~ 1 we have 
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i = 0  i = 0  

1 ( ~  ' /=, Ik( (Ai-l-k~l' ~l~' )--(Ai-l-k~[/2' CI~2) )--2Ii "-i~'t t 
=A"e~ - ~ 2 ,,k=o 

-- I k ( A i - l - k ~ l  (~2> n-i~J2 
/ffil \ k f f iO  

= IkAn-k~[/, - ~ lk ½ ( ( A i - l - k ~ J l , ~ l ) - - ( A i - ' - k ~ J 2 , ~ 2 ) ) A n - i ~ J ,  
kf f io  k f f io  i f f i k + ,  

n - ,  

- Z Ik ~ (Ai-l-k~,, ~2)A"-i~r'/2 
k = O  i = k + l  

_ OF, " - '  OFn-k+l ~ . OFn-k+l 

k = O  v _ ,  k = O  u~, - ,  

k 
= - I o  OF~+, ~ 2 dm ~. F,t...F,., OF"-k+-----------~ 

O~]}l k f l  m f l  i l + . . . + i m f k  O ~ l  
i l  ,...,ira ~ l 

=--I°OF"+'atb ~ d,. ~ ~, F....F,,.OFO-~I +' 
v = l  m =  l k f m  il +. . .+ira  • k  

il ,...,ira ~ 1 

- OF.+1 dm 0 
= - 1 o  ~ ~ X F,,...F,,.+~ 

m=, m+ 1 0 ¢ ~  1 i l  + . . . + l n ' t + l  = f l + l  
il ,...,ira+ 1 ) l 

0 " dm Z Fix...F,.,+, OH. 
= -  ~-~[ ~_-o m+ 1 ,,+...+,,,,+,=.+, = -  0 . ,  " 

il  ,...,ira+ I ~ l 

The above manipulation also allows us to establish the more general involutive representations of solutions of 
AKNS systems. More precisely, we have the solution v= (P2, q~,), w= (PI, ~2) to the nth AKNS system 
ut.=K., once P,(x, tn), P2(x, t.), ~,(x, t.), ~2(x, t.) solve the constrained systems (3.15) and (3.16) 
simultaneously. 

By now, wc finish the nonlincarization procedure for the Lax pairs and the adjoint Lax pairs of AKNS sys- 
tems. We would like to emphasize that the above nonlincarization trick for Lax pairs and adjoint Lax pairs may 
be applied to other I + I integrablc systems (scc Ref. [ 16 ] ). Moreover, wc wish that the deeper properties of 
integrablc systems could bc exploited by the constrained Lax systems. For instance, the resulting involutivc 
representations of solutions possibly contain soliton solutions. 
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