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Abstract

Bi-integrable couplings of soliton equations are presented through introducing non-semisimple matrix Lie algebras on which
there exist non-degenerate, symmetric and ad-invariant bilinear forms. The corresponding variational identity yields Hamiltonian
structures of the resulting bi-integrable couplings. An application to the AKNS spectral problem gives bi-integrable couplings with
Hamiltonian structures for the AKNS equations.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Zero curvature equations associated with semisimple Lie algebras generate typical soliton equations such as the
Korteweg-de Vries equation, the nonlinear Schrödinger equation and the Kadomtsev–Petviashvili equation [2]. In the
case of non-semisimple Lie algebras, zero curvature equations result in integrable couplings of soliton equations [23,24],
and the perturbation equations generalizing the symmetry equations are examples of integrable couplings [20,9]. There
are very rich mathematical structures behind integrable couplings [20,9,36,31,34] and the study of integrable couplings
provide clues towards complete classification of multicomponent integrable equations [20,9,10].

The variational identity on general loop algebras presents Hamiltonian structures for the associated integrable
couplings [18,13,16]. Based on special semi-direct sums of Lie algebras, Lax pairs of block form and with several
spectral parameters bring diverse interesting integrable couplings with Hamiltonian structures [9,28,29]. A key to
construct Hamiltonian structures by the variational identity is the existence of non-degenerate, symmetric and ad-
invariant bilinear forms on the underlying Lie algebras.

Let us consider an integrable evolution equation
ut = K(u) = K(x, t, u, ux, uxx, . . .), (1.1)
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here u is a column vector of dependent variables. Assume that it has a zero curvature representation [3]:

Ut − Vx + [U, V ] = 0, (1.2)

here the Lax pair [6], U and V, belongs to a matrix loop algebra, let us say, g, i.e.,

U = U(u, λ), V = V (u, λ) ∈ g, λ – spectral parameter. (1.3)

n integrable coupling of Eq. (1.1) (see [20,9] for definition):

ut = K1(u) =
[

K(u)

S(u, v)

]
, u =

[
u

v

]
, (1.4)

s called nonlinear, if S(u, v) is nonlinear with respect to the sub-vector v of dependent variables [26,17]. An integrable
ystem of the form

ut = K(u) =

⎡⎢⎣ K(u)

S1(u, v)

S2(u, v, w)

⎤⎥⎦ , u =

⎡⎢⎣ u

v

w

⎤⎥⎦ (1.5)

s called a bi-integrable coupling of Eq. (1.1). Note that in (1.5), S1 does not depend on w, and the whole system
s of triangular form. In this paper, we would like to explore some mathematical structures of Lie algebras and zero
urvature equations, to construct bi-integrable couplings and their Hamiltonian structures by using the variational
dentity associated with the enlarged Lax pairs.

This paper is organized as follows. In Section 2, a kind of matrix Lie algebras will be introduced. Zero curvature
quations on the resulting Lie algebras present bi-integrable couplings of soliton equations. In Section 3, an application
o the AKNS soliton hierarchy will be made to generate nonlinear bi-integrable couplings and the corresponding vari-
tional identity yields Hamiltonian structures for the obtained integrable couplings. An important step in constructing
amiltonian structures is to find non-degenerate, symmetric and ad-invariant bilinear forms on the underlying Lie alge-
ras. In the last section, a few of concluding remarks will be given, along with discussion on a particular bi-integrable
oupling.

. Matrix Lie algebras and bi-integrable couplings

Let α be an arbitrary fixed constant, which could be zero. To generate bi-integrable couplings, we introduce a kind
f block matrices

M(A1, A2, A3) =

⎡⎢⎢⎣
A1 A2 A3

0 A1 + αA2 A2

0 0 A1

⎤⎥⎥⎦ , (2.1)

here Ai = Ai(λ), 1 ≤ i ≤ 3, are square matrices of the same order, depending on the free parameter λ. Obviously, we
ave the matrix commutator relation

[M(A1, A2, A3), M(B1, B2, B3)] = M(C1, C2, C3), (2.2)

ith ⎧⎪⎪⎨⎪⎪⎩
C1 = [A1, B1],

C2 = [A1, B2] + [A2, B1] + α[A2, B2],

C3 = [A1, B3] + [A3, B1] + [A2, B2].

(2.3)
his closure property implies that all block matrices defined by (2.1) form a matrix Lie algebra. Such matrix Lie
lgebras create a basis for us to generate nonlinear Hamiltonian bi-integrable couplings. The block A1 corresponds to
he original integrable equation, and the other two blocks A2 and A3 are used to generate the supplementary vector
elds S1 and S2. The commutator [A2, B2] yields nonlinear terms in the resulting bi-integrable couplings.
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Let us assume that an integrable equation

ut = K(u) (2.4)

possesses a zero curvature representation

Ut − Vx + [U, V ] = 0, (2.5)

where two square Lax matrices U and V usually belong to semisimple matrix Lie algebras (see, e.g., [4]). Now we
introduce an enlarged spectral matrix

U = U(u, λ) =

⎡⎢⎢⎣
U(u, λ) U1(u1, λ) U2(u2, λ)

0 U(u, λ) + αU1(u1, λ) U1(u1, λ)

0 0 U(u, λ)

⎤⎥⎥⎦ , (2.6)

where u consists of u, u1 and u2 (possibly, three vectors of dependent variables). Then an enlarged zero curvature
equation

Ut − Vx + [U, V ] = 0 (2.7)

with

V = V (u, λ) =

⎡⎢⎢⎣
V (u, λ) V1(u, u1, λ) V2(u, u1, u2, λ)

0 V (u, λ) + αV1(u, u1, λ) V1(u, u1, λ)

0 0 V (u, λ)

⎤⎥⎥⎦ (2.8)

gives rise to⎧⎪⎪⎨⎪⎪⎩
Ut − Vx + [U, V ] = 0,

U1,t − V1,x + [U, V1] + [U1, V ] + α[U1, V1] = 0,

U2,t − V2,x + [U, V2] + [U2, V ] + [U1, V1] = 0.

(2.9)

This is a bi-integrable coupling of the evolution Eq. (2.4), noting the zero curvature representation (2.5) of (2.4).
Normally, it is nonlinear with respect to u1 and u2, thereby providing a nonlinear bi-integrable coupling.

As usual, we take a solution

W = W(u, λ) =

⎡⎢⎢⎣
W(u) W1(u, u1) W2(u, u1, u2)

0 W(u) + αW1(u, u1) W1(u, u1)

0 0 W(u)

⎤⎥⎥⎦ (2.10)

to the enlarged stationary zero curvature equation

Wx = [U, W]. (2.11)

This equation is equivalent to⎧⎪⎪⎨⎪⎪⎩
Wx = [U, W],

W1,x = [U, W1] + [U1, W] + α[U1, W1],

W2,x = [U, W2] + [U2, W] + [U1, W1].

(2.12)

We can often (see, e.g., [30,8]) have solutions of the form
W =
∞∑
i=0

Wiλ
−i, W1 =

∞∑
i=0

W1,iλ
−i, W2 =

∞∑
i=0

W2,iλ
−i. (2.13)
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hen introduce a set of enlarged matrix modifications Δm, m ≥ 0, and define the Lax matrices

V
[m] = (λmW)+ + Δm, (2.14)

here the subscript + denotes the polynomial part, such that the enlarged zero curvature equations

Utm − V
[m]
x + [U, V

[m]
] = 0, m≥0, (2.15)

enerate a soliton hierarchy which provides nonlinear bi-integrable couplings of Eq. (2.4).
We further apply the associated variational identity [18,25]:

δ

δu

∫
〈W, Uλ〉 dx = λ−γ ∂

∂λ
λγ 〈W, Uu〉, (2.16)

here γ is some constant, to furnish Hamiltonian structures for the bi-integrable couplings described above. In the
ariational identity (2.16), 〈 · , · 〉 is a non-degenerate, symmetric and ad-invariant bilinear form over the underlying
ie algebra, which consists of square matrices of the form (2.6) (see [18,15] for details).

In the next section, we will apply the above computational paradigm to the AKNS hierarchy, thus generating a
ierarchy of nonlinear Hamiltonian bi-integrable couplings for the AKNS equations. We remark that our general idea
orks for both positive and negative soliton hierarchies.

. Application to the AKNS hierarchy

.1. AKNS hierarchy

The spectral matrix

U = U(u, λ) =
[−λ p

q λ

]
, u =

[
p

q

]
, λ – spectral parameter, (3.1)

enerates the AKNS hierarchy of soliton equations [1] (see also [35]). There are other integrable equations associated
ith gl(2) (see, e.g., [37]). Once setting

W =
[

a b

c −a

]
=

∑
i≥0

[
ai bi

ci −ai

]
λ−i, (3.2)

he stationary zero curvature equation Wx = [U, W] gives

bi+1 = −1

2
bi,x − pai, ci+1 = 1

2
ci,x − qai, ai+1,x = pci+1 − qbi+1, i≥0. (3.3)

aking the initial data as

a0 = −1, b0 = c0 = 0, (3.4)

nd assuming ai|u=0 = bi|u=0 = ci|u=0 = 0, i ≥ 1 (equivalently selecting constants of integration to be zero), the recursion
elation (3.3) uniquely defines all differential polynomial functions ai, bi and ci, i ≥ 1. The first few sets are listed as
ollows:

b1 = p, c1 = q, a1 = 0;

b2 = −1

2
px, c2 = 1

2
qx, a2 = 1

2
pq;

b3 = 1

4
pxx − 1

2
p2q, c3 = 1

4
qxx − 1

2
pq2, a3 = 1

4
(pqx − pxq);

1 3 1 3

b4 = −

8
pxxx +

4
pxpq, c4 =

8
qxxx −

4
pqxq,

a4 = 1

8
pxxq − 1

8
pxqx + 1

8
pqxx − 3

8
p2q2.
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The zero curvature equations

Utm − V [m]
x + [U, V [m]] = 0, V [m] = (λmW)+, m≥0, (3.5)

generate the AKNS hierarchy of soliton equations:

utm = Km =
[−2bm+1

2cm+1

]
= �m

[−2p

2q

]
= J

δHm

δu
, m≥0, (3.6)

with the Hamiltonian operator J, the hereditary recursion operator Φ and the Hamiltonian functions:

J =
[

0 −2

2 0

]
, � =

⎡⎢⎢⎣−1

2
∂ + p∂−1q p∂−1p

−q∂−1q
1

2
∂ − q∂−1p

⎤⎥⎥⎦ ,Hm =
∫

2am+2

m + 1
dx, (3.7)

where m ≥ 0 and ∂ = ∂
∂x

.

3.2. Integrable couplings

3.2.1. An integrable coupling hierarchy
We begin with an enlarged spectral matrix

U = U(u, λ) =

⎡⎢⎢⎣
U U1 U2

0 U + αU1 U1

0 0 U

⎤⎥⎥⎦ , u =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p

q

r

s

v

w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3.8)

where U is defined as in (3.1) and the supplementary spectral matrices U1 and U2 read⎧⎪⎪⎨⎪⎪⎩
U1 = U1(u1) =

[
0 r

s 0

]
, u1 =

[
r

s

]
,

U2 = U2(u2) =
[

0 v

w 0

]
, u2 =

[
v

w

]
.

(3.9)

To solve the enlarged stationary zero curvature Eq. (2.11), we take a solution of the following form⎡⎢W W1 W2
⎤⎥
W = ⎢⎣ 0 W + αW1 W1

0 0 W

⎥⎦ , (3.10)

where W, defined by (3.2), solves Wx = [U, W], and⎧⎪⎪⎪⎨⎪⎪⎪⎩
W1 = W1(u, u1, λ) =

[
e f

g −e

]
,

W2 = W2(u, u1, u2, λ) =
[

e′ f ′

g′ −e′

]
.

(3.11)
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hen, the second and third equations in (2.12) equivalently generate

⎧⎪⎪⎨⎪⎪⎩
ex = pg − qf + αrg − αsf + rc − sb,

fx = −2λf − 2pe − 2αre − 2ra,

gx = 2qe + 2λg + 2αse + 2sa,

nd

⎧⎪⎪⎨⎪⎪⎩
e′
x = pg′ − qf ′ + rg − sf + vc − wb,

f ′
x = −2λf ′ − 2pe′ − 2re − 2va,

g′
x = 2qe′ + 2λg′ + 2se + 2wa,

espectively. Trying a formal series solution W by assuming

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e =

∞∑
i=0

eiλ
−i, f =

∞∑
i=0

fiλ
−i, g =

∞∑
i=0

giλ
−i,

e′ =
∞∑
i=0

e′
iλ

−i, f ′ =
∞∑
i=0

f ′
i λ

−i, g′ =
∞∑
i=0

g′
iλ

−i,

(3.12)

e obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fi+1 = −1

2
fi,x − pei − αrei − rai,

gi+1 = 1

2
gi,x − qei − αsei − wai,

ei+1,x = pgi+1 − qf i+1 + αrgi+1 − αsf i+1 + rci+1 − sbi+1,

f ′
i+1 = −1

2
f ′

i,x − pe′
i − rei − vai,

g′
i+1 = 1

2
g′

i,x − qe′
i − sei − wai,

e′
i+1,x = pg′

i − qf ′
i + rgi − sf i + vci − wbi,

(3.13)

here i ≥ 0. We select the initial data to be

e0 = −1, f0 = g0 = 0; e′
0 = −1, f ′

0 = g′
0 = 0; (3.14)
nd assume that

ei|u=0 = fi|u=0 = gi|u=0 = 0, e′
i|u=0 = f ′

i |u=0 = g′
i|u=0 = 0, i≥1. (3.15)
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Then the recursion relation (3.13) determines the sequence of ei, fi, gi and e′
i, f

′
i , g

′
i, i ≥ 1, uniquely. The first few sets

of functions are computed as follows:

f1 = p + r + αr, g1 = q + s + αs, e1 = 0;

f2 = −1

2
px − 1

2
αrx − 1

2
rx, g2 = 1

2
qx + 1

2
αsx + 1

2
sx,

e2 = 1

2
pq + 1

2
ps + 1

2
qr + α

2
ps + α

2
qr + α + α2

2
rs;

f3 = 1

4
pxx + α + 1

4
rxx − 1

2
p2q − α + 1

2
p2s − (α + 1)p(q + αs)r − α(α + 1)

2
qr2 − α2(α + 1)

2
r2s,

g3 = 1

4
qxx + α + 1

4
sxx − 1

2
q2p − α + 1

2
q2r − (α + 1)(p + αr)qs − α(α + 1)

2
ps2 − α2(α + 1)

2
rs2,

e3 = −1

4
pxq + 1

4
pqx − α + 1

4
pxs + α + 1

4
psx + α + 1

4
qxr − α + 1

4
qrx − α(α + 1)

4
rxs + α(α + 1)

4
rsx;

f ′
1 = p + r + v, g′

1 = q + s + w, e′
1 = 0;

f ′
2 = −1

2
px − 1

2
rx − 1

2
vx, g′

2 = 1

2
qx + 1

2
sx + 1

2
wx,

e′
2 = 1

2
pq + 1

2
ps + 1

2
pw + 1

2
qr + 1

2
qv + α + 1

2
rs;

f ′
3 = 1

4
pxx + 1

4
rxx + 1

4
vxx − 1

2
p2q − 1

2
p2s − 1

2
p2w − pqr − pqv − (α + 1)prs − α + 1

2
qr2 − α(α + 1)

2
r2s,

g′
3 = 1

4
qxx + 1

4
sxx + 1

4
wxx − 1

2
pq2 − 1

2
q2r − 1

2
q2v − pqs − pqw − (α + 1)qrs − α + 1

2
ps2 − α(α + 1)

2
rs2,

e′
3 = −1

4
pxq + 1

4
pqx − 1

4
pxs + 1

4
psx − 1

4
pxw + 1

4
pwx + 1

4
qxr − 1

4
qrx + 1

4
qxv − 1

4
qvx − α + 1

4
rxs

+α + 1

4
rsx.

Note that they are all differential polynomials.
For each integer m ≥ 0, take

V
[m] = (λmW)+ =

⎡⎢⎢⎣
V [m] V

[m]
1 V

[m]
2

0 V [m] + αV
[m]
1 V

[m]
1

0 0 V [m]

⎤⎥⎥⎦ , (3.16)

where V
[m]
i = (λmWi)+, i = 1, 2, and then, the enlarged zero curvature equation

Utm − (V
[m]

)x + [U, V
[m]

] = 0

yields

U1,tm − V
[m]
1,x + [U, V

[m]
1 ] + [U1, V

[m]] + α[U1, V
[m]
1 ] = 0,

U2,tm − V
[m]
2,x + [U, V

[m]
2 ] + [U2, V

[m]] + [U1, V
[m]
1 ] = 0,

together with the mth AKNS system in (3.6). This gives rise to
vtm = Sm = Sm(u) =
[

S1,m(u, u1)

S2,m(u, u1, u2)

]
, v = (r, s, v, w)T , m≥0, (3.17)



w

T

f
t
T
e

3

d

w

A

w

W.X. Ma et al. / Mathematics and Computers in Simulation 127 (2016) 166–177 173

here

S1,m(u, u1) =
[−2fm+1

2gm+1

]
, S2,m(u, u1, u2) =

[−2f ′
m+1

2g′
m+1

]
.

herefore, the hierarchy of enlarged zero curvature equations present a hierarchy of bi-integrable couplings:

utm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

p

q

r

s

v

w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
tm

= Km(u) =

⎡⎢⎢⎣
Km(u)

S1,m(u, u1)

S2,m(u, u1, u2)

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2bm+1

2cm+1

−2fm+1

2gm+1

−2f ′
m+1

2g′
m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, m≥0, (3.18)

or the AKNS hierarchy (3.6). Except the first two, all bi-integrable couplings constructed above are nonlinear, since
he supplementary systems (3.17) with m ≥ 2 are nonlinear with respect to the four dependent variables r, s, v, w.
his implies that (3.18) provides a hierarchy of nonlinear bi-integrable couplings for the AKNS hierarchy of soliton
quations. The first nonlinear bi-integrable coupling system reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt2 = − 1

2
pxx + p2q, qt2 = 1

2
qxx − pq2,

rt2 = − 1

2
pxx − α + 1

2
rxx + p2q + (α + 1)p2s + 2(α + 1)pqr + 2α(α + 1)prs + α(α + 1)qr2 + α2(α + 1)r2s,

st2 = 1

2
qxx + α + 1

2
sxx − q2p − 2(α + 1)pqs − (α + 1)q2r − 2α(α + 1)qrs − α(α + 1)ps2 − α2(α + 1)rs2,

vt2 = − 1

2
pxx − 1

2
rxx − 1

2
vxx + p2q + p2s + p2w + 2pqr + 2pqv + 2(α + 1)prs + (α + 1)qr2 + α(α + 1)r2s,

wt2 = 1

2
qxx + 1

2
sxx + 1

2
wxx − pq2 − q2r − q2v − 2pqs − 2pqw − 2(α + 1)qrs − (α + 1)ps2 − α(α + 1)rs2.

(3.19)

.2.2. Hamiltonian structures
In order to generate Hamiltonian structures of the obtained bi-integrable couplings, we have to compute non-

egenerate, symmetric and ad-invariant bilinear forms on the adopted Lie algebra:

g =

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣

A1 A2 A3

0 A1 + αA2 A2

0 0 A1

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣ A1, A2, A3 ∈ s̃l(2)

⎫⎪⎪⎬⎪⎪⎭ , (3.20)

here the loop algebra s̃l(2) is defined by

s̃l(2) = {A(λ) ∈ sl(2)| entriesof A(λ) − Laurentseriesin λ}.
s usual, we transform the Lie algebra g into a vector form through the mapping

δ : g → R
9, A �→ (a1, a2, · · ·, a9)T , (3.21)

here ⎡
A A A

⎤

A = ⎢⎢⎣

1 2 3

0 A1 + αA2 A2

0 0 A1

⎥⎥⎦ ∈ g, Ai =
[

a3i−2 a3i−1

a3i −a3i−2

]
, 1 ≤ i ≤ 3. (3.22)
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The mapping δ induces a Lie algebraic structure onR9, isomorphic to the above matrix Lie algebra g. The corresponding
commutator [· , ·] on the resulting Lie algebra R9 reads

[a, b]T = aT R(b), a = (a1, a2, . . ., a9)T , b = (b1, b2, . . ., b9)T ∈ R9, (3.23)

where R(b) is given by

R(b) =

⎡⎢⎢⎣
R1 R2 R3

0 R1 + αR2 R2

0 0 R1

⎤⎥⎥⎦ , Ri =

⎡⎢⎢⎣
0 2b3i−1 −2b3i

b3i −2b3i−2 0

−b3i−1 0 2b3i−2

⎤⎥⎥⎦ , 1 ≤ i ≤ 3.

Let us consider an arbitrary bilinear form on R9:

〈a, b〉 = aT Fb, (3.24)

where F is a constant matrix. Two of the required properties, the symmetric property 〈a, b〉 = 〈b, a〉 and the ad-invariance
property

〈a, [b, c]〉 = 〈[a, b], c〉, (3.25)

tell that FT = F and

(R(b)F )T = −R(b)F forall b ∈ R9.

This matrix equation on F yields a system of linear equations on the elements of F. Solving the resulting linear system
gives

F =

⎡⎢⎢⎢⎢⎣
1

2
η1

1

2
η2 η3

1

2
η2

α

2
η2 + η3 0

η3 0 0

⎤⎥⎥⎥⎥⎦ ⊗

⎡⎢⎣ 2 0 0

0 0 1

0 1 0

⎤⎥⎦ , (3.26)

where η1, η2 and η3 are arbitrary constants and ⊗ denotes the Kronecker product of matrices.
This way, a required bilinear form on the underlying Lie algebra g is given by

〈A, B〉g = 〈δ(A), δ(B)〉R9 = (a1, a2, · · ·, a9)F (b1, b2, · · ·, b9)T = η1(a1b1 + 1

2
a2b3 + 1

2
a3b2)

+ η2[a1b4 + 1

2
a2b6 + 1

2
a3b5 + a4(b1 + αb4) + 1

2
a5(b3 + αb6) + 1

2
a6(b2 + αb5)] + η3[2a1b7 + a2b9

+ a3b8 + 2a4b4 + a5b6 + a6b5 + 2a7b1 + a8b3 + a9b2], (3.27)

where A and B are two block matrices of the form defined by (3.22). This bilinear form (3.27) is symmetric and
ad-invariant:

〈A, B〉 = 〈B, A〉, 〈A, [B, C]〉 = 〈[A, B], C〉, A, B, C ∈ g,

and it is non-degenerate if and only if

det(F ) = (αη2 + 2η3)3η6
3 /= 0. (3.28)

To use the variational identity, let us further compute that
〈W, Uλ〉 = −η1a − η2e − 2η3e
′,

〈W, Uu〉 =
(

1

2
η1c + 1

2
η2g + η3g

′,
1

2
η1b + 1

2
η2f + η3f

′,
1

2
η2(c + αg) + η3g

′,
1

2
η2(b + αf ) + η3f

′, η3c, η3b

)T

,

γ = −λ

2

d

dλ
ln |〈W, W〉| = 0,
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w
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w
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here W is given by (3.10). Therefore, the corresponding variational identity (2.16) leads to

δ

δu

∫
η1am+1 + η2em+1 + 2η3e

′
m+1

m
dx =

(
1

2
η1cm + 1

2
η2gm + η3g

′
m,

1

2
η1bm + 1

2
η2fm

+η3f
′
m,

1

2
η2(cm + αgm) + η3g

′
m,

1

2
η2(bm + αfm) + η3f

′
m, η3cm, η3bm

)T

, (3.29)

here m ≥ 1. It follows thus that the AKNS bi-integrable couplings in (3.18) possess the following Hamiltonian
tructures:

utm = Km(u) = J
δHm

δu
, m≥0, (3.30)

here the Hamiltonian operator is

J =

⎡⎢⎢⎢⎢⎣
1

2
η1

1

2
η2 η3

1

2
η2

α

2
η2 + η3 0

η3 0 0

⎤⎥⎥⎥⎥⎦
−1

⊗
[

0 −2

2 0

]
(3.31)

nd the Hamiltonian functionals read

Hm =
∫

η1am+2 + η2em+2 + 2η3e
′
m+2

m + 1
dx, m≥0. (3.32)

A direct computation shows a recursion relation

Km+1 = ΦKm, m≥1, (3.33)

here the recursion operator Φ is given by

Φ =

⎡⎢⎣ Φ 0 0

Φ1 Φ + αΦ1 0

Φ2 Φ1 Φ

⎤⎥⎦ , (3.34)

ith Φ being given by (3.7) and

Φ1 =
[

r∂−1q + (p + αr)∂−1s r∂−1p + (p + αr)∂−1r

−s∂−1q − (q + αs)∂−1s −s∂−1p − (q + αs)∂−1r

]
, (3.35)

Φ2 =
[

v∂−1q + r∂−1s + p∂−1w v∂−1p + r∂−1r + p∂−1v

−w∂−1q − s∂−1s − q∂−1w −w∂−1p − s∂−1r − q∂−1v

]
. (3.36)

urthermore, we can show JΦ† = ΦJ , where Φ
†

denotes the adjoint operator of Φ. This tells that all bi-integrable
ouplings in (3.18) commute with each other and so do all conserved functionals in (3.32). We point out that the
nlarged recursion operator (3.34) is closely related to the underlying Lie algebra (3.20).

It is also direct to verify that J and ΦJ form a Hamiltonian pair [27,5], and so, Φ is a common hereditary recursion
perator for the hierarchy of Hamiltonian bi-integrable couplings (3.18). In particular, the bi-integrable coupling (3.19)
as a bi-Hamiltonian structure.

. Concluding remarks
We have introduced a class of Lie algebras consisting of specific block matrices, and presented a computational
aradigm for construction of nonlinear bi-integrable couplings, starting from those suggested Lie algebras. The varia-
ional identity on the adopted Lie algebras was used to construct Hamiltonian structures of the resulting bi-integrable
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couplings. An application to the AKNS spectral problem resulted in a hierarchy of nonlinear bi-integrable Hamiltonian
couplings for the AKNS equations. The obtained results complement well some of the ideas of generating linear and
nonlinear integrable couplings [20,18,17,11], and show there can exist various kinds of integrable couplings for a given
integrable equation.

We remark that high order block type matrix Lie algebras will allow us to generate multi-integrable couplings and
more diverse integrable couplings, which can also supplement the spectral matrices of the other forms in the literature
(see, e.g., [12,21]). Typical integrable properties such as Hirota bilinear forms can be discussed for the presented
integrable couplings (see, e.g., [22]). Another interesting property is the linear superposition principle on subspaces of
solutions, and all soliton solutions belong to the closure of such subspaces of exponential wave solutions [19].

We also point out that a particular bi-integrable coupling is

ut = K(u), vt = K′(u)[v], wt = K′(u)[w],

where the Gateaux derivative is defined as follows

P ′(u)[S] = ∂

∂ε
|ε=0P(u + εS, ux + εSx, · · ·)

for an object P = P(u, ux, . . .). It is open to us whether this system possesses any Hamiltonian structure. There are
some enlarged zero curvature representations for this system [21], but all symmetric and ad-invariant bilinear forms are
degenerate on the corresponding Lie algebras. It has been an important task for us to explore more about multi-integrable
couplings including the above intriguing bi-integrable coupling to enrich multi-component integrable equations (see,
e.g., [32,14,7,33,38]). It is expected that more particular new Lie algebras generating Hamiltonian integrable couplings
can be presented, to understand and work towards complete classification of multi-component integrable equations.

Acknowledgments

The work was supported in part by the State Administration of Foreign Experts Affairs of China, the National
Natural Science Foundation of China (Nos. 10971136, 10831003, 61072147 and 11071159), Chunhui Plan of the
Ministry of Education of China, Zhejiang Innovation Project (Grant No. T200905), the Natural Science Foundation of
Shanghai and the Shanghai Leading Academic Discipline Project (No. J50101).

References

[1] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math.
53 (1974) 249–315.

[2] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, PA, 1981.
[3] A. Das, Integrable Models, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989.
[4] V.G. Drinfel’d, V.V. Sokolov, Equations of Korteweg-de Vries type and simple Lie algebras, Soviet Math. Dokl. 23 (1981) 457–462.
[5] B. Fuchssteiner, A.S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D 4 (1981–1982)

47–66.
[6] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (1968) 467–490.
[7] Z. Li, H.H. Dong, Two integrable couplings of the Tu hierarchy and their Hamiltonian structures, Comput. Math. Appl. 55 (2008) 2643–2652.
[8] W.X. Ma, A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction, Chin. Ann. Math. Ser. A 13 (1992)

115–123.
[9] W.X. Ma, Integrable couplings of soliton equations by perturbations I – a general theory and application to the KdV hierarchy, Methods Appl.

Anal. 7 (2000) 21–55.
10] W.X. Ma, A bi-Hamiltonian formulation for triangular systems by perturbations, J. Math. Phys. 43 (2002) 1408–1421.
11] W.X. Ma, Enlarging spectral problems to construct integrable couplings of soliton equations, Phys. Lett. A 316 (2003) 72–76.
12] W.X. Ma, Integrable couplings of vector AKNS soliton equations, J. Math. Phys. 46 (2005) 033507, 19 pp.
13] W.X. Ma, A discrete variational identity on semi-direct sums of Lie algebras, J. Phys. A: Math. Theoret. 40 (2007) 15055–15069.
14] W.X. Ma, A Hamiltonian structure associated with a matrix spectral problem of arbitrary-order, Phys. Lett. A 367 (2007) 473–477.
15] W.X. Ma, Variational identities and applications to Hamiltonian structures of soliton equations, Nonlinear Anal. TMA 71 (2009) e1716–e1726.
16] W.X. Ma, Variational identities and Hamiltonian structures, in: W.X. Ma, X.B. Hu, Q.P. Liu (Eds.), Nonlinear and Modern Mathematical
Physics, CP 1212, AIP, 2010, pp. 1–27.
17] W.X. Ma, Nonlinear continuous integrable Hamiltonian couplings, Appl. Math. Comput. 217 (2011) 7238–7244.
18] W.X. Ma, M. Chen, Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of lie algebras, J. Phys. A: Math. Gen. 39

(2006) 10787–10801.



[
[
[
[
[
[
[
[
[
[
[
[
[

[

[

[

[

[

[
[

W.X. Ma et al. / Mathematics and Computers in Simulation 127 (2016) 166–177 177

19] W.X. Ma, E.G. Fan, Linear superposition principle applying to Hirota bilinear equations, Comput. Math. Appl. 61 (2011) 950–959.
20] W.X. Ma, B. Fuchssteiner, Integrable theory of the perturbation equations, Chaos Solitons Fractals 7 (1996) 1227–1250.
21] W.X. Ma, L. Gao, Coupling integrable couplings, Modern Phys. Lett. B 23 (2009) 1847–1860.
22] W.X. Ma, W. Strampp, Bilinear forms and Bäcklund transformations of the perturbation systems, Phys. Lett. A 341 (2005) 441–449.
23] W.X. Ma, X.X. Xu, Y.F. Zhang, Semi-direct sums of Lie algebras and continuous integrable couplings, Phys. Lett. A 351 (2006) 125–130.
24] W.X. Ma, X.X. Xu, Y.F. Zhang, Semidirect sums of Lie algebras and discrete integrable couplings, J. Math. Phys. 47 (2006) 16.
25] W.X. Ma, Y. Zhang, Component-trace identities for Hamiltonian structures, Appl. Anal. 89 (2010) 457–472.
26] W.X. Ma, Z.N. Zhu, Constructing nonlinear discrete integrable Hamiltonian couplings, Comput. Math. Appl. 60 (2010) 2601–2608.
27] F. Magri, A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978) 1156–1162.
28] S.Y. Sakovic, On integrability of a (2 + 1)-dimensional perturbed KdV equation, J. Nonlinear Math. Phys. 5 (1998) 230–233.
29] S.Y. Sakovich, Coupled KdV equations of Hirota-Satsuma type, J. Nonlinear Math. Phys. 6 (1999) 255–262.
30] G.Z. Tu, On Liouville integrability of zero-curvature equations and the Yang hierarchy, J. Phys. A: Math. Gen. 22 (1989) 2375–2392.
31] T.C. Xia, X.H. Chen, D.Y. Chen, A new Lax integrable hierarchy, n Hamiltonian structure and its integrable couplings system, Chaos Solitons

Fractals 23 (2005) 451–458.
32] T.C. Xia, F.J. Yu, Y. Zhang, The multi-component coupled Burgers hierarchy of soliton equations and its multi-component integrable couplings

system with two arbitrary functions, Physica A 343 (2004) 238–246.
33] X.X. Xu, Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian

structures, J. Phys. A: Math. Theoret. 42 (2009) 395201, 21 pp.
34] Y.J. Yu, H.Q. Zhang, Hamiltonian structure of the integrable couplings for the multicomponent Dirac hierarchy, Appl. Math. Comput. 197

(2008) 828–835.
35] V.E. Zakharov, A.B. Shabat, A scheme for generating the nonlinear equations of mathematical physics by the method of the inverse scattering

problem I, Funct. Anal. Appl. 8 (1974) (1975) 226–235.

36] Y.F. Zhang, A generalized multi-component Glachette-Johnson (GJ) hierarchy and its integrable coupling system, Chaos Solitons Fractals 21

(2004) 305–310.
37] Y.F. Zhang, H.W. Tam, Applications of the Lie algebra gl(2), Modern Phys. Lett. B 23 (2009) 1763–1770.
38] Y.F. Zhang, H.W. Tam, Coupling commutator pairs and integrable systems, Chaos Solitons Fractals 39 (2009) 1109–1120.


	Nonlinear bi-integrable couplings with Hamiltonian structures
	1 Introduction
	2 Matrix Lie algebras and bi-integrable couplings
	3 Application to the AKNS hierarchy
	3.1 AKNS hierarchy
	3.2 Integrable couplings
	3.2.1 An integrable coupling hierarchy
	3.2.2 Hamiltonian structures


	4 Concluding remarks
	Acknowledgments
	References


