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Abstract

Bi-integrable couplings of soliton equations are presented through introducing non-semisimple matrix Lie algebras on which
there exist non-degenerate, symmetric and ad-invariant bilinear forms. The corresponding variational identity yields Hamiltonian
structures of the resulting bi-integrable couplings. An application to the AKNS spectral problem gives bi-integrable couplings with
Hamiltonian structures for the AKNS equations.
© 2014 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Zero curvature equations associated with semisimple Lie algebras generate typical soliton equations such as the
Korteweg-de Vries equation, the nonlinear Schrédinger equation and the Kadomtsev—Petviashvili equation [2]. In the
case of non-semisimple Lie algebras, zero curvature equations result in integrable couplings of soliton equations [23,24],
and the perturbation equations generalizing the symmetry equations are examples of integrable couplings [20,9]. There
are very rich mathematical structures behind integrable couplings [20,9,36,31,34] and the study of integrable couplings
provide clues towards complete classification of multicomponent integrable equations [20,9,10].

The variational identity on general loop algebras presents Hamiltonian structures for the associated integrable
couplings [18,13,16]. Based on special semi-direct sums of Lie algebras, Lax pairs of block form and with several
spectral parameters bring diverse interesting integrable couplings with Hamiltonian structures [9,28,29]. A key to
construct Hamiltonian structures by the variational identity is the existence of non-degenerate, symmetric and ad-
invariant bilinear forms on the underlying Lie algebras.

Let us consider an integrable evolution equation

ur = K@) = K(x, t, u, ux, uxx, . ..), (1.1
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where u is a column vector of dependent variables. Assume that it has a zero curvature representation [3]:

U= Vi +[U V] =0, (1.2)
where the Lax pair [6], U and V, belongs to a matrix loop algebra, let us say, g, i.e.,

U=Uu,Ar),V=V(u,r) € g,A — spectral parameter. (1.3)
An integrable coupling of Eq. (1.1) (see [20,9] for definition):

= Ku) | _ u

u; = Ki(n) = [S(u,v)]’u: [v}’ (1.4)

is called nonlinear, if S(u, v) is nonlinear with respect to the sub-vector v of dependent variables [26,17]. An integrable
system of the form

K(u) u
n=K@m=| Siu,v) | w=|v (1.5)
So(u, v, w) w

is called a bi-integrable coupling of Eq. (1.1). Note that in (1.5), §1 does not depend on w, and the whole system
is of triangular form. In this paper, we would like to explore some mathematical structures of Lie algebras and zero
curvature equations, to construct bi-integrable couplings and their Hamiltonian structures by using the variational
identity associated with the enlarged Lax pairs.

This paper is organized as follows. In Section 2, a kind of matrix Lie algebras will be introduced. Zero curvature
equations on the resulting Lie algebras present bi-integrable couplings of soliton equations. In Section 3, an application
to the AKNS soliton hierarchy will be made to generate nonlinear bi-integrable couplings and the corresponding vari-
ational identity yields Hamiltonian structures for the obtained integrable couplings. An important step in constructing
Hamiltonian structures is to find non-degenerate, symmetric and ad-invariant bilinear forms on the underlying Lie alge-
bras. In the last section, a few of concluding remarks will be given, along with discussion on a particular bi-integrable
coupling.

2. Matrix Lie algebras and bi-integrable couplings

Let o be an arbitrary fixed constant, which could be zero. To generate bi-integrable couplings, we introduce a kind
of block matrices

Al As A3
M(A1,A2,A3)= | 0 Aj+aAry Az, 2.1
0 0 A

where A;=A;(A), 1 <i<3, are square matrices of the same order, depending on the free parameter A. Obviously, we
have the matrix commutator relation

[M(A1, Az, A3), M(B1, Bz, B3)] = M(Cy, C2, C3), (2.2)
with
Ci =[Ay, Bi1l,
Cr = [A1, B2] + [Az, B1] + o[Az, Ba], (2.3)

C3 = [A1, B3] + [A3, B1] + [A2, B2].

This closure property implies that all block matrices defined by (2.1) form a matrix Lie algebra. Such matrix Lie
algebras create a basis for us to generate nonlinear Hamiltonian bi-integrable couplings. The block A; corresponds to
the original integrable equation, and the other two blocks A; and A3 are used to generate the supplementary vector
fields S; and S7. The commutator [A;, B>] yields nonlinear terms in the resulting bi-integrable couplings.



168 W.X. Ma et al. / Mathematics and Computers in Simulation 127 (2016) 166—-177
Let us assume that an integrable equation
u; = K(u) 2.4)
possesses a zero curvature representation
U —Vi+1[U V]=0, (2.5)

where two square Lax matrices U and V usually belong to semisimple matrix Lie algebras (see, e.g., [4]). Now we
introduce an enlarged spectral matrix

U(u, 1) Ui(ur, 1) Ua(uz, A)
U=U®@,\) = 0 U, ) +aUi(ur,A) Ui(ui, A) |, 2.6)
0 0 U(u, )

where u consists of u, #; and uy (possibly, three vectors of dependent variables). Then an enlarged zero curvature
equation

U —Vy+[U,V]=0 2.7
with
V(u, L) Vilu,ug, 1) Vo(u,uy, uz, A)
V=V@uxr = 0 V@u, M) +aVi(u,uy, ) Vilu,ui, A) (2.8)
0 0 Vu, 1)

gives rise to
U= Vi+[U V]=0,
Ui = Vix + U Vil + U1, V]I + alUy, V1] =0, (2.9)
Uzt = Vox + U V2l + [Uz, V] + [Uy, V1] = 0.

This is a bi-integrable coupling of the evolution Eq. (2.4), noting the zero curvature representation (2.5) of (2.4).
Normally, it is nonlinear with respect to u#; and u;, thereby providing a nonlinear bi-integrable coupling.
As usual, we take a solution

W(u) Wi(u, uy) Wo(u, uy, uz)
W=Wam,x = 0 W) +aWi(u, u1) Wi, ur) (2.10)
0 0 W)

to the enlarged stationary zero curvature equation
W, =[U,W]. 2.11)
This equation is equivalent to
Wy =[U, W],
Wix =[U, Wil + [Uy, W] + o[Uy, Wi, (2.12)
Wa x = [U, Wal + [Uz, W]+ [U1, Wi].
We can often (see, e.g., [30,8]) have solutions of the form

o0 o o0
W= WA, Wi=> WAl Wa=) Wyl (2.13)
i=0 i=0 i=0
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Then introduce a set of enlarged matrix modifications A,,, m > 0, and define the Lax matrices
V" = W, + A, (2.14)
where the subscript + denotes the polynomial part, such that the enlarged zero curvature equations
T, — V" 410, V"] =0, m>0, (2.15)

generate a soliton hierarchy which provides nonlinear bi-integrable couplings of Eq. (2.4).
We further apply the associated variational identity [18,25]:

§ [ 3
§/<W, Uy dx = 277 AV (W. Ux). (2.16)

where y is some constant, to furnish Hamiltonian structures for the bi-integrable couplings described above. In the
variational identity (2.16), (-, -) is a non-degenerate, symmetric and ad-invariant bilinear form over the underlying
Lie algebra, which consists of square matrices of the form (2.6) (see [18,15] for details).

In the next section, we will apply the above computational paradigm to the AKNS hierarchy, thus generating a
hierarchy of nonlinear Hamiltonian bi-integrable couplings for the AKNS equations. We remark that our general idea
works for both positive and negative soliton hierarchies.

3. Application to the AKNS hierarchy
3.1. AKNS hierarchy

The spectral matrix

p

U=U.iy=| "
B (u’)_[q A

} LU= [p ] ,A — spectral parameter, (3.1
q

generates the AKNS hierarchy of soliton equations [1] (see also [35]). There are other integrable equations associated
with gl(2) (see, e.g., [37]). Once setting

a b ai b .
W= - A (3.2)

the stationary zero curvature equation W, =[U, W] gives

1 1 )
biy1 = _Ebi,x ~ P, Citl = 5Cix — 4, dilx = PCitl — gb;y, i=0. (3.3)
Taking the initial data as
ap=—1, b =co =0, (3.4)

and assuming a;|,=0 = b;|u=0 = ¢ilu=0 =0, i > 1 (equivalently selecting constants of integration to be zero), the recursion
relation (3.3) uniquely defines all differential polynomial functions a;, b; and c;, i > 1. The first few sets are listed as
follows:

by=p,c1=q, a1 =0

1 1 1
by = 3P0 2= 540 G2 = qu;
by = 2 p — 2 P20, ¢ = s — ~pas @y = ~(pa, — prd):
4 20 4 20 g s
1 3 1 3
by = _gpxxx + prp% C4 = g%cxx - qux%
1 1 1 3,5,
as = gpqu - gpqu + gpqxx - gp q-.
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The zero curvature equations
U, — vi™ 4o, vimy=o, viM=omw),, m>0, (3.5)

generate the AKNS hierarchy of soliton equations:

—2bp 41 -2 §
" ] — " [ ; p} LT (3.6)
q

2Cm+1 du

with the Hamiltonian operator J, the hereditary recursion operator @ and the Hamiltonian functions:

1
—50+pd'q  pa'p
0 —2 2
Jz{ },cp: 2 ,Hmz/ Omt2 ix, (3.7

_ 1 _ m+ 1
—q0"'q  50—q97'p
where m >0 and 0 = 9—‘1

3.2. Integrable couplings

3.2.1. Anintegrable coupling hierarchy
We begin with an enlarged spectral matrix

p
U Ui U, q
U=U@n=|0 U+taly U|, a=| |, (3.8)
s
0 0 U v
- w -
where U is defined as in (3.1) and the supplementary spectral matrices U; and U, read
0 r r
Uy =Ui(u) = s ol M=)
0 v ) (3.9)
U = Us(uz) = , Uy = .
w 0 w
To solve the enlarged stationary zero curvature Eq. (2.11), we take a solution of the following form
w W (%)
W=1|0 W+aW; W |, (3.10)

Wi = Wiu, uy, A) = [Z f } ,

le/ f’] (3.11)
Wo = Wou, uy, uz, \) = E
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Then, the second and third equations in (2.12) equivalently generate
ex = pg —qf +arg —asf +rc — sb,
fx = —27f — 2pe — 2are — 2ra,
8x = 2qe + 21g + 2ase + 2sa,
and
e, =pg —qf’ +rg—sf + vc— wb,
fi=—-21f" —2pe —2re —2va,

g =2q€ +2rg' + 2se + 2wa,

respectively. Trying a formal series solution W by assuming

w . w . w .
e= Zei)f’, f= Zfi)fl, g= Zgi)fl,
i=0 i=0 i=0

00 00 00
e’:Ze;)»_', f/ZZf[/)“_la g/=2g§k_’,
i=0 i=0 i=0

we obtain

1
fir1 = —Efi,x — pe; —are; —raj,

8i+1 = S 8ix — qe; — ose; — waj,

Citlx = P8it1 — qfiy1 targiyy —asfiyy +reiv1 — sbiyn,
/ _ 1 / / . .
Jfiq1= _ifi’x — pe; —re; — va,

A _ / / . .
8ir1 = 2gi,x —ge; — Ssej — wa;,

€1 = D8 — qfi +rg; — sf; + vei — why,

where i > 0. We select the initial data to be

and assume that

eilii=0 = fili=o = &ila=0 =0, €}la=0 = fila=0 = &ila=0 =0, i>1.

171

(3.12)

(3.13)

(3.14)

(3.15)
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Then the recursion relation (3.13) determines the sequence of e;, f;, g; and eg, fl-’, g?, i > 1, uniquely. The first few sets

of functions are computed as follows:

fi=p+r4+arn, gi=qg+s+as, e =0;

1 1 1 1 1 1
2= THPx T Sk T Mk 82 = S4x F Sasct S8,
1 +1 +l +Ol +oz +a+a2
ey = = —ps+ —qgr+ —ps+ —qr rs;
2 ZPCI 217 26] 21’ 251 3
1 oa+1 1 a+1 o Ao+ 1)
= prx 1 Txx — 3 2q — szs — (e + Dplg+as)r — ————qr° — #rzs,
1 1 1 1 2 1
83 = ZCIxx O[I Sxx — 5 ’p— %qzr —(a@+ 1)(p+ar)gs — aips - %ml’
1 1 a+1 a+1 a+1 a(e+1)
€3 Z—prq+1pqx—Tpxs+Tpsx+ AU Ta$ o+ TS
fi=p+r+v, g=q+s+w, € =0
, 1 1 1 , 1 1 1
fh= TP T Tx T SV 8= Sdx + PR + 5 Wxs
, 1 N n 1 n 1 + 1 n a+1
e — s w r v rs;
2= 2pq 217 217 261 261 )
1 1 1 1 1 1 a+1 ala+1)
=Pt groct o= 5% — 5P — SpMw = pgr— pqu— (@ + Dprs = ——qrt = ———r,
1 1 1 1 1 1 a+1 ala+1)
g5 = Jqu+ Su JWa = 547 = 207 = 547 = pas — pqw — (@ + Dgrs — ——ps* = ———rs’,
, 1 1 1 1 1 1 1 1 a+1
€3 = Ty Pxq T PAx T g PeS T g PSy T g AWt G PWeF GGl = VT g d T TS
a+1
) rSy.
Note that they are all differential polynomials.
For each integer m > 0, take
yiml ylm yiml
VM =Wy, = | 0 v gy i (3.16)
0 0 ylml
where V[m] (A"W;),, i=1,2, and then, the enlarged zero curvature equation
77 7lm] 77 lmly _
Up, —(V7), + U, V7]=0
yields
Ut — VI 4+ 10 V™) + (01, VM + el U, V™) = 0,
Ung — VA + U V™ + (U2, VPN + (U1, V] = 0,
together with the mth AKNS system in (3.6). This gives rise to
_ St,m(u, uy) _ T
Uy, = Sm = Sm() = =(r,s5v,w) (3.17)
So,m(u, uy, u2)
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where
_me+1 _Zf/ +1
Stm(u, ur) = [ s Som(u, ur, uz) = /m :
Em+1 2ngrl
Therefore, the hierarchy of enlarged zero curvature equations present a hierarchy of bi-integrable couplings:
o [ _2bm+l 1
p
2Cm41
q K (u)
_ r - =2 fin+1
Uz, = = K;u(u) = St,m(u, uy) = , m>0, (3.18)
K 2gm+1
v SZ,m(Ms ulv M2) Y
_zfm+1
LW Im /
L 2gm-i-l J

for the AKNS hierarchy (3.6). Except the first two, all bi-integrable couplings constructed above are nonlinear, since
the supplementary systems (3.17) with m > 2 are nonlinear with respect to the four dependent variables r, s, v, w.
This implies that (3.18) provides a hierarchy of nonlinear bi-integrable couplings for the AKNS hierarchy of soliton
equations. The first nonlinear bi-integrable coupling system reads

1 2 1 2
Pty =—=Px+ P9 4dn = =qxx — P9,

2 2
1 a1 2 2 2, 2 2
Ty = —Epm — Tr” + pg+(@+ Dp°s+2(a+ Dpgr + 2a(x + 1) prs + oo + 1)gr= + a“(a + Dres,
1 a+1
Sty = 5qxr + 7 Sxx @ p — 2@+ Dpgs — (@ + Dgr — 2a(a + Dgrs — a(a + Dps* — o®(a + 1rs?, (3.19)
1 1 1 2 2 2 2 2
v, = —me - Er’u - Ev“ + p°q+ p°s+ p w+2pqr 4+ 2pgu + 2(a + 1) prs + (o + D)gr® + a(a + 1)r<s,

1 1 1
Wiy = 3G + 58w+ SWer — Pg* — ¢*r — ¢*v — 2pgs — 2pqw — 2(a + Dgrs — (@ + 1)ps® — a(e + Drs”.

3.2.2. Hamiltonian structures
In order to generate Hamiltonian structures of the obtained bi-integrable couplings, we have to compute non-
degenerate, symmetric and ad-invariant bilinear forms on the adopted Lie algebra:

Ay Az A3
7= 0 A +adr Ar|| A1, As AseslQ)h, (3.20)
0 0 Aq
where the loop algebra s~l(2) is defined by
s~1(2) = {A(L) € sl(2)| entriesof A(A) — Laurentseriesin A}.

As usual, we transform the Lie algebra g into a vector form through the mapping

$:3—> R A (ar, a2, -+ a9)T, (3.21)
where
Al Ao Aj
asi—2  azi—1
A=|0 A +ad, Ay|e€g A= , 1 <i<3. (3.22)
as  —aszi-2

0 0 Ay
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The mapping § induces a Lie algebraic structure on R?, isomorphic to the above matrix Lie algebra g. The corresponding
commutator [-, -] on the resulting Lie algebra R® reads

la,b]" = a” R(b), a = (a1, a2, ...,a9)", b= (b1,b2, ..., bo)" € R, (3.23)
where R(D) is given by
Ry Ry R3 0 2b3i1 —2b3
Rby=10 R +aRy Ry|,Ri= bs; —2b3;—» 0 , l=<i<3.
0 0 Ry —b3i_1 0 2b3i_2

Let us consider an arbitrary bilinear form on R?:
(a,b) = a’ Fb, (3.24)

where F'is a constant matrix. Two of the required properties, the symmetric property (a, b) = (b, a) and the ad-invariance
property

{a, [b, c]) = (la, b], c), (3.25)
tell that F” = F and
(RD)F)T = —R(b)F forall b € R°.

This matrix equation on F yields a system of linear equations on the elements of F. Solving the resulting linear system
gives

1 1
7 7 n3 0 0
F=|1 « ®|0 0 1 (3.26)
= zm+n 0 ’
2 2 01 0
n3 0 0

where 11, 2 and 53 are arbitrary constants and ® denotes the Kronecker product of matrices.
This way, a required bilinear form on the underlying Lie algebra g is given by

1 1
(A, Byg = (8(A), 8(B))go = (a1, az, -+, ag) F(by, by, - -+, bo)" = ni(a1by + Eazbz + §a3b2)

1 1 1 1
+n2larbs + Eazbé + §a3b5 + a4(by + aby) + Eas(bs + abg) + Eas(bz + abs)] + n3[2a1b7 + azbg
+azbg + 2a4by + asbe + agbs + 2a7b1 + agbs + agbs], (3.27)

where A and B are two block matrices of the form defined by (3.22). This bilinear form (3.27) is symmetric and
ad-invariant:

(A, B) = (B, A), (A,[B,C]) =([A,B].C), A,B,C €g,
and it is non-degenerate if and only if
det(F) = (any + 2n3)°nS # 0. (3.28)

To use the variational identity, let us further compute that

(W,U,) = —nia — me — 2n3¢,

_ 1 1 1 1 1 1 , r

(W, Up) = Fme+ 5n2g+n3g,§mb+ §n2f+'73f,5nz(€+ag)+n3g,Eriz(b+af)+n3f,nac,n3b ,
Ad JE—

y=—z——In|(W,W)|=0
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where W is given by (3.10). Therefore, the corresponding variational identity (2.16) leads to

8 [ Mam+1 + memt1 + 203, 1 1 1 1
5 - 2 dx = SMEm + Sm8m + 138, 3w + 512 fn
/ l / l / r
+03 fns 5772(Cm +agm) + 138, EnZ(bm + atfm) + 13 fr, 13Cm, N30 | s (3.29)

where m > 1. It follows thus that the AKNS bi-integrable couplings in (3.18) possess the following Hamiltonian
structures:

_ _8H,
iy, = Kn(@) = J—=, m>0, (3.30)
Su
where the Hamiltonian operator is
1 1 -1
3 n 5 n2 n3
J=|1 « o) 2 (3.31)
| am o sm+tns 0 2 0 '
2 2
n3 0 0
and the Hamiltonian functionals read
_ Am+2 + memso + 2n3ée
Hm _ / N1am+2 n2€m+2 13 m+2 d}C, mzo (332)
m+1
A direct computation shows a recursion relation
Kuy1 = @K, m>1, (3.33)
where the recursion operator @ is given by
(] 0 0
=P P+a® 0], (3.34)
D, o] @
with @ being given by (3.7) and
g+ (p+andls o lp+(p+ar)d!y
| = , (3.35)
—sa_lq —(g+ as)8_ls —s8_1p —(g+ as)d~1r
v g +rd s+ patw v ' p+rdlr 4+ po v
Dy = (3.36)
—wd lg—s50"ls—go ' w —wd'p—sdlr—go v

Furthermore, we can show J®' = &7, where ®' denotes the adjoint operator of @. This tells that all bi-integrable
couplings in (3.18) commute with each other and so do all conserved functionals in (3.32). We point out that the
enlarged recursion operator (3.34) is closely related to the underlying Lie algebra (3.20).

It is also direct to verify that J and @J form a Hamiltonian pair [27,5], and so, @ is a common hereditary recursion
operator for the hierarchy of Hamiltonian bi-integrable couplings (3.18). In particular, the bi-integrable coupling (3.19)
has a bi-Hamiltonian structure.

4. Concluding remarks
We have introduced a class of Lie algebras consisting of specific block matrices, and presented a computational

paradigm for construction of nonlinear bi-integrable couplings, starting from those suggested Lie algebras. The varia-
tional identity on the adopted Lie algebras was used to construct Hamiltonian structures of the resulting bi-integrable
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couplings. An application to the AKNS spectral problem resulted in a hierarchy of nonlinear bi-integrable Hamiltonian
couplings for the AKNS equations. The obtained results complement well some of the ideas of generating linear and
nonlinear integrable couplings [20,18,17,11], and show there can exist various kinds of integrable couplings for a given
integrable equation.

We remark that high order block type matrix Lie algebras will allow us to generate multi-integrable couplings and
more diverse integrable couplings, which can also supplement the spectral matrices of the other forms in the literature
(see, e.g., [12,21]). Typical integrable properties such as Hirota bilinear forms can be discussed for the presented
integrable couplings (see, e.g., [22]). Another interesting property is the linear superposition principle on subspaces of
solutions, and all soliton solutions belong to the closure of such subspaces of exponential wave solutions [19].

We also point out that a particular bi-integrable coupling is

u = K@), v=K@wll, w=K@lwl,

where the Gateaux derivative is defined as follows
0
P w)[S] = % le—o P(u + &S, uy + €Sy, -+ +)

for an object P=P(u, uy, ...). It is open to us whether this system possesses any Hamiltonian structure. There are
some enlarged zero curvature representations for this system [21], but all symmetric and ad-invariant bilinear forms are
degenerate on the corresponding Lie algebras. It has been an important task for us to explore more about multi-integrable
couplings including the above intriguing bi-integrable coupling to enrich multi-component integrable equations (see,
e.g., [32,14,7,33,38]). It is expected that more particular new Lie algebras generating Hamiltonian integrable couplings
can be presented, to understand and work towards complete classification of multi-component integrable equations.
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