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Do the chain rules for matrix functions hold

without commutativity?
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Abstract

This paper shows that the commutativity condition [A(t), A'(t)] = 0 is often not
necessary to guarantee the chain rules for matrix functions: % f(A(t)) = A'(t) f'(A(t))
and % F(A(t) = f'(A(t))A'(t), where A(t) is a square matrix of differentiable functions
and f is an analytic function. A further question on the chain rules is presented and

discussed.
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1 Introduction

The chain rules for matrix functions are powerful tools in matrix analysis [1]. In the case
of matrix exponential functions, they can yield the exponential representation for the fun-
damental matrix solutions of homogeneous linear differential equations, and further, the
solution formula of the Cauchy problem for linear differential equations. However, the chain
rules for matrix functions do not always hold [2]. It is, therefore, important to exemplify the

chain rules for matrix functions.

Following Mathias [1], we let D denote an open subset of R or C, M,, denote the set of
n x n complex matrices and M, (D, m) denote the set of n x n complex matrices which have

spectrum contained in D and the largest Jordan block of size at most m.
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Let f be an (m — 1)-times continuously differentiable function over D. Given A €

M, (D, m), as usual we define the matrix function f(A) as follows:

f(A) =7as(A), (1.1)

where 74 ¢ is any polynomial which interpolates f and its derivatives at the roots of the

minimal polynomial of A. That is, if A is an eigenvalue of A of index k, then
FON =rP ), 0<i<k—1.

It follows that f(A) depends on f only through its first few derivatives on the spectrum of
A, and
(f(A)T = f(AT), (1.2)

where T" denotes the matrix transpose.

Let A(t) € M, (D,m) be differentiable on an open interval I C R. If f m-times continu-
ously differentiable over D, we can define f'(A(t)) as above. Then, the basic property (1.2)

on matrix transposes implies that the chain rule for the matrix function f(A(¢)) holds:

 F(AW) = A0 (AD) (13)

if and only if the chain rule for the matrix function f(A”(¢)) holds:

%f(AT(t)) = f/(AT())(A")'(¢). (1.4)

Thus, we only need to consider one of the two chain rules: (1.3) and (1.4). Generally, these
chain rules need not hold (see Reference [2] or Section 3 for an example). Moreover, if f is
(2m — 1)-times continuously differentiable over D, then we can compute the derivative of

f(A(t)) with respect to t as follows:

At) A'(t
Lyaen— [T
dt 0 A(t)

12

where [ |12 denotes the (1,2) block of the involved matrix [1].

Now let f be analytic and its Maclaurin series Y .2, ¢;a* converge over D. Then, f(A(t))
can be computed by [3]:

FUAW) = Y ad'), (L5)

Therefore, if A(t) commutes with A’(¢), i.e., the commutativity condition:

[A(t), A'(t)] = A(t)A'(t) — A'(H)A(t) = 0 (1.6)



is satisfied, then the chain rule (1.3) must hold. A natural question arises: Is the commuta-

tivity condition (1.6) necessary to guarantee the chain rule (1.3) for matrix functions?
There is some insightful work by Horn [3] on the relation between
[A,B] = AB — BA =0 and B = ¢4,

where A, B € M,,, in matrix analysis. It is direct to check that the commutativity [A4, B] =0
is a sufficient condition for the identities e4t? = e4e? = ePe4 to hold. But it is not necessary,
and there are some nice examples (see Chapter 6 of [3]) which tell us that if [A, B] # 0, then

either of the following two statements can be true: (a) three matrices ee?, efe4 A+B

( and e
AB B oA A+B

Y

are distinct, and (b) two of three matrices e“e”, e and e are the same.

In this paper, we would like to show that the commutativity condition (1.6) is not neces-
sary to guarantee the chain rule (1.3) for matrix functions, either. We will present a class of
examples of matrices which satisfy the chain rule (1.3) for matrix functions, but do not sat-
isfy the commutativity condition (1.6). Their transposes also provide examples for the chain
rule (1.4) for matrix functions. A further question on the chain rules, which is related to the
representation theorem of the fundamental matrix solutions of linear differential equations,

will be presented and discussed in the final section.

2 Exploring the chain rules without commutativity

2.1 Matrix exponential function

Let us first consider the chain rule (1.3) for the exponential matrix function:

%exp A(t) = A'(t) exp A(t), (2.1)

where A(t) € M,(D,m) is differentiable on an open interval I. We would here like to
construct square matrices A(t) which satisfy the chain rule (2.1) but do not satisfy the

commutativity condition (1.6).

2.1.1 Complex examples

Let p>1,q¢ >0, r > 1 be integers and n = p+ ¢+ r. We start to present a class of complex
square matrices A(t) which satisfy (2.1) but do not satisfy (1.6). These square matrices are

given in block form by

C F(t)
Ay:=]10 A Q , (2.2)
0 0 0

nxn



where C' is a p X p constant invertible matrix to be determined later, F'(t) is a p X r non-
constant differentiable matrix function on the interval I, and ©, A, Q are p X q, ¢ X q, ¢ X1

constant complex matrices, respectively (if ¢ = 0, the matrices ©, A,  do not appear in
A(t)).

On one hand, obviously we have

0 0 0 .
and then, it is easy to check that
0 0 CF'(t)
A, AW =10 0 0 # 0, (2.3)
0 0 0
since C' is invertible and F'(t) # 0.
On the other hand, observe that
[ i—1 i—2 .
Ct Y CIONTTY CTIF(t) + Y CTONTIT)
. J=0 J=0
Al(t) = , .
0 A* ALIQ
| 0 0 0 |

It then follows that

§ 00 i—1 o0 i—2 7
1 o 1 S

@ Y SY CIONTT G+ ) < YOI

o i=1 v j=0 i=2 v j=0
1 .
exp A(t) = ) = A1) = A v Lo 7
i—0 = 0 € Z Z'_!A Q
i=1
0 0 I, |

where G(t) = (¢ — I,)C7'F(t) and I, is the identity matrix of order k, and further,

0 0 (eY—1,)C F'(t)
d
7 &P At)=10 0 0

0 0 0
Now a direct computation yields
0 0 (e“—=C—1,)C7 F'(t)
d

ZexpA(t) — A'(Dexp A(t) = | 0 0 0 : (2.4)



Finally, our assertion (2.1) will follow if we take an invertible complex matrix C' such that

e’ —C—1,=0. (2.5)
Let us sum up these results into a compact statement:

Theorem 2.1 Let A(t) be the matriz defined in block form by (2.2). Then (a) A(t) doesn’t
commute with A’(t); (b) A(t) satisfies the chain rule (1.3), if C satisfies the matriz equation
(2.5); (¢) when p =1 =1, the chain rule (1.3) holds if and only if the matriz equation (2.5)
holds.

There are plenty of complex matrix solutions to the equation (2.5). Let us check the case

of p = 1. To solve the equation (2.5), we consider a new equation
we’ = —e 1. (2.6)

This equation has only one real solution, w = —1, but plenty of complex solutions given by
values of different brunches of the Lambert W function W (z) at the point z = —e™! (cf. [4]
and references there). Then, as is easy to see, c = —w — 1 gives a non-zero complex solution

to (2.5) with p = 1. Here are some numerical values for such solutions given by Maple:
¢ = {—LambertW(k,—e")—1|k€Z}
2.0888 —7.4615; for k=1,

R 2.6641—13.879: for k=2,
3.0263 — 20.2247 for k =3.

A special complex matrix solution to (2.5) is given by

C = Q 'diag(c, ca, -+ ,¢,)Q, ci = —LambertW(k;, —e™') —1, 1 <i < p,
where ki, kq, -+ ,k, > 0 are arbitrary integers and () is an arbitrary invertible complex
matrix.

The particular case of ¢ = 0 leads to simple block matrices:

C F(t)
A(t) = (2.7)
0 0

where C'is an invertible complex matrix satisfying (2.5) and F'(¢) is an arbitrary non-constant
differentiable matrix function. In this case, we have
e (Y —1,)C71F(t)

exp A(t) =
0 I,



and thus, we have

[0 (C—C— 1) 'F(t
%exp A(t) — A'(t)exp A(t) = ( ) g =0,
i 0 0
but -
0 CF()
A, (1)) = 0
i 0 0

2.1.2 Real examples

Let us now assume that
C = (Cij)pxps Cij = @ij + b/ =1, F(t) = (fij())pxr, fij(t) = gi5(t) + hiz(t)vV =1, (2.8)

where C' is any one of the invertible matrices satisfying (2.5) and F(¢) is a non-constant

differentiable matrix function. We define two real matrices in two-by-two block form:

9i;(t)  his(t)

B i b
C’ _ Ei. . EZ~ _ 1] 1)
( ])p ps Cij [ _hz’j<t) gij(t)

—bij

s F(t) = (fis(®))pxr, fis(t) = [ ] , (2.9)

and introduce a new class of real square matrices

C © F()
At):=10 A Q : (2.10)
o 0 0 ],

where O, A,  are 2p X s, s X 8, s X 2r arbitrary constant real matrices, respectively.

A similar computation as above guarantees the chain rule (2.1) for A(¢) defined by (2.10)
as long as the matrix equation
€ —C =1, =0 (2.11)

holds. Since C and F(t) are real matrix representations of the complex matrices C and F(t),
C' is invertible, € is a matrix representation of e and F(t) is a non-constant differentiable

matrix function. It further follows that

0 0 CF(t)
[At), A®)]=]0 0 0 |#0, (2.12)
00 0

and
a Re(e) — Re(cyj) — 645 Im(e“) — Im(c;;)

¢ =C—1Iyy = (dij)pxp, dij = , (2.13)
—Im(ecij) + Im(cz-j) Re(e%’) — Re(cz-j) — 5,‘]‘

6



since

; Re(e®)  Im(e“)
—Im(e%) Re(e“)
Hence, the equation (2.11) follows from (2.5) through (2.13). This implies that (2.10) defines

a class of real square matrices which satisfy the chain rule (2.1) but do not satisfy the

commutativity condition (1.6).

Remark 2.1 The examples above show that the chain rule (2.1) for matriz functions may
hold for matrices with a non-commuting relation between A(t) and A'(t). It is interesting to

observe that the following equation:

% exp A(t) = A'(t) exp A(t) = (exp A(t))A'(t) (2.14)

implies the commutativity of A(t) and A'(t). Actually, since A(t) commutes with exp A(t),
using (UV) =U'V +UV', we can differentiate the equation A(t) exp A(t) = (exp A(t))A(t)

with respect to t to obtain
[A'(t)A(t) — A(t)A'(t)] exp A(t) = 0.

The result follows, since exp A(t) is invertible for any A(t).

2.2 Matrix power series functions
The method used for the exponential function can be extended to power series functions
fx)=cotcax+ca®+-- +cpx" + -, (2.15)

which is supposed to converge over D. Then by (1.5), for A(t) defined by (2.2), we have

B 00 i—1 00 i—2 7]
FC) Y ) CIONTTH Gty + ) oYy CTONTTQ
=1 j=0 i=2  j=0
A(t)) = L.
fAQ)) 0 () 3 A :
=1
|0 0 FO)1, |

where G(t) = (f(C) — f(0)I,)C~'F(t). From this, it follows that

00 (f(C)= fO)L,)CTF'(t)
d

/A =100 0



Now, we have
fl(x) =c1 4+ 20w + - +ne ™ 4 (2.16)

which converge over D, and thus by (1.5), we arrive at

e’} i—1 00 i—2 7
FC) D diY CIONTT Hp(t)+ Y di Y CTONTITQ
i=1  j=0 i=2  j=0

f(A) = 0 P idi/\"‘lﬂ :
0 0 f(0) I,

where d; = (i 4+ 1)¢iy1, ¢ > 1, and Hy(t) = (f'(C) — f(0)I,)C~ ' F(t). Furthermore, we can

compute that

—f( () = A'(6) f'(A®))
)

0 0 (f(C)= FO)L,)C™'F(t) 0 0 f(0)F()
= 10 0 0 -10 o0 0
[0 0 0 0 0 0
[0 0 (f(C) = f(0)C = f(0)L,)CTF(1)
= 0 0 0 . (2.17)
[0 0 0

Summarizing, we obtain the following result on the chain rule (1.3) for matrix power

series functions:

Theorem 2.2 Let f(x) be an analytic function defined by (2.15), and A(t) be the matriz
defined in block form by (2.2). Then (a) A(t) doesn’t commute with A'(t); (b) A(t) satisfies

the chain rule (1.3), if C' solves the matriz equation
f(C) = f(O)C = f(0)I, = 0; (2.18)

(c) when p =1 =1, the chain rule (1.3) holds if and only if the equation (2.18) holds.

When a matrix solution C' of (2.18) is complex, use real matrix representations of C' and
F(t) to obtain a real matrix A(t) of the form (2.10) that satisfies (1.3) and [A(t), A’(¢)] # 0.

Let p = 1. As an example of (2.10), we can easily see that the matrix of the form
(2.10) with C' # 0 exists for f(x) = co + 1z + cox? if and only if ¢ = 0. Moreover, if
(x) = co+ 17 + 22 + c32® and ¢ # 0 and c3 # 0, then the matrix of the form (2.10) with
C = —2 satisfies (1.3) and [A(t), A'(t)] # 0.



Remark 2.2 [t is also interesting to examine those classes of sufficiently differentiable (cf.
[1]) functions f for which (1.3) implies the commutativity of A(t) and A'(t), i.e., (1.6). First,
it 1s clearly not so for linear functions f, since for these functions, (1.3) holds for all A(t).

Second, it is easy to see that for f(x) = 2%, the chain rule

d 2 _ !
ZA (1) = 24 (D A(1)

implies the commutativity condition (1.6), since we have L A(t) = A'(t)A(t) + A(t)A'(t).

3 A further question

Let us finally observe a system of linear differential equations on an interval I = (a,b) C R:

#(t) = A(t)z(t) + f (1), (3.1)

where f(t) € R™ is continuous on I and A(t) is an n X n matrix of real continuous functions
on I. An important question in differential equations is how to solve (or present the solution

to) the Cauchy problem of the system:

(t) = A(t)x(t) + f(t), x(to) = w0, (3.2)
where tg € [ and xg € R" are given. Examples of solving differential equations, including
linear differential equations with constant coefficients, can be founded, for example, in [5, 6].

Generally, it is direct to show that if the matrix A(¢) commutes with its integral ftz A(s)ds:
t
[A(t),/ A(s)ds] =0, t eI, (3.3)
to

then the fundamental matrix solution U (¢, ty) of the homogeneous system &(t) = A(t)x(t) is

determined by

t
Ult,tg) = exp/ A(s)ds, t e I. (3.4)
to
This means that if we have the commutativity condition (3.3), the following chain rule holds:
d t t
— exp/ A(s)ds = A(t) exp/ A(s)ds, teI. (3.5)
dt tO tO

This further implies that the unique solution to the Cauchy problem (3.2) is given by the

variation of parameters formula:

x(t) = Ul(t, to)zo + /t U(t,s)f(s)ds, t €. (3.6)

to



However, if we do not have the commutativity condition (3.3), then we cannot expect to

have the aforementioned chain rule (3.5). A simple example is given by
At) = . (3.7)

It is direct to see that

€t2/2 %(et2/2 _ 1)

ex A(s)ds = , 3.8
p/o (s) 0 1 (3.8)

and so, the chain rule (3.5) does not hold for the matrix A(t) defined by (3.7) (see [2] for

more details).

Now, it is natural to ask if the commutativity condition (3.3) is necessary to guarantee
the chain rule (3.5). Namely, is there any matrix A(t) of real continuous functions, which sat-
isfies (3.5) but does not satisfy (3.3)7 This is more general than the question we discussed in
the preceding section, since % fti A(s)ds = A(t). Any answer will provide an important sup-
plement to the representation theorem of fundamental matrix solutions of linear differential

equations with variable-coefficients.
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