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Abstract

An analysis of the extension of Hamiltonian operators from lower order to higher order of the matrix paves the way for
constructing Hamiltonian pairs which may result in hereditary operators. Based on a specific choice of Hamiltonian operators
of lower order, new local bi-Hamiltonian coupled KdV systems are proposed. As a consequence of the bi-Hamiltonian

structure, they all possess infinitely many symmetries and infinitely many conserved densities. (€ 1998 Eisevier Science
B.V.

1. Introduction

The bi-Hamiltonian structure has been identified as one of the basic mechanisms supplying conservation laws
and commuting flows and even constructing multi-gap solutions for a given nonlinear system. From a differential
geometric point of view, the bi-Hamiltonian structure can lead to an interesting application which holds the key
to describing integrable surfaces embedded in pseudo-Euclidean spaces. For example, in many cases a local
bi-Hamiltonian structure provides additional information about some nonlocal Hamiltonian structures closely
connected with metrics of constant curvatures. There exist other applications in handling quantization of Poisson

brackets. and studvine the nroblem of instability, for instance, in fluid mechanics. What we would like to develon
g 1xe to gevelop
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in this paper is a more local bi-Hamiltonian structure which can engender hierarchies of coupled KdV systems.

Let u be a dependent variable u = (u!,...,u%)7, where u/, 1 < i < g, depend on the spatial variable
x=(x,... ,xp)T and on the temporal varlable t. We use A" (r = 1) to denote the space of r-dimensional
column function vectors depending on u itself and its derivatives with respect to the spatial variable x. Sometimes

i cmpatbe AP LN A a et than Ao A e o L1 ..
WC WIIlE A \u) 1l OLIUcCL w prL«lly uic ucpt:lluﬁlll vaildaoic u.
T o o

! E-mail: mawx@math.cityu.edu.hk.

2 E-mail: maxim@math.cityu.edu.hk.

0375-9601/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved.
PII S0375-9601(98)00555-6



512 W.-X. Ma, M. Pavlov/Physics Letters A 246 (1998) 511-522

A natural inner product over A" (x) is given by

~
—
——
—r

Moreover, on 47(u) (note that the dimensions of both a function vector in .A?(x) and the dependent variable
u are the same), a Lie product can be defined as follows,

[K,S]=1(K(M+ES)—S(M+SK)) , K, §e A1, (1.2)
de =0

Two function vectors K, S € .49(u) are called commutative if [K, S] = 0. A fundamental conception that we
need is Hamiltonian operators, which is shown in the following definition.

Deﬁnition 1.1. A linear skew-symmetric operator J(u) : A9(u) — A9(u) is called a Hamiltonian operator

PREUULS PR P, ata

or a ﬂdlllllLUllldIl, 11 LllC Jd.LUUl IUCIlllly

(@, J'(w)[J(u) Bly) + cycle(a, B,¥) =0 (1.3)
holds for all «, 8,y € A9(u). A pair of operators J(u), M(u) : A%(u) — A4(u) is called a Hamiltonian pair

if 7(1:\ + cM{(u) is always Hamiltonian for any constant c.

cM(u) is always Hamiltonian for any cons
Associated with a given Hamiltonian operator J(u), the Poisson bracket is defined to be

5H1 SHg

Ou

, H,H, € A, (1.4)

{Hl,Hz}J—

where A consists of functionals A = [ Hdx, H € A. Two functionals H;, A, are called commutative under the
Poisson bracket associated with J if {H, A>}; = 0. A Hamiltonian operator J : .A7 — 49 has the nice property

[ l’Sxt:,] tgllfr‘"-l 5{g1,142}j ~ ~ P
lJE,J—a—L“—J JT, H;,HzG.A, (1.5)

which gives rise to an important relation between symmetries and conserved densities for a Hamiltonian system
with the Hamiltonian operator J.

If we have a Hamiltonian nair J and M, one of which is
il Wg nave oamuiocnian pair J and f4, CNe O wiici 18

hereditary operator [1,2]. Furthermore, if the adjoint operator ¥ := &' = J~!M of this hereditary operator
&= MJ1 maps a gradient vector fy = S8H, /8u to another gradient vector f; = ¥fy = 51:11/ éu, then all
vectors ¥ fy, n > 0, are gradient, i.e. there exist functionals H;, i > 2, such that ¥! fo = 517[/&4, i=22
(see Refs. [3-5] for more information). Then it follows from the bi-Hamiltonian structure that all systems
of evolution equations in the hierarchy #, = &° o, n 2 U0, commuie with each other, i.e. {9™fy, P"fo] = 0,
m,n = 0, and they have infinitely many common conserved densities being commutative under two Poisson
brackets. Therefore, Hamiltonian pairs can pave the way for constructing integrable systems. However, the

it dat R it g =

problem still exists and we will turn to finding Hamiltonian pairs.

In this paper we want to develop a way to generate Hamiltonian pairs. We are successful in constructing
bi-Hamiltonian coupled KdV systems in such a way. The paper is organized as follows. We first concentrate on
the techniques for extending Hamiltonian operators from lower order to higher order of the matrix, motivated

by the idea of Refs. {6-8]. Then we will proceed by analyzing a class of Hamiltonian pairs which can yield

hereditary operators and eventually new bi-Hamiltonian coupled KdV systems. A few concluding remarks are
given in the final section.

invert mnle J then ¢ = MJI— 1 1(\ a
1Invery s 10T 58 J, W0 © = MJ
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2. Extending Hamiltonian operators

Let us specify our dependent variables
up = (upy ..., ud)’, 1<EkLN,
u= . u)T =, ul )T
and introduce a condition
Jo(ue) =T/ (), 1<kISN (2.1)

on a set of given Hamiltonian operators Ji(u) : A%(ux) — A?(ui), 1 < k < N. This condition requires
a kind of linearity property of the operators involved with regard to their dependent variables. Such sets of
Hamiltonian operators Ji(ux) do exist. For example, we can choose

d
Ji(up) = —%3% -+ 20007 " + 2uz, d==- 1<k<N

The problem that we want to handle here is how to gencrate Hamiltonian operators starting from a given set of
Je(uy), 1 < k < N. The simplest solution is to make a big operator J(u) = diag(Ji(u1),..., Jy(uy)). What
we want to develop below is a more general structure of Hamiltonian operators. To the end, we introduce the
following structure of candidates for Hamiltonian operators,

N
J(u) = ( Zc,’fifkwk)) : (2.2)
NxXN

k=1

where {c,l;li, S k=1,2,...N} is a set of given constants. Obviously this big operator J(u) may be viewed as
a linear operator
T(u) : ANy = Au) x ... x AT(u) — AM(u) = A2u) x ... x AT(u),

n'g v

N N

where a vector function of A9(u) depends on all the dependent variables u;,...,uy, not just on a certain
dependent variable uy, by defining

N
T
Ja=((nT,. (") s (Jadi= Y e, 1<i<N, 23)
Jk=1
where a = (af,...,a)?, &y € A%(u), 1 < i < N. To guarantee the skew-symmetric property of the big
operator J, a symmetric condition on {cf},
c,l_cl‘chja 1 <i’],k<Na (24)

suffices. The following theorem provides us with a sufficient condition for keeping the Jacobi identity (1.3).
Theorem 2.1. If all Ji(uy) : A%(ur) — A9(u), 1 < k < N, are Hamiltonian operators having the linearity

condition (2.1) and the constants c{‘j, 1 £ i, j,k < N, satisfy the symmetric condition (2.4) and the following
coupled condition,

N N
> ockeh =D e, 1<ijln<N, 2.5)
k=1 k=1
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then the operator J(u) : A¥(u) — A (u) defined by (2.2) and (2.3) is a Hamiltonian operator.

Proof. We only need to prove that J(u) satisfies the Jacobi identity (1.3), because the linearity property
and the skew-symmetric property of J have already been shown. Noting that 47(u) is ¢composed of column
function vectors, we suppose for a, 8,y € AV(u) that

a=(al,...,al)7, B=Bl.....B80)7, y=r, YT,
aiaBisyiEAq(u)9 1<1<N

Moreover we will utilize a convenient notation (X); = X;, X; € A%(u), 1 < i < N, when a function vector
X € ANa(y) itself is complicated.
First from the definition (2.2), we have

NxN

N
J(w)[JB] = (chf,’xuk)[(.w)k]) ,
k=1

N
(J' (W IBy)i= Z i (u) [(IB)K]Y), ISi<N
k=1

Then taking advantage of the concrete definition (2.3), the linearity condition (2.1) and the coupled condi-
tion (2.5), we can make the following computation,

N
(@, J'(0) [JB1Y) + cycle(a, B,y) = Y ck{as, Ti(w) [ (IBYi1y;) + cycle(a, B, ¥)
i,jk=1
N N

Z cg'<0‘i’ T () [Z chJn(un)Bl] Yj> +cycle(a, B,y)
ijk=1

N
= clicr{a, T (we) [n(un) Bilyj) + cycle(a, B, y)
In=1

Il

In=1

i,

b
=

(ki (@i, Ty () [n(ua) Br1y;) + cycle(a, B, 7)

b
=~
-]

I
—

M=

(ki) (@i, Ty (un) [n(un) Bl y;) + cycle(a, B,y)

~
[

~
=
1§

—_

M= §1M-
= IM= I[M= I[M]=

N N
(ki) (e To(u) Unun) Bilyj) + > D (k) (Bi Th(a) [n(un) vil @)

i,jd,n=1 Lidn=1 k=1
N
+ 30D (ke (vis Iy () [In(un) 1 B;)
i,pl.n=1 k=1
N N

> N (ke (e I () [n () Bilvs) + cycle(es, Br¥i)) -

ij.l,n=1 k=1
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Recall that each J;{#;) is a Hamiltonian and it foliows from the above equality that the big operaior J defined
by (2.2) and (2.3) satisfies the Jacobi identity (1.3). This completes the proof. O

We remark that if we consider the coefficients {c -} as the structural constants of a finite-dimensional algebra
with a basis ey, €3, ..., ey as follows,

N
eixe;j =Y cher 1<i,j<N, (2.6)

then the symmetric condition (2.4) and the coupled condition (2.5) can become

€ % € =€; * ¢, 1<i,j<N, 2.7
(ei*ej)*ek:(ek*ei)*ej9 1<lv.]9k<Na (2'8)

respectively. They reflect two specific properties of the related algebra.
Apparently, basic scalar Hamiltonian operators satisfying the linearity condition (2.1) can be the following
set,

Ji(wy) = ¢;d® + did + 2uy + 4u;d, I1<i<N, 2.9)

where d = d/dx and ¢;, d;, 1 < i< N, are arbitrary constants. Of course, matrix Hamiltonian operators having
the linearity condition (2.1) may be chosen. Actually, such sets of Hamiltonian operators may be presented

Aienntlyy Firenn Ave amaratang Th Arvaaaa 1 A+ iy martirchation annernd stinnme ag Nafe TOQO 1N

UllU\/Lly iLoir LllC aUUV’U UPCIQLUID U_)’ Luucuiclil L 1 Ul U)’ PUI Luivauuvil aivuliu bUlutlUllD ad lll I\Clﬁ L7,1V].
In what follows, we give examples of applications of Theorem 2.1 to two specific choices of {cij}. The
analysis below is quite similar to the one made for the extension of hereditary operators in Ref. [11].

Example 1. Let us first choose

cf = Bt jk—ps (2.10)

where p is an integer and 8y denotes the Kronecker symbol. The corresponding big operator formed by (2.2)
becomes

[ Ip+2(up+2) Jp+3(upi3) oo Iptn1 (Upin41) ]
reon Jpi3(up4s) < Jpin2 (Upyni2) PR
J{u) = s {2.11)
Jn.Ll\I.J.] (un.uvu ) Jn-’-]\!-f-z(un_LM_L’)) . JP+2N(uP+2N) i
where we accept that J;(u;) =0if i< Oori> N+ 1.
For two cases of ~2N -+ 1 < p £ —N and —1 < p < N - 2, the coupled condition (2.5) can be satisfied,

because we have

N N
E cfj-cZ,= E cf‘iczj:l, whenn—i—j—1{=2p,
=0, otherwise.

While proving the above equality, we should keep in mind that we have

1<i+j+p=n—-1l—p <N, 1<i+i+p=n—j—p<N,
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when n —i — j — [ =2p. But for the case of —N < p < —1,uponchoosingi=—p+1, j=—p—1,n=101=1,
we obtain

N N

k n k n
E Cichl =1, E CliCkj = 0,
k=1 k=1

and thus the coupled condition (2.5) can not be satisfied.
Note that when p > N — 1 or p < —2N, the resulting operators are all zero operators. Therefore, among the
operators defined by (2.11), we can obtain only two sets of candidates for Hamiltonian operators,

i 0 Jotn+1(Upynt1)
TN+ (up+N+1 ) Jp+N+2(up+N+2)
J(u) = i ) ) ,
| Jp+n+1 (Uprn+1) Jpinvi2(Upin2) . Jpvan (Upianw) _
_IN+1<p<—N, (2.12)
Jpra(upra)  Jp43(Upi3) - Jpins1(Upint1)
J(u) = Jp+3(.up+3) a , ~1<p<N-2, (2.13)
| Jpana1 {Uprn+1) 0

where we still accept that @;(1;) =0 if i < 0 or i > N + 1. These two sets of operators can be changed into
each other by a simple transformation (uy,ua, ..., un) <& (UN, UN—1,...,U]).

Example 2. Let us now choose
ck; = 8u, I=i+j—p (mod N), (2.14)

where 1 < p < N is fixed and 8y denotes the Kronecker symbol again. In this case, we have
N N
Zc,’-}cﬁ,=2c§cﬁj=1, when i+ j+1—n=2p (modN),
=1 k=1
=0, otherwise, (2.15)

which allows us to conclude that the coupled condition (2.5) holds indeed. Therefore we obtain a set of
candidates for Hamiltonian operators

Jo_p(uz—p) JFip(us_p) .. In—pr1(un—p+1)
Ja_p(uz—p) In—pr2(un—p+2)

J(u) = PR , A (2.16)
Iv_pr1(Un—p+1) IN—pra(un_ps2) -.. Jan—p(Uan—p)

where we accept J;(u;) = J;j(u;) if i = j (mod N), while determining the operators involved, for example,
Jo—p(Ur—p) = Jy(uy) when p = 2. The special choice of p =1 leads to a candidate of Hamiltonian operators
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Ji(uy) J(w) ... Jy(un)

J(u) = Jz(.uz) Jl(‘ul) . (2.17)

InGuy) Ji(ur) - InoiQun—r)

This operator will be our starting point for constructing new integrable systems in the next section.

3. New bi-Hamiltonian coupled KdV systems

From now on we focus on the candidate of the Hamiltonian operators defined by (2.17). Let us pick out the
Hamiltonian operators formed by (2.17) with the choice of (2.9). Then the following Hamiltonian pair can be
engendered,

a dx ... an
Jwy=Ad=|%2 T N, (3.1)
ay dy ... dy—1
Mi(ur) My(uz) ... My(uw)
My = | M0 c M) (3.2)
My (uy) Mi(ur) ... My_1(uy—1)
where 8 = d/dx, u= (uy,uz,. .. ,un)T, a; = const, 1 <i < N, and the operators M;(u;), 1 <i < N, are given
by
M;(u;) = ¢id° + did + 2uiy + 4u;3, ¢;, d; = const, I1<i<N, (3.3)

which are all Hamiltonian.
We assume that the constant matrix A is invertible to guarantee the invertibility of J, and its inverse matrix

is given by

by by ... by
p=|02 - b (3.4)
by by ... by

where b;, 1 < i< N, can be determined by solving a specific linear system

arby +ayby+ ... +anby =1, aby +asbry + ... +anby_1 + a1by =0, Cees
anby +aiby ...+ ay_1by = 0.

Now the resulting hereditary operator @ = MJ~! reads
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r }vi'l(bij) }ri"z(h‘z) IAY{N(MN) 1 rbi L”/‘Q b[v‘ 1
M2 Uy M1 u bz b1 —
®(u) = (u2) (u1) P

[MN£UN) Mi(wy) ... MN—I(.uN—I)J l_bN by ... bN-—lJ
‘»¢1(u1) ‘pz(uz) ¢N(”N) ‘l [bl b2 bN -|
& .

2(u2) < Di(uy) by by
= (3.5)
Len(un) D1(u1) ... Py—1un—1) | Lbv b1 ... b1 ]
with
@i () = Mi(u)d™ ' = ¢;d* +d; + 2uid ™' + 4u;, 1<i<N. (3.6)
This hereditary operator can be rewritten in the concise form
P(u) = M = (Zbk_,-+,~q>k(uk)), 37
k=1

where b; = b; if i = j (mod N). It is also an example satisfying the extension scheme of hereditary operators
in Ref. [11], because upon setting c"J = by_;1; we have three equal sums for all 1 <i,j.l,n < N:

N N N

\ kI _\ ) 1 _ X Lo

2 _CiiCn = P Ck—itjOl—ktn = 2, OmOl+i—jtn—m>
k=1 k=1 m=1

A
Fid

A7
Fid

N
I n _
ikc,];j = bl“i+kb"'k+j - § ibmbl+i—-j+n-—m,

k=1 k=1 m=1
N N N
Sk =% _
2 CinCki = 2 bi—itnbr—p+j = _E bubiri—jrn—ms
k=1 k=1 m=1

which are sufficient for @(u) to be hereditary (see Ref. [11]).
We now turn our attention to investigating the nonlinear systems which can result from the above Hamiltonian
pairs. Such a system can be the following,

Uy = Puy = MJ uy, (3.8)

which can be represented as

N
Ui = Z br—itj(Chltjrxx + drjx + 2upttj + dugunjy), 1<i<N, (3.9)
kj=1

where we again accept b; = b; if i = j (mod N). It is easy to find that

fO = J_lux =Bu= égu—o, ﬁo = /H()d.x, H() = %uTBu. (310)
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We proceed by checking whether or not the following vector defined by
Ti(wy) Ya(uz) ... ¥n(uw)
Vs (u s v (u
fi=Vfo=d fo=B 2(_ 2) o 1( 1) (3.11)
Pn(uy) Wl(ul) - VN 1(MN 1)
is a gradient vector, where ¥;(u;) = qf';r(ui) =3 "M;(w;), 1 <i< N. That is true, indeed. Actually we have
8H .
Hh=¥fo= 3?1, Hy =/H1dx,
u
r @I(Il}) fz(uz) @N(MM)
H, = (Bu)T 02(uy) 01 (uy) Bu
On(uy) O1(u1) ... On_1(un—_1)
N N
= Z (Z bi+l—lbk+j-—i) w(Sermjex + Sdiuj + ugu;), (3.12)
Jk=l N =l
where the operators @;(u;), 1 < i< N, are given by
Oi(u;) = $¢;9* + 1d; + %ui + 207 w0, 1<i<N, (3.13)
and b; = b; if i = j (mod N). We can also choosc the encrgy form for the functional H:
N N
H = /Hldx, H, = Z (Zbi+l—lbk+j—i) (--5—cku1xujx + %dkuluj + wugn;). (3.14)

Gki=1 N i=l

Therefore, according to the Magri scheme [3-5], there exist other functionals H, n > 2, such that ¥" fo =
8H,/8u, n > 2. All such functionals can be generated by computing the following integrals,

1
Hn=//((1lf"f0)()lu),u)d)tdx, n>0. (3.15)
0

Further we can obtain a hierarchy of bi-Hamiltonian equations

8H,ry 6H

Su 6u
which includes the nonlinear system (3.9) as the first member. It follows that they have infinitely many
commutative symmetries {K,, }§° and infinitely many commutative conserved densities {H,, }5°. All systems of
evolution equations can reduce to KdV equations once u; =c; =d; =0, j # 1, are selected. Therefore they are
all N-component coupled KdV systems.

Let us now work out a concrete example for a choice of A with @) =1, ¢; =0, 2 < i < N. In this case, we
have by =1, b; =0, 2 < i < N. Then the first Hamiltonian structure is given by

=Ky = (@) u, =J

nz0, (3.16)

8H 5H ]
Oy = dx—b, g =0y——,  dG=—, 2<k<N. (3.17)
Ouy SUN12—k ox
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This first Hamiltonian structure has the momentum

N
P= FIO = %/ (u% + ZukuN+2_k)dx, (3.18)

k=2

which is of quadratic form with respect to its N Casimirs (annihilators of the first Poisson bracket) Fi = J urdx,
k=1,...,N. The conservation law of momentum is

N
SH
8,H, = ax(zuk—i - F) (3.19)

where Ay = [ Hidx, 3, F = Z,il (8H, /8uy)usy. For simplicity, in the selection (3.6) we can put d; = 0,
because we can eliminate those constants in the expressions of @; by making shifts u; — u; — d;/4. Then our
coupled KdV system reads

m N m N
Ot = Oy [ﬁf ( Z Co+1—kUe + Z CN+m+1—kuk) +3 Z Upltmi1—k + 3 Z uk”N+m+1—k] , (3.20)

k=1 k=m+1 k=1 k=m+1

which has the following Hamiltonian for the first Hamiltonian structure,

H, =/H1dx, (3.21)

N-—1 N+1—m
1

H, =—5<C1W1 + wi E CkWN12—k + § Cm E WeWN13—m—k T E Cin E WEWIN—m43— k)
m=1 m=3 k=N+3—m
N+1—k

+ 13+ 3u E UpUN2—k + E U 2 UnmUN+3—k—m T+ E Umt3 E UN—kUN+k—m>
k=2 m=2 m=0 k=0

where wy = dyux, 1 < k < N, and N is assumed to be greater than two for producing nontrivial systems. The
second Hamiltonian structure can be determined by its recursion operator

8H 8H .
EATE qum_kax St Z Pyprpikdig—,  L<I<N, (3.22)

k=1 k=i+1 Suy”
where @; = ;32 +2(2u;+widy 1), 1 < i < N. The second Hamiltonian structure has the momentum Fy{ = f uidx
and the Hamiltonian Hy.
The relationship between the gradients of Hj and Hy,, determined by the recursion operator provides the
possibility for constructing an infinite set of conservation laws and commuting flows by iterations. At each
step we need to compute integrals to construct Hiy1. They can be done by using formula (3.15) in variational

analysis.
Moreover we have an alternative way to construct an infinite set of conservation laws and commuting flows.
Let us introduce an eigenfunction problem for the recursion operator

[@(u) — Alur =0, (3.23)

ie.

(3.24)

N
2

i N
Z‘pi+l—k3ruk + Z Dy y1+i-kOrtty = Adri, 1<
= k=it
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This eigenfunction problem can be equivalently rewritten as

6Tuk=ﬁka, 1 <k<Ns

i N
D By adete + Y, Prirsiadati = Ay, 1<,
k=1 k=i+1

If we use formal series near A — oo,

1 1

312(9,0 —f—xatl +ﬁ5,2 —f-, (325)
1 1

U,-=U,~(O) + X”i(l) + XZ—U,-(Z) +..., (3.26)

we can obtain directly from the above eigenfunction problem an infinite set of commuting flows. Furthermore
we can use formal series near A — 0. Then the first resulting nontrivial commuting flow is a coupled long-wave
equation

i N
Z‘DH—I—karuk + Z Dy 1 4i—kfrir = 0, I<i<N (3.27)
k=1 k=it

This is an N-component generalization of the long-wave equation (see Ref. [12] for more information about
long-wave equations), which commutes with the KdV equation.

4. Concluding remarks

We have proposed new coupled KdV systems possessing bi-Hamiltonian structures by extending Hamiltonian
operators from lower order to higher order of the matrix. Clearly we may make other choices of J;(u;) to give
more results based on Theorem 2.1.

Compared to the well-known coupled KdV systems (see, e.g., Ref. [13])

[0...0 &
1...0 &,

U = P'u,, d(u) = N n=0, (4.1)
(0... 10y

and the quite new coupled KdV systems introduced in Ref. [14],

byD, 0
bn_1D1 + byDy  by®

u = d"u,, D(u) = , nz0, (4.2)

_b1¢1 +...+by®n ... by_1D| + byDy byD;

where u = (u1, 42, ...,uny)T, b;, 1 <i <N, are arbitrary constants except by # 0, @; = @;(u;), 1 <i < N,
are still defined by (3.6), our new coupled KdV systems (3.16) have similar nice integrable properties, for
example, bi-Hamiltonian structures, dispersionless limits having bi-Hamiltonian structures (see Ref. [15] for the
case of the well-known coupled KdV systems). But there are differences among the structures of the recursion
operators corresponding to these three hierarchies of coupled KdV systems. The bi-Hamiltonian structure (see
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Ref. 11471 of the hierarchy (4.2) can similarly be derive tha TIos R T T R
ReL. |14 )y O ulC 0ierarciy (4.2 Can Siimiiarty oe derived from the Hamilt Upcrdlurh 0rmea oy (£.12)

in Example 1 of Section 2. This is why we did not give above a detailed analys1s for constructing integrable
systems starting from (2.12) or equivalently from (2.13). However, we do not know whether or not the two new
coupled KdV hierarchies (4.2) and (3.16) have other integrable properties, for example, Lax pairs like (4.1).

In terms of the existence of recursion operators, other integrable couple KdV systems, say, Jordan KdV
systems, have also been derived (see, for example, Refs. [16-19]). A natural question is whether there exist
other hierarchies possessing bi-Hamiltonian structures among those coupled KdV systems. This will enrich the
content of Hamiltonian theory for coupled KdV systems.

Acknowledgement

The authors would like to thank the ("ltv ”mvers;[y of Hong Kong and the
t

Kong for financial support. One of the authors (W.X.M.) is also grateful
FXK. Guo for valuable discussions.

earch Grants Council of Hong

Vi 10

Res 1g
o Professor Y.S. Li and Professor

References

[1] LM. Gel’fand, 1.Y. Dorfman, Funct. Anal. Appl. 13 (1979) 248.
[2] B. Fuchssteiner, A.S. Fokas, Physica D 4 (1981) 47.
[3] F. Magri, J. Math. Phys. 19 (1978) 1156; in: Nonlinear Evolution Equations and Dynamical Systems, Lectures Notes in Physics,
Vol. 120, eds. M. Boiti, F. Pempinelli and G. Soliani (Springer, Berlin, 1980) p. 233.
[4] A.S. Fokas, B. Fuchssteiner, Leit. Nuovo Cimenio 28 (1980) 299.
[5] P.J. Olver, Applications of Lie Groups to Differential Equations (Springer, New York, 1986).
[6] W.X. Ma, J. Graduate School, USTC and Academia Sinica 3 (3) (1986) 37.
[7] G.Z. Tu, W.X. Ma, 1. Partial Diff. Eq. 3 (1992) 53.
[8] C. Ghosh, A.R. Chowdhury, J. Phys. Soc. Jpn. 63 (1994) 3911.
[9]1 W.X. Ma, B. Fuchssteiner, Phys. Lett. A 213 (1996) 49.
[10] W.X. Ma, B. Fuchssteiner, Chaos, Solitons and Fractals 7 (1996) 1227.
[11] W.X. Ma, Extension of hereditary symmetry operators, solv-int/9803002 (1998), to appear in J. Phys. A.
[12] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations, (Academic Press, London, 1982).
[13] A.P. Fordy, M. Antonowicz, Physica D 28 (1987) 345.
[14] W.X. Ma, A class of coupled KdV systems and their bi-Hamiltonian formulations, solv-int/9803009 (1998).
[15] E.V. Ferapontov, M.V. Pavlov, Physica D 52 (1991) 211.
[16] S.I. Svinolupov, Phys. Lett. A 135 (1989) 32.
[17] A.S. Fokas, Q.M. Li, Phys. Rev. Lett. 77 (1996) 2347.
[18] A. Karasu, Int. J. Theor. Phys. 36 (1997) 705.
[19] M. Giirses, A. Karasu, J. Math. Phys. 39 (1998) 2103.



