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A counterpart of the Wadati–Konno–Ichikawa (WKI) soliton hierarchy, associated with so(3,R),
is presented through the zero curvature formulation. Its spectral matrix is defined by the same lin-
ear combination of basis vectors as the WKI one, and its Hamiltonian structures yielding Liouville
integrability are furnished by the trace identity.
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1. Introduction

Soliton hierarchies consist of commuting nonlinear
partial differential equations with Hamiltonian struc-
tures, and they are usually generated from given spec-
tral problems associated with matrix Lie algebras (see,
e. g., [1 – 3]). Typical examples include the Korteweg-
de Vries hierarchy [4], the Ablowitz–Kaup–Newell–
Segur hierarchy [5], the Kaup–Newell hierarchy [6],
and the Wadati–Konno–Ichikawa (WKI) hierarchy [7].

When associated matrix Lie algebras are semisim-
ple, the trace identity can be used to construct Hamil-
tonian structures of soliton hierarchies [8]. When asso-
ciated matrix Lie algebras are non-semisimple, we ob-
tain integrable couplings [10, 11], and the variational
identity provides a basic technique to generate their
Hamiltonian structures [12, 13]. Usually, the existence
of bi-Hamiltonian structures [14] implies Liouville in-
tegrability, often generating hereditary recursion oper-
ators (see, e. g., [15 – 17]). The most widely used three-
dimensional simple Lie algebra in soliton theory is the
special linear Lie algebra sl(2,R). We would like to
use the other three-dimensional simple Lie algebra, the
special orthogonal Lie algebra so(3,R). Those two Lie
algebras are only the two real three-dimensional Lie al-
gebras, whose derived algebras are three-dimensional,
too.

Let us briefly outline the steps of our procedure to
construct soliton hierarchies by the zero curvature for-
mulation (see, e. g., [8] for details).

Step 1 – Introducing a Spatial Spectral Problem

Take a matrix loop algebra g̃, associated with a given
matrix Lie algebra g, often being semisimple. Then,
introduce a spatial spectral problem

φx = Uφ , U = U(u,λ ) ∈ g̃ , (1)

where u denotes a column dependent variable, and λ is
the spectral parameter.

Step 2 – Computing Zero Curvature Equations

We search for a solution of the form

W = W (u,λ ) = ∑
i≥0

W0,iλ
−i , W0,i ∈ g , i≥ 0 , (2)

to the stationary zero curvature equation

Wx = [U,W ] . (3)

Then, use this solution W to introduce the Lax matrices

V [m] = V [m](u,λ ) = (λ mW )+ +∆m ∈ g̃ , m≥ 0 , (4)

© 2014 Verlag der Zeitschrift für Naturforschung, Tübingen · http://znaturforsch.com

mailto:mawx@cas.usf.edu


412 W. X. Ma et al. · A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R)

where P+ denotes the polynomial part of P in λ , and
formulate the temporal spectral problems

φtm = V [m]
φ = V [m](u,λ )φ , m≥ 0 . (5)

The crucial point is to input the modification terms,
∆m ∈ g̃, m ≥ 0, which aims to guarantee that the com-
patibility conditions of (1) and (5), i. e., the zero curva-
ture equations

Utm −V [m]
x +[U,V [m]] = 0 , m≥ 0 , (6)

will generate soliton equations. We write the resulting
hierarchy of soliton equations of evolution type as fol-
lows:

utm = Km(u) , m≥ 0 . (7)

Step 3 – Constructing Hamiltonian Structures

Compute Hamiltonian functionals Hm by applying
the trace identity [8]:

δ

δu

∫
tr

(
∂U
∂λ

W

)
dx = λ

−γ ∂

∂λ
λ

γ tr

(
∂U
∂u

W

)
,

γ =−λ

2
d

dλ
ln
∣∣tr(W 2)∣∣ , (8)

or more generally, the variational identity [12, 18]:

δ

δu

∫ 〈
∂U
∂λ

,W

〉
dx = λ

−γ ∂

∂λ
λ

γ

〈
∂U
∂u

,W

〉
,

γ =−λ

2
d

dλ
ln |〈W,W 〉| ,

(9)

where 〈·, ·〉 is a non-degenerate, symmetric, and ad-
invariant bilinear form on the underlying matrix loop
algebra g̃. Then, construct Hamiltonian structures for
the whole hierarchy (7):

utm = Km(u) = J
δHm

δu
, m≥ 0 . (10)

The generating functional ∫ tr( ∂U
∂λ

W )dx or
∫〈 ∂U

∂λ
,W 〉dx will be used to generate the Hamil-

tonian functionals {Hm}∞
0 in the above Hamiltonian

structures. Usually, the recursion structure of a soliton
hierarchy leads to its bi-Hamiltonian structures and
Liouville integrability.

In this paper, starting from the three-dimensional
special orthogonal Lie algebra so(3,R), we would like

to present a counterpart of the WKI soliton hierarchy.
The counterpart soliton hierarchy consists of commut-
ing bi-Hamiltonian evolution equations, which are of
differential function type but not of differential poly-
nomial type, and its corresponding Hamiltonian struc-
tures will be furnished by the trace identity. There-
fore, all equations in the counterpart soliton hierar-
chy provide a new example of soliton hierarchies as-
sociated with so(3,R) (see [19, 20] for two examples
of Ablowitz–Kaup–Newell–Segur and Kaup–Newell
types). A few concluding remarks will be given in the
final section.

2. A Counterpart of the WKI Soliton Hierarchy

2.1. The WKI Hierarchy

Let us recall the WKI soliton hierarchy [7, 21] for
comparison’s sake. Its corresponding special matrix
reads

U = U(u,λ ) = λe1 +λ pe2 +λqe3 , (11)

where e1, e2, and e3, forming a basis of the special lin-
ear Lie algebra sl(2,R), are defined as follows:

e1 =
[

1 0
0 −1

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
, (12)

whose commutator relations are

[e1,e2] = 2e2 , [e1,e3] =−2e3 , [e2,e3] = e1 .

A solution of the form

W = aU +bxe2 + cxe3

= λae1 +(λ pa+bx)e2 +(λqa+ cx)e3
(13)

to the stationary zero curvature equation (3) is deter-
mined by

ax = pcx−qbx , λ (pa)x +bxx = 2λbx ,

λ (qa)x + cxx =−2λcx .
(14)

Upon setting

a = ∑
i≥0

aiλ
−i , b = ∑

i≥0
biλ
−i ,

c = ∑
i≥0

ciλ
−i , i≥ 0 ,

(15)

and choosing the initial values
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a0 =
1√

pq+1
, b0 =

p

2
√

pq+1
,

c0 =− q

2
√

pq+1
,

(16)

the system (14) recursively defines the infinite se-
quence of {ai,bi,ci|i≥ 1} as follows:[
−ci+1
bi+1

]
= Ψ

[
−ci

bi

]
, (17)

Ψ =
[
− 1

2 ∂ + 1
4 q̄∂−1 p̄∂ 2 − 1

4 q̄∂−1q̄∂ 2

1
4 p̄∂−1 p̄∂ 2 1

2 ∂ − 1
4 p̄∂−1q̄∂ 2

]
, i≥ 0 ,

and

ai+1,x = pci+1,x−qbi+1,x , i≥ 0 , (18)

with p̄ and q̄ being given by

p̄ =
p√

pq+1
, q̄ =

q√
pq+1

. (19)

We impose the conditions on constants of integration,

ai|u=0 = bi|u=0 = ci|u=0 = 0 , i≥ 1 , (20)

which guarantee the uniqueness of the infinite se-
quence of {ai,bi,ci|i ≥ 1}. So, the first two sets can
be computed as follows:

a1 =
pqx−qpx

4(pq+1)
3
2

, b1 =
px

4(pq+1)
3
2

,

c1 =
qx

4(pq+1)
3
2

,

a2 =
1

32(pq+1)
7
2

[
5q2 p2

x +(14pq+4)pxqx +5p2q2
x

−4q(pq+1)pxx−4p(pq+1)qxx

]
,

b2 =− 1

64(pq+1)
7
2

[
q(7pq+12)p2

x−2p(pq−4)pxqx

−5p3q2
x−4(pq+1)(pq+2)pxx +4p2(pq+1)qxx

]
,

c2 =− 1

64(pq+1)
7
2

[
5q3 p2

x+2q(pq−4)pxqx− p(7pq

+12)q2
x−4q2(pq+1)pxx +4(pq+1)(pq+2)qxx

]
.

Finally, upon taking

V [m] = λ

[
(λ ma)+U +(λ mbx)+e2 +(λ mcx)+e3

]
,

m≥ 0 ,
(21)

the corresponding zero curvature equations

Utm −V [m]
x +

[
U,V [m]

]
= 0 , m≥ 0 , (22)

present the WKI hierarchy of commuting Hamiltonian
equations,

utm = Km =
[

bm,xx

cm,xx

]
= J

[
−cm

bm

]
= J

δHm

δu
,m≥ 0 , (23)

with the Hamiltonian operator J being defined by

J =
[

0 ∂ 2

−∂ 2 0

]
, (24)

and the Hamiltonian functionalsHm by

H0 =
∫

2
√

pq+1dx ,

H1 =
∫

qpx− pqx

4
√

pq+1
(√

pq+1+1
) dx ,

(25)

and

Hm+1 =
∫ [
−

2(pq+1)am+1 + pcm,x +qbm,x

2m

]
dx ,

m≥ 1 . (26)

The above Hamiltonian functionalsHm, m 6= 1, can be
worked out by the trace identity (8) with

tr

(
W

∂U
∂λ

)
= 2λ (pq+1)a+ pcx +qbx ,

tr

(
W

∂U
∂ p

)
= λ (λqa+ cx) =−2λ

2c ,

tr

(
W

∂U
∂q

)
= λ (λ pa+bx) = 2λ

2b ,

andH1 can be computed directly from (−c1,b1)T.
We point out that a generalized WKI soliton hierar-

chy was presented in [22] and its binary nonlineariza-
tion was carried out in [23]. A multi-component WKI
hierarchy and a multi-component generalized WKI hi-
erarchy and their integrable couplings were also ana-
lyzed in [24] and [25], respectively.

2.2. A Counterpart of the WKI Hierarchy

We will make use of the three-dimensional special
orthogonal Lie algebra so(3,R), consisting of 3× 3
skew-symmetric real matrices. This Lie algebra is sim-
ple and has the basis
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e1 =

0 0 −1
0 0 0
1 0 0

 , e2 =

0 0 0
0 0 −1
0 1 0

 ,

e3 =

0 −1 0
1 0 0
0 0 0

 ,

(27)

whose commutator relations are

[e1,e2] = e3 , [e2,e3] = e1 , [e3,e1] = e2 .

Its derived algebra is itself, and so, three-dimensional,
too. The corresponding matrix loop algebra we will use
is

s̃o(3,R) =
{

∑
i≥0

Miλ
n−i

∣∣∣∣Mi ∈ so(3,R),

i≥ 0, n ∈ Z
}

.

(28)

The loop algebra s̃o(3,R) contains matrices of the
form

λ
me1 +λ

ne2 +λ
le3

with arbitrary integers m, n, l, and it provides a good
starting point to generate soliton equations.

Let us now introduce a spectral matrix

U = U(u,λ ) = λe1 +λ pe2 +λqe3

=

 0 −λq −λ

λq 0 −λ p
λ λ p 0

 ∈ s̃o(3,R) , u =
[

p
q

]
,

(29)

to formulate a matrix spatial spectral problem

φx = Uφ = U(u,λ )φ , φ = (φ1,φ2,φ3)T . (30)

The spectral matrix above is defined by the same linear
combination of basis vectors as the WKI one [7], but
its underlying loop algebra is s̃o(3,R), not isomorphic
to s̃l(2,R). The other two examples associated with
s̃o(3,R), as counterpart hierarchies of the Ablowitz–
Kaup–Newell–Segur hierarchy and the Kaup–Newell
hierarchy, were previously presented in [19] and [20],
respectively.

Then, we solve the stationary zero curvature equa-
tion (3), and it becomes

ax = pcx−qbx , λ (pa)x +bxx =−λcx ,

λ (qa)x + cxx = λbx
(31)

if W is chosen as

W = aU +bxe2 + cxe3

= λae1 +(λ pa+bx)e2 +(λqa+ cx)e3

=

 0 −(λqa+ cx) −λa
λqa+ cx 0 −(λ pa+bx)

λa λ pa+bx 0

∈ s̃o(3,R) .
(32)

Further, we set

a = ∑
i≥0

aiλ
−i , b = ∑

i≥0
biλ
−i ,

c = ∑
i≥0

ciλ
−i , i≥ 0 ,

(33)

and take the initial values

a0 =
1√

p2 +q2 +1
, b0 =

q√
p2 +q2 +1

,

c0 =− p√
p2 +q2 +1

,

(34)

which are required by

a0,x = pc0,x−qb0,x , pa0 =−c0 , qa0 = b0 .

The system (31) then leads to the following two recur-
sion relations:[

ci+1
−bi+1

]
= Ψ

[
ci

−bi

]
,

Ψ =
[

p̃∂−1q̃∂ 2 ∂ − p̃∂−1 p̃∂ 2

−∂ + q̃∂−1q̃∂ 2 −q̃∂−1 p̃∂ 2

]
, i≥ 0 ,

(35)

and

ai+1,x = pci+1,x−qbi+1,x , i≥ 0 , (36)

with p̃ and q̃ being defined by

p̃ =
p√

p2 +q2 +1
, q̃ =

q√
p2 +q2 +1

. (37)

We will show in the next section that all vectors
(ci,−bi)T, i ≥ 0, are gradient and the adjoint oper-
ator of Ψ is hereditary. To determine the sequence
of {ai,bi,ci|i ≥ 1} uniquely, we impose the following
conditions on constants of integration:

ai|u=0 = bi|u=0 = ci|u=0 = 0 , i≥ 1 . (38)

This way, the first two sets can be computed as follows:



W. X. Ma et al. · A Counterpart of the Wadati–Konno–Ichikawa Soliton Hierarchy Associated with so(3,R) 415

a1 =
qpx− pqx

(p2 +q2 +1)
3
2

, b1 =− px

(p2 +q2 +1)
3
2

,

c1 =− qx

(p2 +q2 +1)
3
2

,

a2 =− 1

(p2 +q2 +1)
7
2

[(
3p2 +

1
2

q2 +
1
2

)
p2

x+5pqpxqx

+
(1

2
p2 +3q2 +

1
2

)
q2

x− p(p2 +q2 +1)pxx

−q(p2 +q2 +1)qxx

]
,

b2 =
1

(p2 +q2 +1)
7
2

[
− 1

2
q(6p2 +q2 +1)p2

x + p(3p2

−2q2 +3)pxqx +
5
2

q(p2 +1)q2
x+pq(p2+q2+1)

· pxx− (p2 +1)(p2 +q2 +1)qxx

]
,

c2 =
1

(p2 +q2 +1)
7
2

[
− 5

2
p(q2 +1)p2

x−q(3q2−2p2

+3)pxqx +
1
2

p(p2 +6q2 +1)q2
x +(q2 +1)

· (p2 +q2 +1)pxx− pq(p2 +q2 +1)qxx

]
.

Let us explain how to derive the recursion relations
in (35). First from (31), we have

ai,x = pci,x−qbi,x

= p[−(pai)x−bi−1,xx]−q[(qai)x + ci−1,xx]

=−(p2 +q2)ai,x−
1
2
(p2 +q2)xai− pbi−1,xx

−qci−1,xx , i≥ 1 .

This is equivalent to√
p2 +q2 +1

(√
p2 +q2 +1ai

)
x
=

− pbi−1,xx−qci−1,xx , i≥ 1 ,

which leads to

ai =− 1√
p2 +q2 +1

(
∂
−1 p̃∂

2bi−1 +∂
−1q̃∂

2ci−1
)
,

i≥ 1 . (39)

Then again by (31) and using (38), we see that

ci+1 =−pai+1−bi,x , bi+1 = qai+1+ci,x , i≥ 0 . (40)

Now the recursion relations in (35) follows from the
above recursion relation (39) for ai.

Note that the first three sets of {ai,bi,ci|i ≥ 1} are
of differential function type. This is actually true for
all sets. We prove here that the whole sequence of
{ai,bi,ci|i ≥ 1} is of differential function type. First
from the stationary zero curvature equation (3), we can
compute

d
dx

tr(W 2) = 2tr(WWx) = 2tr(W [U,W ]) = 0 .

Thus, by (38), we obtain an equality

(p2 +q2 +1)a2
λ

2 +2a(pbx +qcx)λ +b2
x + c2

x = λ
2 ,

since for W defined by (32), we have

1
2

tr(W 2) =−(p2 +q2 +1)a2
λ

2

−2a(pbx +qcx)λ −b2
x− c2

x .

This equality gives a formula to define ai+1 by using
the previous sets {a j,b j,c j| j ≤ i}:

ai+1 =− 1
2a0

{
∑

k+l=i+1,k,l≥1

akal +
1

p2 +q2 +1

·
[

2 ∑
k+l=i,k,l≥0

ak
(

pbl,x +qcl,x
)

+ ∑
k+l=i−1,k,l≥0

(
bk,xbl,x + ck,xcl,x

)]}
, i≥ 1 .

Combined with (40), a mathematical induction then
shows that the whole sequence of {ai,bi,ci|i ≥ 1} is
of differential function type.

Now, based on both the recursion relations in (35)
and (36) and the structure of the spectral matrix U
in (29), we introduce

V [m] = λ

[
(λ ma)+U +(λ mbx)+e2 +(λ mcx)+e3

]
,

m≥ 0 ,
(41)

and see that the corresponding zero curvature equa-
tions

Utm −V [m]
x +[U,V [m]] = 0 , m≥ 0 , (42)

generate a hierarchy of soliton equations,

utm = Km =
[

bm,xx

cm,xx

]
, m≥ 0 , (43)

where are all local. In the next section, we are going
to show that all those soliton equations are Liouville
integrable.
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3. Bi-Hamiltonian Structures

3.1. Hamiltonian Structures

To construct Hamiltonian structures, we apply the
trace identity (8) (or more generally the variational
identity (9)). From the definition of U and W in (29)
and (32), it is direct to see that

∂U
∂λ

=

0 −q −1
q 0 −p
1 p 0

 ,
∂U
∂ p

=

0 0 0
0 0 −λ

0 λ 0

 ,

∂U
∂q

=

0 −λ 0
λ 0 0
0 0 0

 ,

and so, we have

tr

(
W

∂U
∂λ

)
=−2λ (p2 +q2 +1)a−2pbx−2qcx ,

tr

(
W

∂U
∂ p

)
=−2λ (λ pa+bx) = 2λ

2c ,

tr

(
W

∂U
∂q

)
=−2λ (λqa+ cx) =−2λ

2b .

Now, in this case, the trace identity (8), i. e.,

δ

δu

∫
tr
(

W
∂U
∂λ

)
dx = λ

−γ ∂

∂λ
λ

γ tr
(

W
∂U
∂u

)
, u =

[
p
q

]
,

presents

δ

δu

∫ [
−λ (p2 +q2 +1)a− pbx−qcx

]
dx =

λ
−γ ∂

∂λ
λ

γ

[
λ 2c
−λ 2b

]
.

Balancing coefficients of all powers of λ in the equal-
ity tells

δ

δu

∫ [
− (p2 +q2 +1)a0

]
dx = (γ +2)

[
c0
−b0

]
(44)

and

δ

δu

∫ [
− (p2 +q2 +1)am− pbm−1,x−qcm−1,x

]
dx =

(γ−m+2)
[

cm

−bm

]
, m≥ 1 . (45)

Checking a particular case in (44) yields γ = −1, and
thus we obtain

δHm

δu
=
[

cm

−bm

]
, m≥ 0 , (46)

where

H0 =
∫

(−
√

p2 +q2 +1)dx ,

H1 =
∫

qpx− pqx√
p2 +q2 +1(

√
p2 +q2 +1+1)

dx ,
(47)

and

Hm+1 =
∫ (p2 +q2 +1)am+1 + pbm,x +qcm,x

m
dx ,

m≥ 1 . (48)

Here H1 was directly computed, since when m = 1,
the coefficient on the right hand side of (45) is zero. It
then follows that the soliton hierarchy (43) has the first
Hamiltonian structures

utm = Km =
[

bm,xx

cm,xx

]
= J

[
cm

−bm

]
= J

δHm

δu
, m≥ 0 ,

(49)

where the Hamiltonian operator is defined by

J =
[

0 −∂ 2

∂ 2 0

]
(50)

and the Hamiltonian functionals by (47) and (48).
The obtained functionals {Hm}∞

0 generate an infi-
nite sequence of conservation laws, not being of differ-
ential polynomial type, for each member in the coun-
terpart hierarchy (43). We point out that conservation
laws of differential polynomial type can be computed
systematically through Bäcklund transformations (see,
e. g., [26, 27]), from a Riccati equation generated from
the underlying spectral problems (see, e. g., [17, 28])
or by using computer algebra systems (see, e. g., [29]).

3.2. Bi-Hamiltonian Structures

It is now a direct but lengthy computation to show
by computer algebra systems that J defined by (50) and

M = JΨ = Ψ
†J

=
[

∂ 3−∂ 2q̃∂−1q̃∂ 2 ∂ 2q̃∂−1 p̃∂ 2

∂ 2 p̃∂−1q̃∂ 2 ∂ 3−∂ 2 p̃∂−1 p̃∂ 2

]
(51)

constitute a Hamiltonian pair (see [14, 15] for exam-
ples), where Ψ is defined as in (35) and Ψ † denotes
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the conjugate operator of Ψ . Consequently, any linear
combination N of J and M satisfies∫

KTN′(u)[NS]T dx+ cycle(K,S,T ) = 0 (52)

for all vector fields K, S, and T . This implies that the
operator Φ =Ψ † is hereditary (see [30] for definition),
i. e., it satisfies

Φ
′(u)[ΦK]S−ΦΦ

′(u)[K]S =
Φ
′(u)[ΦS]K−ΦΦ

′(u)[S]K
(53)

for all vector fields K and S. The condition (53) for the
hereditariness is equivalent to

LΦKΦ = ΦLKΦ , (54)

where K is an arbitrary vector field. The Lie derivative
LKΦ here is defined by

(LKΦ)S = Φ [K,S]− [K,ΦS] ,

with [·, ·] being the Lie bracket of vector fields,

[K,S] = K′(u)[S]−S′(u)[K] ,

where K′ and S′ denotes their Gateaux derivatives.
Note that an autonomous operator Φ = Φ(u,ux, · · ·)

is a recursion operator of a given evolution equation
ut = K = K(u) if and only if Φ needs to satisfy

LKΦ = 0 . (55)

It is easy to see that the operator Φ = Ψ † satisfies

LK0Φ = 0 , where K0 =


(

q√
p2+q2+1

)
xx

−
(

p√
p2+q2+1

)
xx

 , (56)

and thus

LKmΦ = LΦKm−1Φ = ΦLKm−1Φ

= · · ·= Φ
mLK0Φ = 0 , m≥ 1 ,

where the Km are defined by (43). This implies that
the operator Φ =Ψ † is a common hereditary recursion
operator for the counterpart soliton hierarchy (43). We
point out that there are also a few direct symbolic algo-
rithms for computing recursion operators of nonlinear
partial differential equations by computer algebra sys-
tems (see, e. g., [31]).

It now follows that all members, except the first
one, in the counterpart soliton hierarchy (43) are bi-
Hamiltonian,

utm = Km = J
δHm

δu
= M

δHm−1

δu
, m≥ 1 , (57)

where J, M, and Hm are defined by (50), (51), (47),
and (48). Therefore, the counterpart hierarchy (43) is
Liouville integrable, i. e., it possesses infinitely many
commuting symmetries and conservation laws. Partic-
ularly, we have the Abelian symmetry algebra,

[Kk,Kl ] = K′k(u)[Kl ]−K′l (u)[Kk] = 0 , k, l ≥ 0 , (58)

and the two Abelian algebras of conserved functionals,

{Hk,Hl}J =
∫ (

δHk

δu

)T

J
δHl

δu
dx = 0 ,

k, l ≥ 0 ,

(59)

and

{Hk,Hl}M =
∫ (

δHk

δu

)T

M
δHl

δu
dx = 0 ,

k, l ≥ 0 .

(60)

The first nonlinear bi-Hamiltonian integrable sys-
tem in the counterpart soliton hierarchy (43) is as fol-
lows:

ut1 =
[

p
q

]
t1

= K1 =−


(

px

(p2+q2+1)
3
2

)
xx(

qx

(p2+q2+1)
3
2

)
xx


= J

δH1

δu
= M

δH0

δu
.

(61)

This is a different system from the WKI system of non-
linear soliton equations presented in [7].

4. Concluding Remarks

Based on the real matrix loop algebra s̃o(3,R), we
formulated a spectral problem by the same linear com-
bination of basis vectors as the WKI one and intro-
duced a counterpart of the WKI soliton hierarchy by
the zero curvature formulation, whose soliton equa-
tions are of differential function type but not of dif-
ferential polynomial type. By the trace identity, the re-
sulting counterpart soliton hierarchy has been shown
to be bi-Hamiltonian and so Liouville integrable.
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The real Lie algebra of the special orthogonal group,
so(3,R), is not isomorphic to the real Lie algebra
sl(2,R) over R, and thus the newly presented soliton
hierarchy (43) and the WKI soliton hierarchy [7] are
not gauge equivalent over R. The main difference be-
tween the WKI soliton hierarchy and the counterpart
soliton hierarchy is that the second Hamiltonian oper-
ators are different, which are

M =
[

1
4 ∂ 2 p̄∂−1 p̄∂ 2 1

2 ∂ 3− 1
4 ∂ 2 p̄∂−1q̄∂ 2

1
2 ∂ 3− 1

4 ∂ 2q̄∂−1 p̄∂ 2 1
4 ∂ 2q̄∂−1q̄∂ 2

]
and

M =
[

∂ 3−∂ 2q̃∂−1q̃∂ 2 ∂ 2q̃∂−1 p̃∂ 2

∂ 2 p̃∂−1q̃∂ 2 ∂ 3−∂ 2 p̃∂−1 p̃∂ 2

]
,

where

p̄ =
p√

pq+1
, q̄ =

q√
pq+1

,

and

p̃ =
p√

p2 +q2 +1
, q̃ =

q√
p2 +q2 +1

.

They constitute two Hamiltonian pairs with the first
Hamiltonian operators

J =
[

0 ∂ 2

−∂ 2 0

]
, J =

[
0 −∂ 2

∂ 2 0

]
,

and generate two different hereditary recursion opera-
tors,

Φ =

[
1
2 ∂ − 1

4 ∂ 2 1
p̄ ∂−1 1

q̄ − 1
4 ∂ 2 1

p̄ ∂−1 1
p̄

1
4 ∂ 2 1

q̄ ∂−1 1
q̄ − 1

2 ∂ + 1
4 ∂ 2 1

q̄ ∂−1 1
p̄

]
and

Φ =

[
−∂ 2 1

q̃ ∂−1 1
p̃ ∂ −∂ 2 1

q̃ ∂−1 1
q̃

−∂ +∂ 2 1
p̃ ∂−1 1

p̃ ∂ 2 1
p̃ ∂−1 1

q̃

]
,

respectively.
We remark that for a bi-Hamiltonian soliton hierar-

chy, one can make a kind of non-holonomic constraint

M

[
f
g

]
= K0

by using the first vector field K0 and the second Hamil-
tonian operator M. Starting with such functions f and
g, normally being non-local, and applying the first

Hamiltonian operator J, one can introduce a so-called
negative system of soliton equations

ut−1 = J

[
f
g

]
,

and step by step, the whole negative hierarchy, which
still has zero curvature representations similar to the
ones for a given soliton hierarchy. However, in our case
associated with so(3,R), the non-holonomic constraint
itself defines an integro-differential system for f and g,
which goes beyond our focused scope.

We also point out that there has recently been
a growing interest in soliton hierarchies generated from
spectral problems associated with non-semisimple Lie
algebras. Various examples of bi-integrable couplings
and tri-integrable couplings offer inspiring insights
into the role they play in classifying multi-component
integrable systems [32]. Multi-integrable couplings do
bring diverse structures on recursion operators in block
matrix form [18, 32]. It is significantly important in
helping to understand essential properties of integrable
systems to explore more mathematical structures be-
hind integrable couplings.

It is known that there exist Hamiltonian structures
for the perturbation equations [33, 34], but it is not
clear how one can generate Hamiltonian structures
for general integrable couplings [35, 36]. There is no
guarantee that there will exist non-degenerate bilinear
forms required in the variational identity on the under-
lying non-semisimple matrix Lie algebras. It is partic-
ularly interesting to see when Hamiltonian structures
can exist for bi- or tri-integrable couplings [37 – 39],
based on algebraic structures of non-semisimple ma-
trix loop algebras. A basic question in the Hamiltonian
theory of integrable couplings is whether there is any
Hamiltonian structure for the bi-integrable coupling

ut = K(u) , v = K′(u)[v] , wt = K′(u)[w] ,

where K′ is the Gateaux derivative.
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