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Abstract )

An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of AKNS systems. The corresponding
Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, finite-dimensional integrable Hamiltonian
systems in the Liouville sense and thus an involutive representation of solutions of AKNS systems is obtained. The purpose of
this Letter is to elucidate that the nonlinearization method (i.e. a kind of symmetry constraint method) of integrable systems
can be applied to the Lax pairs and the adjoint Lax pairs associated with integrable systems.

1. Introduction

The symmetry constraints give the interrelations between higher-dimensional integrable systems and lower-
dimensional integrable systems and provide a direct method to construct solutions of higher-dimensional inte-
grable systems by solving lower-dimensional integrable systems. The interesting symmetry constraints are those
on the eigenfunctions of Lax pairs and the potentials of integrable systems [1,2]. The theory includes two lines:
constraining (1+ 1)-dimensional integrable systems to finite-dimensional integrable systems (see, for example,
Refs. [1,3-6]) and constraining ( 1+ 2)-dimensional integrable systems to (1+ I )-dimensional integrable sys-
tems (see, for example, Refs. {2,7,8]). Its key is to search for proper symmetry constraints. Two such simplest
examples in the cases of the KdV and KP equations are as follows,

N d
ux,1)=8 Y E¢?,  E;=const, 0=-—, (1.1)
= dx
where ¢; are the eigenfunctions with eigenvalues 4; governed by the spectral problem (i.e. the spatial part of the
Lax pair) ¢,.=A¢+u¢, and
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N
ux,y,t)=90 3 E;¢;y;, E;j=const, 0d= i, (1.2)
= dx
where ¢;and y; are the eigenfunctions governed respectively by the spectral problem ¢, = ¢, + u¢ and the adjoint
spectral problem y,= — Yy — uy.

It is known [9] that for a hierarchy of (1+ 1)-dimensional integrable systems

S8H, » OH)
u,=K,=J =52 =JL"=L,  n20, (1.3)
possessing the Lax pairs ¢,.= U(u, )9, ¢,, =V * (u, A) ¢, the set of solutions of
8, X 3
i j;l E; S’ E;=const,

where I;, 0<j<N, and N conserved densities of (1.3), determines an invariant submanifold of (1.3) and thus
leads to important symmetry constraints,

= g4 L it > 4
K,,_]_EIEJJ8 or 5 ,-§1E’8 , n20, (1.4)

where 4;, 1 NN, are all the eigenvalues of the spectral problem ¢, = U(u, A)¢. Under the constraint of (1.4),
the Lax pairs of (1.3) are nonlinearized into a finite-dimensional integrable Hamiltonian system and a hier-
archy of finite-dimensional integrable Hamiltonian systems, together with the symmetry constraint (1.4).
Moreover the flows of these systems are certain to commute mutually.

In this Letter we shall show by an example of the AKNS case that the symmetry constraint (1.4) can be
applied to discuss the nonlinearization problem of the Lax pairs and the adjoint Lax pairs associated with (1+1)-
dimensional integrable systems. By taking the Bargmann constraint associated with AKNS systems [10], we
successfully generate a new involutive system with 4N dependent variables and thus establish an involutive
representation of solutions of AKNS systems. In Section 2 we first propose some required fundamental proper-
ties related to the adjoint representation equation V,=[U, V]. Then, in Section 3, we consider the Bargmann
constraint problem of the Lax pairs and the adjoint Lax pairs of the AKNS systems in detail.

2. Some basic properties

Let # denote the differential algebra of differential functions u=u(x, t) and write

® . ) d

Vo= Y Vs Vio={(PU8")x| PleB}, =7,
k=0

V= 3®C[/1,/1-']=kzo“~2f;k), V=Y ®C[4,A71] .

In this section we want to discuss some basic properties connected with a general spectral problem,
Ox=Up=U(u,A)p, Ue¥%,, (2.1)
and its adjoint representation equation

Ve=[U, V], V=V(u,A)e¥%,. (2.2)

Proposition2.1. Let U, V, We ¥, If the adjoint representation equation (2.2 ) and the zero curvature equation
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U-W,.+[U W]=0 (2.3)

hold, then the matrix A= V,— [ W, V] also satisfies the adjoint representation equation (2.2).

Proof. By using (2.2) and (2.3), we have
Ae=Vi=[We, VI=[W, Vil =[U, V1+ [U V] - [W,, V1= [W, [U, V]]
=[W,=[U W1, V]I+[U V)= (W, VI=[W, [U,V]]=—[1V, W], U]+ [U, V:]=[U, 4] .
The proof is completed.
We note ~that the spectral problem (2.1) generally possesses the uniqueness property [11]: if V,=
(U, V], Ve ¥, and V],_,=0, then ¥=0. This property corresponds to the uniqueness of the associated inte-

grable hierarchy of (2.1) and thus we call it the uniqueness property. The following result is a direct corollary
of proposition 2.1 and the unigueness property.

Corollary 2.1. For the spectral problem (2.1) possessing the above uniqueness property, we have A=
Vi— W, V1=0ifA] o= (V= [W, V]) | 4=0=0.

The above result plays a dominant role in the deduction of commutability of the associated flows and the
constrained flows.

Proposition 2.2. If U, Ve¥" 70y satisfy the adjoint representation equation (2.2), then we have (V"),=
[U,V*],n>1.

Proof. It follows from V,=[U, V] that

n i n i
(V= Y VoVVV. V=Y V. UV—VUV..V =UV'—V'U=[U, V"], n>1,
=1 . i=1 )
n n

which completes the proof.

For the spectral problem (2.1) we introduce its adjoint spectral problem

Ye=Uty=-U'y, (2.4)
where T means transposition of the matrix. Obviously
U—-W.+[U W]=0 « Ur—W2i+[U*, W*]=0, W*=—-WT, (2.5)

Moreover, we can easily reach the following conclusion.

_ Proposition 2.3. Let ¢=(¢y, ..., #.)T and y=(y,, ..., ¥,)T satisfy (2.1) and (2.4), respectively, and set
V=0yT=(8,),x, Then we have V,=[U, V].
Proposition2.4. Let U, V, We ¥ 0)- Then the compatibility condition of the system
Vx=[U V], V,=[W,V] (2.6)
is the equation

(U-WwW,+[U W], V]=0. 2.7)
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Proof. By (2.6), we have
Va=[U, V1+[U, Vi]=[U, V1+[U [W,V]], Ve=[W,VI+[W, V.]=[W, V]+[W,[U,V]].
Therefore V,,=V,, is equivalent to Eq. (2.7). The proof is completed.

This proposition shows that when U,— W+ [U, W]=0, (2.6) is integrable for V.

3. A symmetry constraints of the AKNS case

We consider the AKNS spectral problem
9:=Up, U=U(u,A)=(’w’1 ;’) ¢=(¢'), u=(”>, (3.1)

@2 w

and its adjoint spectral problem

A —-w '//1’
=" *ee — T= = . .
v, =U", Ut=-U (-—v —A)’ v <Wz) (3.2)

Let us first recall the construction of AKNS systems [10,12]. Setting

a b & {a; b,‘ i
V_(c —a)— igo(ci —a,-)'1 ’ (3.3)

we see that the adjoint representation equation V,=[ U, V'] becomes

@ =vC; — wh;, iz0, (3.4a)
bix=—2b;, —2uva,, iz0, (3.4b)
Cix=2C;41 +2wa;, iz0. (3.4c)

We choose ao= — 1, by=co=0 and assume ;| ,—o="5;| ,c0=Ci|u=0=0, i 1 (or equivalently select constants of
integration to be zero). In this way, the recursion relation (3.4) uniquely gives a series of polynomial functions
with respect t0 u, u,, ... . For example, we have

a=0, b=v, ca=w, a=iw), b=-lv., ca=iw,.

Moreover we have a%+ bc=1 since (a?+bc), =3 tr(V?), =4 tr[U, V?]=0and (a%+bc) |,—o= 1. At this point,
the compatibility conditions of Lax pairs,

¢ = U, b=V "9, VW=0A"V),, nz0, (3.5)
where the plus denotes the choice of the non-negative power of A, determine a hierarchy of AKNS systems,
v ~2bpi1 ) (w) 8H,
= =K, = =JL" = 20, .
Uy, (W),’. K, ( 2%, JL v J o’ n=0 (3.6)

where the Hamiltonian operator J, the recursion operator L and the Hamiltonian functions H, read as

0 -2 10—-wd~ 1 wd ~'w ) 2
J=(2 0)’ L‘( N I Y Al T (37
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When u,, =K,,,ie. U,— V" +[U, V™ ]1=0, n>0, by corollary 2.1 we can get [13]
Va=[V®™, V], n20, (3.8)

which underlines the commutability of the constrained systems. It follows from (3.8) and proposition 2.4 that
[Vim v+ [vm Y] ¥]=0.In fact, we have [11] V™ — VM 4+ [V (™ ¥ (W]=0, which implies the
commutability of the flows of (3.6).

. Let us now turn to the nonlinearization problem of the Lax pairs and the adjoint Lax pairs of AKNS systems.
From (3.1) and (3.2) we can directly obtain

L) _ l [ _ T
S_u_E(¢|'//2)’ E— —J;o(_¢ly/1 +¢2'/I2)dx1 (3'9)

which is exactly what we need in the symmetry constraint (1.4). When lim,,, ., #=1lim,, .., =0 we can show
that

0¥, ) (¢2 W )
L( = . 3.10
01V O1v2 ( )
Therefore (., $,¥,)7T belongs to the invariant space of the recursion operator L, which is a crucial point in
the nonlinearization method. Introducing N distinct eigenvalues 4,, 4, -.., A5, we have

(z;)x=u(u,z,-)(z;), j=1,2,.,N,  (G.11a)
() R () 1)
(Z) =V, “(ﬁiji)’ =12, N, (3.122)
(::z):—(V‘”’)T(u,/l,-)(:j;), j=1,2,.,N.  (3.12b)

The compatibility condition of (3.11) and (3.12) is the nth AKNS system u,, =K.
We impose the finite-dimensional invariant space for the AKNS flows
SH, X~ _ 8, T
S_uo= Z E’-—S—ul’ E;= J. (= oy +o0y) dx, (3.13)

j=1
— 00

which engenders an explicit symmetry constraint

w\_ <'1’1,¢z>) _(v)_((%, (p,))
j(v)“ o o,5) % W)\, 0,3 (3.14)
where ¥,= (yi, Vi, - ¥in) T, Pi= (911, Bizs -» #iv)T, i=1, 2 and ( , ) denotes the standard inner product of

R¥. By substituting (3.14) into Lax pairs (3.11) and (3.12) we obtain the constrained Lax pairs (or nonlinear-
ized Lax pairs)

(¢"‘) ~ U, A,-m(‘””), j=1,2,...N, (3.158)
¢2i x ¢2-i
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(""f) =-UT(y, A,-)b(“""), j=1,2,..,N, (3.15b)

Wi/« L4T]

(¢1j) =V(’"(u, }'j)IB(¢U)a j=1,2, ...,N, (3163.)
¢2j tn ¢2~1

('//lj) (v, A,-)IB(W”), j=1,2,..N, (3.16b)
sz in VIZ}

where the subscript B means substitution of (3.14) into the expression. System (3.15) is an ordinary differential
equation and systems (3.16) for n>0 are a hierarchy of nonlinear partial differential equations. Evidently,
(3.15) may be expressed as the Hamiltonian form

dH dH

‘A"ix=~'(371,—i, D,

= gy i=1,2, (3.17)
with the Hamiltonian function H= (AY,, @, — (A¥,, ©,> +(¥,, D, > (¥,, D,>, A=diag(A;, 12, ..., An). In
what follows we want to show that (3.17) is a finite-dimensional integrable system in the Liouville sense [14]
and that under the control of (3.17), systems (3.16) for n> 0 are also a hierarchy of finite-dimensional integra-
ble systems in the Liouville sense [14].

By using (3.10) under the constraint (3.14) we have

Cni1 w <5U1,¢2>) _ <<AW17¢2>) ((A"Tn d52))
=L" =L" =L7! = X =0, 3.18
(b) (u) (<s"z, > A, 05)\cart, 05 ) " (3.182)
and thus
Ons1 =0 " (VCp11 —~Whpi ) =4 ((A"P), D> — (A", D2)), nz0. (3.18b)

By proposition 2.2 we see that (V2),=[U, V?2]. Therefore
Fo=(trv?), = % (a®+bc)=0,

i.e. F is a generating function of integrals of motion for (3.17). After setting F=2,., F,A~", we obtain the
following expressions,

F,= i (a:a,_i+bica_y) , (3.19)
i=0
Fo=-1, Fi=(¥, D) (¥, D), (3.20a)

n—1
Fn = Z (a,-a,,_,- +bicn—i) —2a"

i=1
’l—l . . . .
= _):] (AT, @) =AW, @,5) (KA1, @) =A™ W, @, ))

H AT, P AT, @) |+ (AT, Oy — (AT, Dy, nz2. (3.20b)

Here the polynomial functions F,, n>0, include 4N dependent variables. It is worth saying that we should not
obtain new integrals of motion of (3.17) beginning with the generating functions (1/n)tr V" since
V3=(a%+bc)V.

Let us now consider the time part (3.16) of constrained Lax pairs. A direct calculation may give that systems
(3.16) for n>0 are cast into
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aF‘n+l

glitn=_ a¢1 s

D= g i=1,2, n>0, (3.21)

when (¥, ¥,, P, ) satisfies the spatial part (3.15) of constrained Lax pairs and possesses the property
lim o Fi=1lim | ., ;=0, i=1, 2. For example, from (3.16) and (3.18) we have

n n n n
Prm— Y AW = ¥ A=A~ Y a A"~ Y A,
i=0 i=0 i=1 i=1

=A"¥, - '21 (AT, @y ) — (A, @, 3)A W — _; A, Py A,

_ 0F, 4,
o, ’

nzl.
Similarly, using (3.8), we know that F=14 tr V2 is also a generating function of integrals of motion for (3.21).
Therefore

ad
{Fm+19Fn+l}=5t—Fm+l=05 m,nz0, (322)

where the Poisson bracket is defined by

Xy a_fﬂ_if_ﬂ) 3.23
{f;g}—iglj;l (a'//ij a¢ij a¢ij a'//ij . o

The involution (3.22)-of the polynomial functions F,, n> 1, may also be verified by direct computétion, and
thus does not depend on any boundary condition of ¥, @;, i=1, 2. In addition, it is easy to prove that

VF,=((3F,/8,)%, (3F,/3%,)T, (3F,/3®,)T, (3F,/d®,)T),  1<n<2N,
are linearly independent by observing that

dF, dF,
n =AYy , n
3P, o1m dym0 T PP,

=A™,  n21, (3.24)

and that the Vandermode determinant V(4,, ..., An) #0. Hence (3.15) and (3.16) are all finite-dimensional
integrable systems in the Liouville sense [14]. Moreover when ¥, (x, t,), ¥(x, 1,), @:(x, t,) and D,(x, t,)
with the property lim |, ¥=1im ,, . ®;=0, i=1, 2, are an involutive solution [15] of the consistent sys-
tems (3.15) and (3.16), u=({ ¥, D,), (¥, D,) )T solves the nth AKNS system u,, =K. This gives an invo-
lutive representation [15] of solutions of AKNS systems.

In what follows we consider the general case without the zero boundary conditions. In this case from (3.11)
we have

«w.) (Ml) (w) | | L
L = +7I , 3.25
(¢1 2} 708 v ' = (_ )
where E is an integral of motion of (3.11). Therefore, under the constraint (3.14), we obtain
Ch+1 w (¥, d52)) < ((A"_iwl, q)z)) ’ '
=L =L" = I; . y =0. . 3.26
(bn+l) H(U) (( Y, P> igo (A", D) ? ( )

Here I,=1 and I,, 1 <i<n, are integrals of motion of (3.15). From (3.4a), we can calculate that
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Ane1=0""(UCns1 =Whps1) =1 _Zoli((A”‘iW,,¢,)—(A""’Y’2, D5 )+ Qnss n=0, (3.27)

where Q,.., is also an integral of motion of (3.15). Equalities (3.4b) and (3.4c) require that @, = —1,,, n>1,
and thus the quantity a, =0 leads to I, = — } F,. Furthermore, by a?+bc=1 we obtain

n—1
2a,= Yy (ai@n_;+bic,;), n=2.
i=1
The substitution of (3.26) and (3.27) into the above equality gives rise to
Z L({A™ W, @) — (A" T, @,5) -2,

i=0

n—1
= l‘l‘(z L(KAT' R, @) — AT R, D, ) ) — 21)

n—i-1
X( Y LA, By ) — (AT, B,)) "2In—i)
=0

ne1i—1 n—
+ Y ¥ LAY, 0 2 I,(A" -l @,y nz2. (3.28)

i=1 k=0

Interchanging the summations in this equality, i.e.

n—1i—-1 n=2 n-—1 n—1n—i—-1 n=-2n—1-— n—1 i~1 n—i-— n—2 (n=2)-kn—-(l+1)
I S YD D RS Vil W W S T I Y Y
i=1 k=0 k=0 i=k+1 i=1 [I=0 I=0 i=1 i=1 k=0 I=0 k=0 t=0 i=k+1

we may acquire by a direct but lengthy computation that

Li=—% Y LDLFa_an—3 Z LL,_,, nz2. (3.29)

k+i€n—1
ki»0

Based upon this equality and I, = — } F;, we can easily obtain

L=Yd, Y F,.F, n>l, (3.30)
mus] I+..+im=n
ygim 1

where the constants d,,, are defined by

m—2 m—1
d1=_5’ dZ:i’ dm=- m—l_% Z d:dm—s—l_i Z dsdm—sy mz3. (3.31)

s=1 s=1
At this stage the time parts (3.16) of the constrained Lax pairs and adjoint Lax pairs may be cast into the form

d0H, dH, .
V=~ 30, D, = W, i=1,2, (3.32a)
o d
Hn= 2 Fi ...F,' =1 3 n>0. 3.32b
méo m+1 i1+..+im+1=n+1 ! m+l(d0 ) ( )
iyenim+1 21

For instance, for n> 1 we have
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W"n=— Z a,-A"""Iﬂ— Z C,'An_iqlz
i=0 i=0

n 1 i—1 i . nei
=A"¥, - Z E(kzolk( (A1 By — AT, d52))'-211')4 ¥

i=1

- Z (Z I (AR, ‘Dz})A"—'Wz

i=1 \k=0

ki IkA"_kWI Z Ik Z %((Ai_l-kqlly ¢l>—<Ai—l—kWZ, CD;})A""'YII
=0

k=0 i=k+1

n

- i I i (AR, @, 54",

i=k+1
F aFn—k+1 aF‘n—k+l
=- I
. 3¢1 "Z:o e, kgo i
Foet _ 5 3 - OFy e
=1 - dm F,..F,—————
° 0, k§1 mz=l i|+...;im=k helim g,
iyenime 1
aFn+l aFn_k+1
=" d F,.F, 2nck+l
rry ,,,2, mk§m L F 2
21 yeany im»1
aF'n+1 “ dm a
a - e F,..F,
o 00 mo 1M+ 10Dy i+ wimar=n+1 et imt
i1yeeim+1 21
9 ¢ 4 _oH,
= —_— m F F' .
9, mz=° m+1 . timr=n+1 1 = 6<D1

iyeesim+1 31

The above manipulation also allows us to establish the more general involutive representations of solutions of
AKNS systems. More precisely, we have the solution v=(¥,, @), w= (¥, ®,) to the nth AKNS system
u,=K,, once ¥ (x, t,), Va(x, t,), Di(x, t,), P:(x, t,) solve the constrained systems (3.15) and (3.16)
simultaneously.

By now, we finish the nonlinearization procedure for the Lax pairs and the adjoint Lax pairs of AKNS sys-
tems. We would like to emphasize that the above nonlinearization trick for Lax pairs and adjoint Lax pairs may
be applied to other 1+ 1 integrable systems (see Ref. [16]). Moreover, we wish that the deeper properties of
integrable systems could be exploited by the constrained Lax systems. For instance, the resulting involutive
representations of solutions possibly contain soliton solutions.
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