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Abstract 

An analysis of the extension of Hamiltonian operators from lower order to higher order of the matrix paves the way for 
constructing Hamiltonian pairs which may result in hereditary operators. Based on a specific choice of Hamiltonian operators 
of lower order, new local bi-Hamiltonian coupled KdV systems are proposed. As a consequence of the bi-Hamiltonian 
structure, they all possess infinitely many symmetries and infinitely many conserved densities. @ 1998 Elsevier Science 
B.V. 

1. Introduction 

The bi-Hamiltonian structure has been identified as one of the basic mechanisms supplying conservation laws 
and commuting flows and even constructing multi-gap solutions for a given nonlinear system. From a differential 
geometric point of view, the bi-Hamiltonian structure can lead to an interesting application which holds the key 
to describing integrable surfaces embedded in pseudo-Euclidean spaces. For example, in many cases a local 
bi-Hamiltonian structure provides additional information about some nonlocal Hamiltonian structures closely 
connected with metrics of constant curvatures. There exist other applications in handling quantization of Poisson 
brackets, and studying the problem of instability, for instance, in fluid mechanics. What we would like to develop 
in this paper is a more local bi-Hamiltonian structure which can engender hierarchies of coupled KdV systems. 

Let u be a dependent variable u = ( ul,. . . , z8)T, where u’, 1 < i < q, depend on the spatial variable 
x= (Xt,...,X,)r and on the temporal variable t. We use dr (I 2 1) to denote the space of r-dimensional 
column function vectors depending on u itself and its derivatives with respect to the spatial variable x. Sometimes 
we write d”(u) in order to specify the dependent variable U. 
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A natural inner product over -4’(u) is given by 

Moreover, on Aq(u) (note that the dimensions of both a function vector in Aq(U) and the dependent variable 
u are the same), a Lie product can be defined as follows, 

[KS1 = ~(K(uCES) -S(u+eK)q&. K,S E Aq. (1.2) 

Two function vectors K, S E Aq( u) are called commutative if [K, S] = 0. A fundamental conception that we 
need is Hamiltonian operators, which is shown in the following definition. 

DeJinition 1.1. A linear skew-symmetric operator J(U) : Aq( u) -+ A*(u) is called a Hamiltonian operator 
or a Hamiltonian, if the Jacobi identity 

(aI J’(u) [J(u)Ply) + cyWa,P,y) = 0 (1.3) 

holds for all CX, p, y E Aq( u) . A pair of operators J(U) , M(u) : Aq( u) + Aq (u) is called a Hamiltonian pair 
if J(u) + cM( u) is always Hamiltonian for any constant c. 

Associated with a given Hamiltonian operator J(u), the Poisson bracket is defined to be 

{A,, i?2}J = /- ($)‘J$f dx, II,,& E A, (1.4) 

where d consists of functionals fi = s H dx, H E A. Two functionals fit, I& are called commutative under the 
Poisson bracket associated with J if (81, &}J = 0. A Hamiltonian operator J : A4 --f Aq has the nice property 

(1.5) 

which gives rise to an important relation between symmetries and conserved densities for a Hamiltonian system 
with the Hamiltonian operator J. 

If we have a Hamiltonian pair J and M, one of which is invertible, for example J, then @ := MJ-’ is a 
hereditary operator [ 1,2]. Furthermore, if the adjoint operator p := @t = J-‘M of this hereditary operator 
@ = MJ-’ maps a gradient vector fa = 6&c/& to another gradient vector ft = qfe = SJ?t/Su, then all 
vectors lEnfe, n > 0, are gradient, i.e. there exist functionals &, i > 2, such that p’fc = 8I;Ti/%, i > 2 
(see Refs. [ 3-51 for more information). Then it follows from the bi-Hamiltonian structure that all systems 
of evolution equations in the hierarchy ut = Qnfefb, 12 > 0, commute with each other, i.e. [@“fa,@p”faJ = 0, 
m, n > 0, and they have infinitely many common conserved densities being commutative under two Poisson 
brackets. Therefore, Hamiltonian pairs can pave the way for constructing integrable systems. However, the 
problem still exists and we will turn to finding Hamiltonian pairs. 

In this paper we want to develop a way to generate Hamiltonian pairs. We are successful in constructing 
bi-Hamiltonian coupled KdV systems in such a way. The paper is organized as follows. We first concentrate on 
the techniques for extending Hamiltonian operators from lower order to higher order of the matrix, motivated 
by the idea of Refs. [ 6-81. Then we will proceed by analyzing a class of Hamiltonian pairs which can yield 
hereditary operators and eventually new bi-Hamiltonian coupled KdV systems. A few concluding remarks are 
given in the final section. 
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2. Extending Hamiltonian operators 

Let us specify our dependent variables 

Uk = (z&, . . . , uy, l<k<N, 
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u= (UT ,...) z&T= (ui I...) uy ,...) z4h ,...) UgT, 

and introduce a condition 

J;(Q) = Jl(G 1 ‘< k,l < N (2.1) 

on a set of given Hamiltonian operators Jk(Uk) : dq(Uk) -+ &(Uk), 1 < k < N. This condition requires 
a kind of linearity property of the operators involved with regard to their dependent variables. Such sets of 
Hamiltonian operators Jk (uk) do exist. For example, we can choose 

Jk(Uk) = -aa3 + 2&‘,$-’ + 2uk, a=$, l<k<N. 

The problem that we want to handle here is how to generate Hamiltonian operators starting from a given set of 
Jk(uk), 1 < k < N. The simplest solution is to make a big operator J(u) = diag(Jt(ut), . . . , JN(uN)). What 
we want to develop below is a more general structure of Hamiltonian operators. To the end, we introduce the 
following structure of candidates for Hamiltonian operators, 

J(U) = 2 Ctj Jk(Uk) 
k=l > NXN’ 

(2.2) 

where {c$li, j, k = 1,2, . . . N} is a set of given constants. Obviously this big operator J(u) may be viewed as 

a linear operator 

J(u) : A’-(u) = Aq(u) x . . . 
. 

x A*(u) 4 ANq(u) =;e4(u) x .,. x A*(u!, 
2 

N N 

where a vector function of Aq( U) depends on all the dependent variables ~1,. . . , UN, not just on a certain 

dependent variable Uk, by defining 

JCY= ((Ja)#,... 
( , ((J~)N)‘)~, ( JcY)~ = 5 CzJkk(Uk)nj, l<i<N, (2.3) 

j&l 

where (Y = (LY:, . . . , CY~)~, ai E Aq(u), 1 < i < N. To guarantee the skew-symmetric property of the big 
operator J, a symmetric condition on {cb}, 

k k 
qi = cji ) l<i,j,k<N, (2.4) 

suffices. The following theorem provides us with a sufficient condition for keeping the Jacobi identity ( 1.3). 

Theorem 2.1. If all Jk(uk) : &(uk) + Aq(uk), 1 6 k 6 N, are Hamiltonian operators having the linearity 
condition (2.1) and the constants c$, 1 6 i, j, k 6 N, satisfy the symmetric condition (2.4) and the following 
coupled condition, 

k=l 

1 < i, j,l,n < N, (2.5) 
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then the operator J(U) : ANq(u) --+ dNq(u) defined by (2.2) and (2.3) is a Hamiltonian operator. 

PUOO$ We only need to prove that J(U) satisfies the Jacobi identity ( 1.3), because the linearity property 
and the skew-symmetric property of J have already been shown. Noting that dq(u) is composed of column 
function vectors, we suppose for (Y, p, y E dNq(u) that 

T T 
a= (a;,...&) , P = (Pf,. . . > P;>‘, y= (Y;P-,&)~, 

myi, Pi, yi E dq(u), l<i<N. 

Moreover we will utilize a convenient notation (X)i = Xi, Xi E dq(u) , 1 6 i < N, when a function vector 
X E dNq(u) itself is complicated. 

First from the definition (2.2), we have 

(J’(u)[JPlv)i=~C:J~(nk)L(JP)*lr,, l<i<N. 

j,k=l 

Then taking advantage of the concrete definition (2.3), the linearity condition (2.1) and the coupled condi- 
tion (2.5), we can make the following computation, 

(a,J’(u)[JPl~)+cycle(~,P,y)= 2 c~((Yi,J~(Uk)[(JP)kly,i)+cycle(a,P,y) 
i,j,k=l 

2 c;~J~(G>PI yj +cycle(a,P,~) 
l,n=l I> 

= c Cf&(@i, JL(Wc) [ Jn(%)PtIyj) + cycle(cu, /3, y) 
i,.j,k,l,n=l 

i,j,l,n=l k=l 

N N 

= C C(&$) (ai, JL(un> [ Jn(Un)PIlyj) + cycle(a, P, y> 
i,j,l,n=l k=l 

N N 

i,j,l,n=l k=l 

i,j,l,n=l k=l 
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Recall that each Ji (ui) is a Hamiltonian and it follows from the above equality that the big operator J defined 
by (2.2) and (2.3) satisfies the Jacobi identity ( 1.3). This completes the proof. 0 

We remark that if we consider the coefficients {c$} as the structural constants of a finite-dimensional algebra 
with a basis el, e2, . . . , eN as follows, 

ei * ej = 1 <i,j<N, (2.6) 
k=l 

then the symmetric condition (2.4) and the coupled condition (2.5) can become 

ei * ej = e,i * e;, l<i,j<N, (2.7) 

(ei * ej) * ek = (ek * ei) * ej, 1 <i,j,k< N, (2.8) 

respectively. They reflect two specific properties of the related algebra. 
Apparently, basic scalar Hamiltonian operators satisfying the linearity condition (2.1) can be the following 

set, 

J;(u~) = cid3 + did + 2uix + 4Ui3, l<i<N, (2.9) 

where d = a/ax and Ci, di, 1 6 i 6 N, are arbitrary constants. Of course, matrix Hamiltonian operators having 
the linearity condition (2.1) may be chosen. Actually, such sets of Hamiltonian operators may be presented 
directly from the above operators by Theorem 2.1 or by perturbation around solutions as in Refs. [ 9,101. 

In what follows, we give examples of applications of Theorem 2.1 to two specific choices of {ch}. The 
analysis below is quite similar to the one made for the extension of hereditary operators in Ref. [ 111. 

Example 1. Let us first choose 

$j = 8i+.j,k--pv (2.10) 

where p is an integer and &l denotes the Kronecker symbol. The corresponding big operator formed by (2.2) 
becomes 

J(u) = 

Jp+2(~p+2) Jp+3 cup+3 > . . . J~+N+I (Up+N+I > 

Jp+3 (up+3 > : Jp+~+2 (Up+N+2 > 

: : 

J~+N+l (%+N+l) J~+N+z(~~+N+z) . . . Jp+2N(Up+2N) 

(2.11) 

where we accept that Ji (Ui) = 0 if i < 0 or i > N + 1. 
For two cases of -2N + 1 < p < -N and -1 < p < N - 2, the coupled condition (2.5) can be satisfied, 

because we have 

k n- 
CijCkl - -&:c;j= 1, whenn-i-j-1=2p, 

k=l k=l 

= 0, otherwise. 

While proving the above equality, we should keep in mind that we have 

l<i+j+p=n-I-p<N, l<i+Z+p=n-j-p<N, 



516 I%-X. Ma, M. Pavlov/Physics Letters A 246 (1998) 511-522 

when n - i - j - I= 2p. But for the case of -N < p < - 1, upon choosing i = -p + 1, j = -p - 1, n = I= 1, 

we obtain 

k=l 

and thus the coupled condition (2.5) can not be satisfied. 
Note that when p > N - 1 or p < -2N, the resulting operators are all zero operators. Therefore, among the 

operators defined by (2.11)) we can obtain only two sets of candidates for Hamiltonian operators, 

I 0 JP+N+I (Up+N+l) 

Jp+~+l (Up+N+l) &+~+2(++N+2) 
J(u) = 

: 

Jp+N+l (up+N+l) Jp+~+2(up+~+2) 

-2N+l<p<-N, 

: 

. . . Jp+2~ (up+2N) 

J(u) = 

Jp+2(up+2) Jp+3(up+3) . . . Jp+N+l (Up+N+I) 
1 

(2.12) 

Jp+3 ( up+3 > : I( -1<p<N-2, 

: 

JP+N+I (Up+N+l) 0 

(2.13) 

where we still accept that @i( ui) = 0 if i < 0 or i > N + 1. These two sets of operators can be changed into 
each other by a simple transformation (~1, ~2, . . . , UN) * (UN, UN-~, . . . , ~1). 

Example 2. Let us now choose 

c; = &, E=i+ j-p (mod N), 

where 1 6 p < N is fixed and &l denotes the Kronecker symbol again. In this case, we have 

ck.cn - i, kl - when i+j+Z-n=2p (modN), 
k=l k=l 

= 0, otherwise, 

(2.14) 

(2.15) 

which allows us to conclude that the coupled condition (2.5) holds indeed. Therefore we obtain a set of 
candidates for Hamiltonian operators 

J(u) = 

J2sP (uz-p) J3-p(u3-p) . . . JN-~+~ (UN-p+l) 

J3-p (u3-p) 

: : 

JN-p+l (UN--p+l) JN-~+~(UN-~+~) . . . 

(2.16) 

where we accept Ji( ui) = Jj( uj) if i = j (mod N), while determining the operators involved, for example, 
Jz-~ ( ZA~__~) = JN ( UN) when p = 2. The special choice of p = 1 leads to a candidate of Hamiltonian operators 
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Jl(U1) Jz(u2) ... JN(UN) 1 
J(u) = 

: : 

J~(u,v) Jl(ul) . . . JN--I(UN--I) 
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(2.17) 

This operator will be our starting point for constructing new integrable systems in the next section. 

3. New bi-Hamiltonian coupled KdV systems 

From now on we focus on the candidate of the Hamiltonian operators defined by (2.17). Let us pick out the 
Hamiltonian operators formed by (2.17) with the choice of (2.9). Then the following Hamiltonian pair can be 
engendered, 

al a2 . . . aN 

1 aN al . . . 

MI (UI) Mz(u2) * *. MN(W) 1 
M(u) = 

: : 

MN(UN) Ml(Ul) . . . MN--~(UN--1) 

(3.1) 

(3.2) 

where d = a/8X, I.4 = (U],U2,. . . ,u~)~, ai = const, 1 6 i 6 N, and the operators M;( ui), 1 < i 6 N, are given 

by 

M;(ui> = cia3 + did + 2ui, + 4uid, Ci, di = const, l<i<N, (3.3) 

which are all Hamiltonian. 
We assume that the constant matrix A is invertible to guarantee the invertibility of J, and its inverse matrix 

is given by 

(3.4) 

where bi, 1 < i < N, can be determined by solving a specific linear system 

ah + mb2 + . . . + QqbN = 1, azbr + a3b2 + . . . +@h-1 +@bN=o, . . . . 

a,vbl +a~bz+...+a,v-,bnr=o. 

Now the resulting hereditary operator @ = MJ-’ reads 
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Ml(W) M2(U2) ... 

MN(W) MI(W) . . . MN--I(w--11 

@l(W) @2(u2) . * * 

@N(W) @l(ul) . . . @N-~(UN-I>_ 

with 

(3.5) 

@ji(Ui) = M;(ui)d-’ = c# + di + 2uixd-’ + 4ui, I<i<N. 

This hereditary operator can be rewritten in the concise form 

(3.6) 

@(u) = MJ-’ = ebk-i+j@k(uk) 3 

k=l > 
(3.7) 

where b; = bj if i E j (mod N) . It is also an example satisfying the extension scheme of hereditary operators 
in Ref. [ 111, because upon setting C: = bk_i+,i we have three equal sums for all 1 < i, j, I, n < N: 

N N N 

c Ck.C’ - 
1.1 kn -c bk-i+jbl-k+n = c bmh+i-j+n-rn* 

k=l k=l 

k=l k=l 

2 &!, = 2 bk-i+nh-k-tj = 2 hnh-j+n-mv 
k=l k=l t?l=l 

which are sufficient for Q(u) to be hereditary (see Ref. [ 111) . 

We now turn our attention to investigating the nonlinear systems which can result from the above Hamiltonian 
pairs. Such a system can be the following, 

ut = @u, = MJ-‘u,, (3.8) 

which can be represented as 

N 

Uif = c bk-i+j (ckujxxx $_ dkujx f hk.xuj + duku,jx), l<i<N, (3.9) 
k,j=l 

where we again accept bi = bj if i z j (mod N). It is easy to find that 

szsJ 
f. := J-lu, = Bu = -, 

Sll 
R. = J Hodx, Ho = hTBu 2. 

(3.10) 
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We proceed by checking whether or not the following vector defined by 

Al P2(u2) * . . IN 

fl :5pfo=@tfo=B p2(“2) *.. Al B* (3.11) 
: : 

-P&&v) P,(w) . . . *N--I(w-l) _ 

is a gradient vector, where Pi (Ui) = @/ (ui) = >-‘Mi (Ui) , 1 < i 6 N. That is true, indeed. Actually we have 

B1 = J Hldx, 

bi+l-lbk+j-i 
> 

UZ( ickujxx + idkuj + ukuj), (3.12) 

where the operators Oi( ui) , 1 < i < N, are given by 

Oj(Ui) = icid2 + kdi + $Ui + ia-'Uid, l<i<N, 

and b; = bj if i E j (mod N) . We can also choose the energy form for the functional l?t : 

(3.13) 

E;t = 
s 

Htdx, Ht = 5 (5 bi+l-th+i-i) (-’ .-,_ckulxujx + $dkUlUj + ulukuj). 

j,k,l=l i=l 

(3.14) 

Therefore, according to the Magri scheme [3-51, there exist other functionals fin, n > 2, such that P’“fa = 
6fin/6u, 12 > 2. All such functionals can be generated by computing the following integrals, 

1 

fin = 
SJ 

((P’“fo>(Au),u)dAck n 2 0. (3.15) 

0 

Further we can obtain a hierarchy of bi-Hamiltonian equations 

uy = K, := (@(u))“+‘u, = J% - =j&, n > 0, (3.16) 

which includes the nonlinear system (3.9) as the first member. It follows that they have infinitely many 
commutative symmetries (K,,t)F and infinitely many commutative conserved densities {H,}r. All systems of 
evolution equations can reduce to KdV equations once uj = ci = dj = 0, j # 1, are selected. Therefore they are 
all N-component coupled KdV systems. 

Let us now work out a concrete example for a choice of A with at = 1, ai = 0, 2 < i < N. In this case, we 
have bl = 1, bi = 0, 2 < i < N. Then the first Hamiltonian structure is given by 

SI;Tl 
Q.41 = a,-, 

sA1 
au1 

d$k = &----- 
aUN+2-k' 

2<k<N. (3.17) 
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This first Hamiltonian structure has the momentum 

N 

uf i- c UkUN+2-k dx, 

k=2 > 
(3.18) 

which is of quadratic form with respect to its N Casimirs (annihilators of the first Poisson bracket) pk = s ukdx, 
k = 1,. . . , N. The conservation law of momentum is 

&H,=& (3.19) 

where Br = s %dx, a,F = cf=, (6&1/8uk)ukx. For simplicity, in the selection (3.6) we can put d; = 0, 

because we can eliminate those constants in the expressions of @i by making shifts ui -+ ui - di/4. Then our 
coupled KdV system reads 

In N In N 

~Cn,+l-kuk + c CN+m+l-kuk + 3 c Ukh+l-k + 3 c UkUN+nt+l-k 9 
k=l k=m+l k=l k=i?t+l 1 

which has the following Hamiltonian for the first Hamiltonian structure, 

z2, = s H,dx, 

(3.20) 

(3.21) 

HI = -; .lw; + WI 5 CkWN+2-k + Nc cm N+~nWkWN+3_,+k + 5 C,,, 2 WkW2N--w+3-k 

k=2 m=l k=2 nr=3 k=N+3-nt > 

N-3 

+ u: + 3ul 5 UkUN+2-k + Ne uk Nc-k &&N+3-k-m + c f&,+3 2 UN-kUNfk-_n,, 

k=2 k=2 m=2 nr=O k=O 

where wk = d,&k, 1 < k < N, and N is assumed to be greater than two for producing nontrivial systems. The 
second Hamiltonian structure can be determined by its recursion operator 

k=l k=i+l 

(3.22) 

where Spi = c& +2(2ui+w$;‘), 1 6 i < N. The second Hamiltonian structure has the momentum F: = s urdx 
and the Hamiltonian I&. 

The relationship between the gradients of Bk and fik+r determined by the recursion operator provides the 
possibility for constructing an infinite set of conservation laws and commuting flows by iterations. At each 
step we need to compute integrals to construct n&r. They can be done by using formula (3.15) in variational 
analysis. 

Moreover we have an alternative way to construct an infinite set of conservation laws and commuting flows. 
Let us introduce an eigenfunction problem for the recursion operator 

[Q(u) - A]&. = 0, (3.23) 

i.e. 

k@i+l-k&uk + 2 @N+l+i-k&Uk = AaTui, l<i<N. (3.24) 

k=l !f=+l 
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This eigenfunction problem can be equivalently rewritten as 

k=l k=i+l 

If we use formal series near A --+ 00, 

(3.25) 

(3.26) 

we can obtain directly from the above eigenfunction problem an infinite set of commuting flows. Furthermore 
we can use formal series near A -+ 0. Then the first resulting nontrivial commuting flow is a coupled long-wave 
equation 

2 @i+l-khk + 2 @N+l+i-k&Uk = 0, l<i<N. (3.27) 
k=l k=i+l 

This is an N-component generalization of the long-wave equation (see Ref. [ 121 for more information about 
long-wave equations), which commutes with the KdV equation. 

4. Concluding remarks 

We have proposed new coupled KdV systems possessing bi-Hamiltonian structures by extending Hamiltonian 
operators from lower order to higher order of the matrix. Clearly we may make other choices of J; (ui) to give 
more results based on Theorem 2.1. 

Compared to the well-known coupled KdV systems (see, e.g., Ref. [ 131) 

0 . . . 0 @I 
1 

@(u> = I . -: 
0 @2 

. . , n 2 0, 
:: : : 
0 . . . 1 @N 

I (4.1) 

and the quite new coupled KdV systems introduced in Ref. [ 141, 

Ut = Gnu,, 

0 

t&v--l@% + &v@:! bN@i 
Q(u) = n > 0, (4.2) 

: : 

b,@l +. . . + bN@N . . . bN--I@‘1 + b&9 b&l 

where u = (ui,z~,...,uN) T, bi, 1 < i < N, are arbitrary constants except bN # 0, CD; = @i( u;), 1 < i < N, 
are still defined by (3.6), our new coupIed KdV systems (3.16) have similar nice integrable properties, for 
example, bi-Hamiltonian structures, dispersionless limits having bi-Hamiltonian structures (see Ref. [ 151 for the 
case of the well-known coupled KdV systems). But there are differences among the structures of the recursion 
operators corresponding to these three hierarchies of coupled KdV systems. The bi-Hamiltonian structure (see 
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Ref. [ 141) of the hierarchy (4.2) can similarly be derived from the Hamiltonian operators formed by (2.12) 
in Example 1 of Section 2. This is why we did not give above a detailed analysis for constructing integrable 
systems starting from (2.12) or equivalently from (2.13). However, we do not know whether or not the two new 
coupled KdV hierarchies (4.2) and (3.16) have other integrable properties, for example, Lax pairs like (4.1). 

In terms of the existence of recursion operators, other integrable couple KdV systems, say, Jordan KdV 
systems, have also been derived (see, for example, Refs. [ 16-191). A natural question is whether there exist 
other hierarchies possessing bi-Hamiltonian structures among those coupled KdV systems. This will enrich the 
content of Hamiltonian theory for coupled KdV systems. 
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