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Abstract: We create a class of non-semisimple matrix
loop algebras, and use the associated zero curvature
equations to construct tri-integrable couplings. An appli-
cation is made for the AKNS equations as an illustrative
example. Hamiltonian structures of the resulting tri-
integrable couplings are furnished by the variational
identities over the presented matrix loop algebras, which
implies the commutativity of the sequences of symme-
tries and conserved functionals.
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1 Introduction

Zero curvature equations over semisimple matrix loop
algebras produce integrable coupled systems (see, e.g.,
[1–4]). There are also vector or matrix generalizations
of integrable equations formulated in terms of non-
associative algebraic structures and their deformations
(see, e.g., [5, 6]). Integrable couplings provide valuable
new insights into the classification of integrable systems
with multi-components [7, 8]. Zero curvature equations
over non-semisimple matrix loop algebras are the basis
for generating integrable couplings [9, 10], and the asso-
ciated variational identities offer tools to furnish their
Hamiltonian structures [11, 12]. A key step to success is
to create non-semisimple matrix loop algebras and find
bilinear forms required in the variational identities over
the resulting matrix loop algebras.

Let a given integrable system

ut ¼ KðuÞ ð1:1Þ

be defined through a zero curvature equation

Ut � Vx þ ½U;V� ¼ 0: ð1:2Þ

The Lax pair U ¼ Uðu; λÞ and V ¼ Vðu; λÞ, with λ being
the spectral parameter, are square matrices, often belong-
ing to a semisimple matrix loop algebra. Integrable cou-
plings are certain enlarged non-trivial integrable systems
including the original system (1.1) as a subsystem [7, 8].
Since the integrability of a system has nothing to do
with any arrangement of equations in the system, we
will focus on triangular integrable systems, within which
an initially given system is listed as the first subsystem.

By a tri-integrable coupling of a given integrable
system (1.1), we mean an enlarged triangular integrable
system of the following form:

ut ¼ KðuÞ;
u1; t ¼ S1ðu; u1Þ;
u2; t ¼ S2ðu; u1; u2Þ;
u3; t ¼ S3ðu; u1; u2; u3Þ:

8>>><>>>: ð1:3Þ

We call this system a nonlinear integrable coupling, if at
least one of S1ðu; u1Þ, S2ðu; u1; u2Þ and S3ðu; u1; u2; u3Þ is
nonlinear with respect to any of the subvectors u1, u2, u3
of new dependent variables.

Inspired by a study on bi-integrable couplings [13],
we would like to explore non-semisimple loop algebras
consisting of block matrices, associated with which en-
larged zero curvature equations generate tri-integrable
couplings. Non-semisimple Lie algebras are semi-direct
sums of semi-simple Lie subalgebras and solvable Lie
subalgebras [14]. The notion of semi-direct sums

g ¼ g

]

gc ð1:4Þ

means that the two Lie subalgebras g and gc satisfy

½g; gc�J gc; ð1:5Þ

where ½g; gc� ¼ f½A;B� jA A g;B A gcg, with ½� ; �� denoting
the Lie bracket of g. Obviously, gc is an ideal Lie sub-
algebra of g. The subscript c indicates a contribution to
the construction of coupling systems. We also require
the closure property between g and gc under the matrix
multiplication

ggc; gcgJ gc; ð1:6Þ
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where g1g2 ¼ fAB jA A g1;B A g2g, while we use the dis-
crete zero curvature equation over semi-direct sums of
matrix loop algebras to generate discrete coupling sys-
tems [10]. Hamiltonian structures of the resulting cou-
pling systems can usually be furnished through the
variational identities on general loop algebras [11].

In this paper, we will create a class of non-
semisimple matrix loop algebras consisting of 4� 4
block matrices, and apply them to the construction of
tri-integrable couplings, based on the associated zero
curvature equations. An application will be made for the
AKNS soliton hierarchy as an illustrative example. Hamil-
tonian structures of the resulting tri-integrable couplings
of the AKNS equations will be established through the
associated classical variational identities. The presented
matrix loop algebras will be shown to be a starting point
to construct integrable Hamiltonian couplings of given
integrable systems.

2 Matrix loop algebras and
tri-integrable couplings

2.1 Soliton hierarchy

A soliton hierarchy is usually associated with a spectral
problem

ϕx ¼ Uϕ; U ¼ Uðu; λÞ A g; ð2:1Þ

where g is often a semi-simple matrix loop algebra. Sup-
pose that the stationary zero curvature equation

Wx ¼ ½U;W� ð2:2Þ

has a solution of the form

W ¼ Wðu; λÞ ¼
X
ib0

W0; iλ�i; ð2:3Þ

where W0; i A g, ib0: Introduce the temporal spectral
problems

ϕtm ¼ V ½m�ϕ; mb0; ð2:4Þ

with the Lax matrices being defined by

V ½m� ¼ V ½m�ðu; λÞ ¼ ðλmWÞþ þ Δm A g; mb0; ð2:5Þ

where Pþ denotes the polynomial part of P in λ. The
introduction of the modification terms Δm aims to guar-
antee that the zero curvature equations

Utm � V ½m�
x þ ½U;V ½m�� ¼ 0; mb0; ð2:6Þ

engender a soliton hierarchy with a Hamiltonian struc-
ture:

utm ¼ KmðuÞ ¼ J
δHm

δu
; mb0; ð2:7Þ

of which the first system ut1 ¼ K1 is assumed to be the
given system (1.1) with V ¼ V ½1�. The above Hamiltonian
functionals Hm are generally presented by using the
variational identity [11, 12]:

δ
δu

ð
∂U
∂λ

;W
� �

dx ¼ λ�γ ∂

∂λ
λγ

∂U
∂u

;W
� �

; ð2:8Þ

where γ is a constant, W is a solution of (2.2), and h� ; �i
is a bilinear form on the loop algebra g which is non-
degenerate, symmetric and ad-invariant [12]. If g is non-
semisimple, h� ; �i must not be the Killing form. If hA;Ai
is positive for every non-zero matrix A A g, then the Lie
algebra ðg; h� ; �iÞ becomes quadratic.

2.2 Matrix loop algebras

Let α, β, μ and ν be four arbitrarily given constants,
which could be zero. We create a class of triangular block
matrices

MðA1;A2;A3;A4Þ

¼
A1 A2 A3 A4

0 A1 þ αA2 αA3 βA2 þ αA4

0 0 A1 þ αA2 þ μA3 νA3

0 0 0 A1 þ αA2

26664
37775; ð2:9Þ

where A1, A2, A3, A4 are square submatrices of the same
order. Under the matrix commutator

½M1;M2� ¼ M1M2 �M2M1; ð2:10Þ

we have the closure property

½MðA1;A2;A3;A4Þ;MðB1;B2;B3;B4Þ� ¼ MðC1;C2;C3;C4Þ;
ð2:11Þ
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where

C1 ¼ ½A1;B1�;
C2 ¼ ½A1;B2� þ ½A2;B1� þ α½A2;B2�;
C3 ¼ ½A1;B3� þ α½A2;B3� þ ½A3;B1�

þ α½A3;B2� þ μ½A3;B3�;
C4 ¼ ½A1;B4� þ β½A2;B2� þ α½A2;B4�

þ ν½A3;B3� þ ½A4;B1� þ α½A4;B2�:

8>>>>>>>><>>>>>>>>:
ð2:12Þ

This property guarantees that all block matrices de-
fined by (2.9) form a matrix Lie algebra for fixed con-
stants α, β, μ and ν. We point out that any larger number
of blocks in creating matrix Lie algebras gives us more
difficulties in theoretical verification. Now, we introduce
a class of matrix loop algebras possessing a semi-direct
sum decomposition

g ¼ g

]

gc; ð2:13Þ

with

g ¼ fMðA1ðλÞ;0;0;0Þ j entries of
A1 � Laurent series in λg;

gc ¼ fMð0;A2ðλÞ;A3ðλÞ;A4ðλÞÞ j entries of
Ai � Laurent series in λ; 2a ia 4g;

8>>><>>>: ð2:14Þ

and thus, they must be non-semisimple. Obviously, one
of non-trivial ideals of every g is gc.

Such presented matrix loop algebras serve as a
foundation upon which zero curvature equations gener-
ate nonlinear Hamiltonian tri-integrable couplings, while
many other existing loop algebras lead to linear Hamilto-
nian integrable couplings (see, e.g., [15–20]). The block
A1 corresponds to the original integrable system, and the
other three blocks A2, A3 and A4 are used to generate the
supplementary vector fields S1, S2 and S3. We remark that
the commutators ½A2;B2� and ½A3;B3� will yield nonlinear
terms in the resulting tri-integrable couplings.

2.3 Tri-integrable couplings

In order to generate tri-integrable couplings, defined by
(1.3), for a given integrable system (1.1) possessing a zero
curvature representation (1.2) with a Lax pair U ¼ Uðu; λÞ
and V ¼ Vðu; λÞ, we use the corresponding enlarged spec-
tral matrix

U ¼ Uðu; λÞ ¼ MðU;U1;U2;U3Þ A g; ð2:15Þ

and the corresponding enlarged Lax matrix

V ¼ Vðu; λÞ ¼ MðV ;V1;V2;V3Þ A g; ð2:16Þ

where u ¼ ðuT ; uT
1 ; u

T
2 ; u

T
3 ÞT , λ is the spectral parameter,

and

Ui ¼ Uiðui; λÞ; Vi ¼ Viðu; u1; . . . ; ui; λÞ; 1a ia 3; ð2:17Þ

are square matrices of the same order as U and V . Then,
associated with this new enlarged Lax pair U and V, the
enlarged zero curvature equation

Ut � Vx þ ½U;V � ¼ 0 ð2:18Þ

presents the following triangle system

Ut � Vx þ ½U;V � ¼ 0;
U1; t � V1; x þ ½U;V1� þ ½U1;V � þ α½U1;V1� ¼ 0;
U2; t � V2; x þ ½U;V2� þ α½U1;V2� þ ½U2;V �

þ α½U2;V1� þ μ½U2;V2� ¼ 0;
U3; t � V3; x þ ½U;V3� þ β½U1;V1� þ α½U1;V3�

þ ν½U2;V2� þ ½U3;V � þ α½U3;V1� ¼ 0:

8>>>>>>>><>>>>>>>>:
ð2:19Þ

The first equation above precisely gives the originally
given integrable system (1.1), and thus, the above whole
system (2.19) provides a coupling system for the system
(1.1). This shows a basic idea of enlarging given integra-
ble systems by using the presented class of matrix loop
algebras g.

Following the general scheme for constructing soli-
ton hierarchies [21, 22], we solve the corresponding en-
larged stationary zero curvature equation

Wx ¼ ½U;W�; ð2:20Þ

by setting the following form

W1 ¼ W1ðu1; λÞ ¼
X
ib0

W1; iλ�i;

W2 ¼ W2ðu; u1; u2; λÞ ¼
X
ib0

W2; iλ�i;

W3 ¼ W3ðu; u1; u2; u3; λÞ ¼
X
ib0

W3; iλ�i;

8>>>>>>><>>>>>>>:
ð2:21Þ

for

W ¼ Wðu; λÞ ¼ MðW ;W1;W2;W3Þ A g; ð2:22Þ

of which W is defined by (2.3). The enlarged stationary
zero curvature equation (2.20) equivalently presents
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Wx ¼ ½U;W�;
W1; x ¼ ½U;W1� þ ½U1;W � þ α½U1;W1�;
W2; x ¼ ½U;W2� þ α½U1;W2� þ ½U2;W�

þ α½U2;W1� þ μ½U2;W2�;
W3; x ¼ ½U;W3� þ β½U1;W1� þ α½U1;W3�

þ ν½U2;W2� þ ½U3;W� þ α½U3;W1�:

8>>>>>>>><>>>>>>>>:
ð2:23Þ

Then, we define the enlarged Lax matrices V ½m� as

V ½m� ¼ MðV ½m�;V ½m�
1 ;V ½m�

2 ;V ½m�
3 Þ A g; ð2:24Þ

with the submatrices V ½m� being defined by (2.5) and

V ½m�
i ¼ ðλmWiÞþ þ Δm; i; 1a ia 3; mb0; ð2:25Þ

where Pþ again denotes the polynomial part of P in λ. An
important step to construct a hierarchy of triangular inte-
grable couplings is to choose the modification terms Δm; i

such that the enlarged zero curvature equations

Utm � V ½m�
x þ ½U;V ½m�� ¼ 0; mb0; ð2:26Þ

yield a hierarchy of enlarged soliton equations

utm ¼ KmðuÞ; mb0: ð2:27Þ

This hierarchy provides tri-integrable couplings for the
given soliton hierarchy (2.7):

utm ¼
utm
u1; tm
u2; tm
u3; tm

26664
37775 ¼ KmðuÞ

¼
KmðuÞ

S1;mðu; u1Þ
S2;mðu; u1; u2Þ

S3;mðu; u1; u2; u3Þ

26664
37775; mb0: ð2:28Þ

Hamiltonian structures of such tri-integrable couplings
can be established through applying the associated varia-
tional identities [11, 12], which contains the trace identity
[21] as a particular example.

3 Application to the AKNS
equations

3.1 The AKNS hierarchy

Let us recall the AKNS soliton hierarchy [23]. The tradi-
tional spectral problem for the AKNS hierarchy is given by

ϕx ¼ Uϕ; U ¼ Uðu; λÞ ¼ �λ p
q λ

� �
;

u ¼ p
q

� �
; ϕ ¼ ϕ1

ϕ2

� �
: ð3:1Þ

The stationary zero curvature equation

Wx ¼ ½U;W � ð3:2Þ

gives rise to

ax ¼ pc� qb;
bx ¼ �2λb� 2pa;
cx ¼ 2qaþ 2λc;

8><>: ð3:3Þ

if we assume that W is of the form

W ¼ a b
c �a

� �
¼

X
ib0

W0; iλ�i ¼
X
ib0

ai bi
ci �ai

� �
λ�i: ð3:4Þ

Upon taking the initial values

a0 ¼ �1; b0 ¼ c0 ¼ 0; ð3:5Þ

the system (3.3) equivalently yields

biþ1 ¼ � 1
2 bi; x � pai;

ciþ1 ¼ 1
2 ci; x � qai;

aiþ1; x ¼ pciþ1 � qbiþ1;

8><>: ib0: ð3:6Þ

We impose the integration conditions

aiju¼0 ¼ biju¼0 ¼ biju¼0 ¼ 0; ib 1; ð3:7Þ

to determine the sequence of fai; bi; ci j ib 1g uniquely.
Then, the first few sets can be computed as follows:

b1 ¼ p; c1 ¼ q; a1 ¼ 0;
b2 ¼ � 1

2 px; c2 ¼ 1
2 qx; a2 ¼ 1

2 pq;
b3 ¼ 1

4 pxx � 1
2 p

2q; c3 ¼ 1
4 qxx � 1

2 pq
2;

a3 ¼ 1
4 ðpqx � pxqÞ:

Now, the zero curvature equations

Utm � V ½m�
x þ ½U;V ½m�� ¼ 0 with

V ½m� ¼ ðλmWÞþ; mb0; ð3:8Þ

generate the AKNS hierarchy of soliton equations:
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utm ¼ Km ¼ �2bmþ1

2cmþ1

� �
¼ Φm �2p

2q

� �
¼ J

δHm

δu
; mb0; ð3:9Þ

where the Hamiltonian operator, the hereditary recursion
operator and the Hamiltonian functions are defined by

J ¼ 0 �2
2 0

� �
; Φ ¼ � 1

2 ∂þ p∂�1q p∂�1p

�q∂�1q 1
2 ∂� q∂�1p

" #
;

Hm ¼
ð
2amþ2

mþ 1
dx; mb0; ð3:10Þ

in which ∂ ¼ ∂
∂x , respectively.

3.2 Tri-integrable couplings of the AKNS
equations

We use a special non-semisimple matrix loop algebra
g ¼ g

]

gc with

g ¼ fMðA1;0;0;0Þ jA1 A eslð2Þg;
gc ¼ fMð0;A2;A3;A4Þ jA2;A3;A4 A eslð2Þg;

(
ð3:11Þ

where the loop algebra eslð2Þ is defined by

eslð2Þ ¼ fAðλÞ A slð2Þ j entries of
AðλÞ � Laurent series in λg: ð3:12Þ

To construct tri-integrable couplings for the AKNS
equations, we adopt the corresponding enlarged spectral
matrix

U ¼ Uðu; λÞ ¼ MðU;U1;U2;U3Þ A g; ð3:13Þ

with U ¼ Uðu; λÞ being defined as in (3.1) and

Ui ¼ UiðuiÞ ¼ 0 ri
si 0

� �
; ui ¼ ri

si

� �
; 1a ia 3; ð3:14Þ

where u ¼ ðuT ; uT
1 ; u

T
2 ; u

T
3 ÞT , and ri and si, 1a ia 3; are

new dependent variables.
To solve the corresponding enlarged stationary zero

curvature equation (2.20), we search for solutions of the
following form

W ¼ Wðu; λÞ ¼ MðW ;W1;W2;W3Þ A g; ð3:15Þ

where W is given by (3.4). Then, the enlarged stationary
zero curvature equation gives

W1; x ¼ ½U;W1� þ ½U1;W � þ α½U1;W1�;
W2; x ¼ ½U;W2� þ α½U1;W2� þ ½U2;W �

þ α½U2;W1� þ μ½U2;W2�;
W3; x ¼ ½U;W3� þ β½U1;W1� þ α½U1;W3�

þ ν½U2;W2� þ ½U3;W� þ α½U3;W1�:

8>>>>>><>>>>>>:
ð3:16Þ

Assume that W1, W2, W3 are of the form

W1 ¼ W1ðu; u1; λÞ ¼ e f
g �e

� �
¼

X
ib0

W1; iλ�i;

W2 ¼ W2ðu; u1; u2; λÞ ¼ e 0 f 0

g 0 �e 0

� �
¼

X
ib0

W2; iλ�i;

W3 ¼ W3ðu; u1; u2; u3; λÞ ¼ e 00 f 00

g 00 �e 00

� �
¼

X
ib0

W3; iλ�i:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð3:17Þ

The above system (3.16) equivalently leads to

ex ¼ �s1bþ r1c� ðqþ αs1Þ f þ ðpþ αr1Þg;
fx ¼ �2r1a� 2ðpþ αr1Þe� 2λf ;
gx ¼ 2s1aþ 2ðqþ αs1Þeþ 2λg;

8><>: ð3:18Þ

e 0x ¼ �s2bþ r2c� ðqþ αs1 þ μs2Þ f 0
þ ðpþ αr1 þ μr2Þg 0 � αs2 f þ αr2g;

f 0x ¼ �2r2a� 2ðpþ αr1 þ μr2Þe 0 � 2λf 0 � 2αr2e;
g 0
x ¼ 2s2aþ 2ðqþ αs1 þ μs2Þe 0 þ 2λg 0 þ 2αs2e;

8>>><>>>: ð3:19Þ

and

e 00x ¼ �s3bþ r3c� ðβs1 þ αs3Þ f
þ ðβr1 þ αr3Þg � νs2 f 0 þ νr2g 0

� ðqþ αs1Þ f 00 þ ðpþ αr1Þg 00;
f 00x ¼ �2λf 00 � 2ðαr3 þ βr1Þe� 2νr2e 0

� 2ðpþ αr1Þe 00 � 2r3a;
g 00
x ¼ 2λg 00 þ 2ðαs3 þ βs1Þeþ 2νs2e 0

þ 2ðqþ αs1Þe 00 þ 2s3a:

8>>>>>>>>>><>>>>>>>>>>:
ð3:20Þ

Trying a solution W with

e ¼
X
ib0

eiλ�i; f ¼
X
ib0

fiλ�i; g ¼
X
ib0

giλ�i;

e 0 ¼
X
ib0

e 0i λ
�i; f 0 ¼

X
ib0

f 0i λ
�i; g 0 ¼

X
ib0

g 0
i λ

�i;

e 00 ¼
X
ib0

e 00i λ
�i; f 00 ¼

X
ib0

f 00i λ
�i; g 00 ¼

X
ib0

g 00
i λ

�i;

8>>>>>>>><>>>>>>>>:
ð3:21Þ
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and taking

e0 ¼ e 00 ¼ e 000 ¼ �1;
f0 ¼ g0 ¼ f 00 ¼ g 0

0 ¼ f 000 ¼ g 00
0 ¼ 0; ð3:22Þ

then we can have

fiþ1 ¼ � 1
2 fi; x � r1ai � ðpþ αr1Þei;

giþ1 ¼ 1
2 gi; x � s1ai � ðqþ αs1Þei;

eiþ1; x ¼ �s1biþ1 þ r1ciþ1 � ðqþ αs1Þ fiþ1

þ ðpþ αr1Þgiþ1;

8>>><>>>: ð3:23Þ

f 0iþ1 ¼ � 1
2 f

0
i; x � r2ai � ðpþ αr1 þ μr2Þe 0i � αr2ei;

g0iþ1 ¼ 1
2 g

0
i; x � s2ai � ðqþ αs1 þ μs2Þe0i � αs2ei;

e 0iþ1; x ¼ �s2biþ1 þ r2ciþ1 � ðqþ αs1 þ μs2Þ f 0iþ1

þ ðpþ αr1 þ μr2Þg0iþ1 � αs2 fiþ1 þ αr2 giþ1;

8>>>><>>>>: ð3:24Þ

and

f 00iþ1 ¼ � 1
2 f

00
i; x � ðαr3 þ βr1Þei � νr2e0i

� ðpþ αr1Þe 00i � r3ai;
g 00
iþ1 ¼ 1

2 g
00
i; x � ðαs3 þ βs1Þei � νs2e 0i

� ðqþ αs1Þe 00i � s3ai;
e 00iþ1; x ¼ �s3biþ1 þ r3ciþ1 � ðβs1 þ αs3Þ fiþ1

þ ðβr1 þ αr3Þgiþ1 � νs2 f 0iþ1 þ νr2g 0
iþ1

� ðqþ αs1Þ f 00iþ1 þ ðpþ αr1Þg 00
iþ1;

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:25Þ

where ib0. Then under the integration conditions

eiju¼0 ¼ fiju¼0 ¼ giju¼0 ¼ 0;
e 0i ju¼0 ¼ f 0i ju¼0 ¼ g 0

i ju¼0 ¼ 0;
e 00i ju¼0 ¼ f 00i ju¼0 ¼ g 00

i ju¼0 ¼ 0;

8><>: ib 1; ð3:26Þ

the recursion relations in (3.23), (3.24) and (3.25) uniquely
generate three sequences of f fi; gi; eigib1, f f 0i ; g 0

i ; e
0
igib1

and f f 00i ; g 00
i ; e

00
i gib1, respectively. In the first sequence,

the first three sets of functions are as follows:

f1 ¼ pþ ð1þ αÞr1;
g1 ¼ qþ ð1þ αÞs1;
e1 ¼ 0;

8><>:
f2 ¼ � 1

2 px � 1
2 ð1þ αÞr1; x;

g2 ¼ 1
2 qx þ 1

2 ð1þ αÞs1; x;
e2 ¼ 1

2 f½qþ ð1þ αÞs1�pþ ð1þ αÞqr1 þ αðαþ 1Þr1s1g;

8><>:
and

f3 ¼ � 1
2 ½qþ ð1þ αÞs1�p2 � ð1þ αÞðqþ αs1Þpr1

� 1
2 αð1þ αÞqr21 � 1

2 α
2ð1þ αÞr21 s1

þ 1
4 pxx þ 1

4 ð1þ αÞr1; xx;
g3 ¼ � 1

2 ½pþ ð1þ αÞr1�q2 � ð1þ αÞðpþ αr1Þqs1
� 1

2 αð1þ αÞps21 � 1
2 α

2ð1þ αÞr1s21
þ 1

4 qxx þ 1
4 ð1þ αÞs1; xx;

e3 ¼ 1
4 f½qx þ ð1þ αÞs1; x�p� ½px þ ð1þ αÞr1; x�q
þ ð1þ αÞðqx þ αs1; xÞr1 � ð1þ αÞðpx þ αr1; xÞs1g:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
In the second sequence, the first three sets of functions
are as follows:

f 01 ¼ pþ αr1 þ ðαþ μþ 1Þr2;
g 0
1 ¼ qþ αs1 þ ðαþ μþ 1Þs2;
e 01 ¼ 0;

8><>:
f 02 ¼ � 1

2 px � 1
2 αr1; x � 1

2 ðαþ μþ 1Þr2; x;
g 0
2 ¼ 1

2 qx þ 1
2 αs1; x þ 1

2 ðαþ μþ 1Þs2; x;
e 02 ¼ 1

2 fpqþ ½αs1 þ ðαþ μþ 1Þs2�p
þ ½αr1 þ ðαþ μþ 1Þr2�q
þ α½αs1 þ ðαþ μþ 1Þs2�r1
þ ðαþ μþ 1Þðαs1 þ μs2Þr2g;

8>>>>>>>><>>>>>>>>:
and

f 03 ¼ � 1
2 ½qþ αs1 þ ðαþ μþ 1Þs2�p2

� fαðqr1 þ αr1s1Þ þ ðαþ μþ 1Þ
� ½qr2 þ αðr2s1 þ r1s2Þ þ μr2s2�gp
� �

1
2 α

2r21 þ αðαþ μþ 1Þr1r2 þ 1
2 μðαþ μþ 1Þr22

�
q

� 1
2 α

2½αs1 þ ðαþ μþ 1Þs2�r21
� αðαþ μþ 1Þðαs1 þ μs2Þr1r2
� 1

2 μðαþ μþ 1Þðαs1 þ μs2Þr22
þ 1

4 pxx þ 1
4 αr1; xx þ 1

4 ðαþ μþ 1Þr2; xx;
g 0
3 ¼ � 1

2 ½pþ αr1 þ ðαþ μþ 1Þr2�q2

� fαðps1 þ αr1s1Þ þ ðαþ μþ 1Þ
� ½ps2 þ αðr1s2 þ r2s1Þ þ μr2s2�gq
� �

1
2 α

2s21 þ αðαþ μþ 1Þs1s2 þ 1
2 μðαþ μþ 1Þs22

�
p

� 1
2 α

2½αr1 þ ðαþ μþ 1Þr2�s21
� αðαþ μþ 1Þðαr1 þ μr2Þs1s2
� 1

2 μðαþ μþ 1Þðαr1 þ μr2Þs22
þ 1

4 qxx þ 1
4 αs1; xx þ 1

4 ðαþ μþ 1Þs2; xx;
e 03 ¼ 1

4 f½qx þ αs1; x þ ðαþ μþ 1Þs2; x�p
� ½px þ αr1; x þ ðαþ μþ 1Þr2; x�q
þ α½qx þ αs1; x þ ðαþ μþ 1Þs2; x�r1
� α½px þ αr1; x þ ðαþ μþ 1Þr2; x�s1
þ ðαþ μþ 1Þðqx þ αs1; x þ μs2; xÞr2
� ðαþ μþ 1Þðpx � αr1; x � μr2; xÞs2g:

In the third sequence, the first three sets of functions are
as follows:
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f 001 ¼ ðαþ βÞr1 þ pþ νr2 þ ðαþ 1Þr3;
g 00
1 ¼ ðαþ βÞs1 þ qþ νs2 þ ðαþ 1Þs3;
e 001 ¼ 0;

8><>:
f 002 ¼ � 1

2 px � 1
2 ðαþ βÞr1x � 1

2 νr2; x � 1
2 ðαþ 1Þr3; x;

g 00
2 ¼ 1

2 qx þ 1
2 ðαþ βÞs1x þ 1

2 νs2; x þ 1
2 ðαþ 1Þs3; x;

e 002 ¼ 1
2 f½qþ ðαþ βÞs1 þ νs2 þ ðαþ 1Þs3�p
þ ½ðαþ βÞr1 þ νr2 þ ðαþ 1Þr3�q
þ ½ðα2 þ 2αβþ βÞs1 þ ανs2 þ αðαþ 1Þs3�r1
þ α½νr2 þ ðαþ 1Þr3�s1 þ νðαþ μþ 1Þr2s2g;

8>>>>>>>><>>>>>>>>:
and

f 003 ¼ � 1
2 ½qþ ðαþ βÞs1 þ νs2 þ ðαþ 1Þs3�p2

� f½ðαþ βÞr1 þ νr2 � ðαþ 1Þr3�q
þ ½ðα2 þ 2αβþ βÞs1 þ ανs2 þ αðαþ 1Þs3�r1
� α½νr2 þ ðαþ 1Þr3�s1 � νðαþ μþ 1Þr2s2gp
� �

1
2 ðα2 þ αβþ βÞr21 þ α½νr2 þ ðαþ 1Þr3�r1

þ 1
2 νðαþ μþ 1Þr22

�
q

� α
�	
βþ 3

2 αβþ 1
2 α

2


s1 þ 1

2 αðαþ 1Þs3 þ 1
2 ανs2

�
r21

� αfα½νr2 þ ðαþ 1Þr3�s1 þ νðαþ μþ 1Þr2s2gr1
� 1

2 νðαþ μþ 1Þðαs1 þ μs2Þr22 þ 1
4 pxx

þ 1
4 ðαþ βÞr1; xx þ 1

4 νr2; xx þ 1
4 ðαþ 1Þr3; xx;

g 00
3 ¼ � 1

2 ½pþ ðαþ βÞr1 þ νr2 þ ðαþ 1Þr3�q2

� f½ðαþ βÞs1 þ νs2 � ðαþ 1Þs3�p
þ ½ðα2 þ 2αβþ βÞr1 þ ανr2 þ αðαþ 1Þr3�s1
� α½νs2 þ ðαþ 1Þs3�r1 � νðαþ μþ 1Þr2s2gq
� �

1
2 ðα2 þ αβþ βÞs21 þ α½νs2 þ ðαþ 1Þs3�s1

þ 1
2 νðαþ μþ 1Þs22

�
p

� α
�	
βþ 3

2 αβþ 1
2 α

2


r1 þ 1

2 αðαþ 1Þr3 þ 1
2 ανr2

�
s21

� αfα½νs2 þ ðαþ 1Þs3�r1 þ νðαþ μþ 1Þr2s2gs1
� 1

2 νðαþ μþ 1Þðαr1 þ μr2Þs22 þ 1
4 qxx

þ 1
4 ðαþ βÞs1; xx þ 1

4 νs2; xx þ 1
4 ðαþ 1Þs3; xx;

e 003 ¼ 1
4 f½qx þ ðαþ βÞs1; x þ νs2; x þ ðαþ 1Þs3; x�p
� ½px þ ðαþ βÞr1; x þ νr2; x þ ðαþ 1Þr3; x�q
þ ½ðαþ βÞqx þ ðα2 þ 2αβþ βÞs1; x
þ ανs2; x þ αðαþ 1Þs3; x�r1
� ½ðαþ βÞpx þ ðα2 þ 2αβþ βÞr1; x
þ ανr2; x þ αðαþ 1Þr3; x�s1
þ ν½qx þ αs1; x þ ðαþ μþ 1Þs2; x�r2
� ν½px þ αr1; x þ ðαþ μþ 1Þr2; x�s2
þ ðαþ 1Þðqx þ αs1; xÞr3 � ðαþ 1Þðpx þ αr1; xÞs3g:

Let us further adopt the enlarged Lax matrices

V ½m� ¼ MðV ½m�;V ½m�
1 ;V ½m�

2 ;V ½m�
3 Þ A g; mb0; ð3:27Þ

where V ½m� is defined as in (3.8) and

V ½m�
i ¼ ðλmWiÞþ; mb0; ð3:28Þ

which means that Δm; i are chosen as zero.
Then, the m-th enlarged zero curvature equation

Utm ¼ V ½m�
x � ½U;V ½m�� ð3:29Þ

gives rise to

Utm ¼ V ½m�
x � ½U;V ½m��;

U1; tm ¼ V ½m�
1; x � ½U;V ½m�

1 � � ½U1;V ½m�� � α½U1;V
½m�
1 �;

U2; tm ¼ V ½m�
2; x � ½U;V ½m�

2 � � ½U2;V ½m�� � α½U1;V
½m�
2 �

� α½U2;V
½m�
1 � � μ½U2;V

½m�
2 �;

U3; tm ¼ V ½m�
3; x � ½U;V ½m�

3 � � β½U1;V
½m�
1 � � α½U1;V

½m�
3 �

� ν½U2;V
½m�
2 � � ½U3;V ½m�� � α½U3;V

½m�
1 �:

8>>>>>>>>>>><>>>>>>>>>>>:
ð3:30Þ

All above systems of equations determine a hierarchy of
coupling systems for the AKNS equations:

utm ¼

ptm
qtm
r1; tm
s1; tm
r2; tm
s2; tm
r3; tm
s3; tm

266666666666664

377777777777775
¼ KmðuÞ ¼

KmðuÞ
S1;mðu; u1Þ

S2;mðu; u1; u2Þ
S3;mðu; u1; u2; u3Þ

26664
37775

¼

�2bmþ1

2cmþ1

�2fmþ1

2gmþ1

�2f 0mþ1

2g 0
mþ1

�2f 00mþ1

2g 00
mþ1

266666666666664

377777777777775
; mb0: ð3:31Þ

It is direct to check that all members in (3.31) with mb 2
provide nonlinear tri-integrable couplings for the AKNS
equations. The first nonlinear tri-integrable coupling sys-
tem having four subsystems reads

pt2 ¼ �2b3; qt2 ¼ 2c3;
r1; t2 ¼ �2f3; s1; t2 ¼ 2g3;
r2; t2 ¼ �2f 03 ; s2; t2 ¼ 2g 0

3;

r3; t2 ¼ �2f 003 ; s3; t2 ¼ 2g 00
3 ;

8>>><>>>: ð3:32Þ

where b3, c3, f3, g3, f 03 , g 0
3, f 003 and g 00

3 are defined as
before.
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3.3 Hamiltonian structures

In order to establish Hamiltonian structures for the pre-
sented tri-integrable couplings in (3.31), we apply the
variational identity [12, 24]:

δ
δu

ð
∂U
∂λ

;W
� �

dx ¼ λ�γ ∂

∂λ
λγ

∂U
∂u

;W
� �

: ð3:33Þ

To construct symmetric and ad-invariant bilinear forms
on g conveniently, we first transform the semi-direct sum
g into a vector form. Define a mapping

σ : g ! R12; A 7! ða1; . . . ; a12ÞT ; ð3:34Þ

where

A ¼ MðA1;A2;A3;A4Þ A g;

Ai ¼ a3i�2 a3i�1

a3i �a3i�2

� �
; 1a ia 4: ð3:35Þ

This mapping σ induces a Lie algebraic structure on R12,
isomorphic to the matrix Lie algebra g. The correspond-
ing Lie bracket ½� ; �� on R12 can be computed as follows

½a; b�T ¼ aTRðbÞ; a ¼ ða1; . . . ; a12ÞT ;
b ¼ ðb1; . . . ; b12ÞT A R12; ð3:36Þ

where

RðbÞ ¼ MðR1;R2;R3;R4Þ;

Ri ¼
0 2b3i�1 �2b3i
b3i �2b3i�2 0

�b3i�1 0 2b3i�2

264
375; 1a ia 4: ð3:37Þ

This Lie algebra ðR12; ½� ; ��Þ is isomorphic to the matrix Lie
algebra g, and the mapping σ, defined by (3.34), is a Lie
algebra isomorphism between the two Lie algebras.

A bilinear form on R12 can be defined by

ha; bi ¼ aTFb; ð3:38Þ

where F is a constant matrix (actually, F ¼ ðhei; ejiÞ12�12,
where e1; . . . ; e12 are the standard basis of R12 ). The sym-
metric property

ha; bi ¼ hb; ai ð3:39Þ

requires that

FT ¼ F: ð3:40Þ

Under this symmetric condition, the ad-invariance prop-
erty

ha; ½b; c�i ¼ h½a; b�; ci ð3:41Þ

equivalently requires that

FðRðbÞÞT ¼ �RðbÞF; b A R12: ð3:42Þ

This matrix equation with an arbitrary b leads to a linear
system of equations on the elements of the matrix F.
Solving the resulting system tells

F ¼
η1 η2 η3 η4
η2 αη2 þ βη4 αη3 αη4
η3 αη3 μη3 þ νη4 0
η4 αη4 0 0

26664
37775

n

2 0 0
0 0 1
0 1 0

264
375; ð3:43Þ

where ηi, 1a ia 4, are arbitrary constants and n is the
Kronecker product. Now, the corresponding bilinear form
on the semi-direct sum g is given as follows:

hA;Big ¼ hσðAÞ; σðBÞiR12 ¼ ða1; . . . ; a12ÞFðb1; . . . ; b12ÞT
¼ ð2a1b1 þ a2b3 þ a3b2Þη1

þ ð2a1b4 þ a2b6 þ a3b5 þ 2a4b1 þ 2αa4b4
þ a5b3 þ αa5b6 þ a6b2 þ αa6b5Þη2
þ ð2a1b7 þ a2b9 þ a3b8 þ 2αa4b7 þ αa5b9
þ αa6b8 þ 2a7b1 þ 2αa7b4 þ 2μa7b7 þ a8b3
þ αa8b6 þ μa8b9 þ a9b2 þ αa9b5 þ μa9b8Þη3
þ ð2a1b10 þ a2b12 þ a3b11 þ 2αa4b10 þ 2βa4b4
þ βa5b6 þ αa5b12 þ βa6b5 þ αa6b11 þ 2νa7b7
þ νa8b9 þ νa9b8 þ 2αa10b4 þ 2a10b1
þ αa11b6 þ a11b3 þ αa12b5 þ a12b2Þη4; ð3:44Þ

where

A ¼ σ�1ðða1; . . . ; a12ÞÞT A g;

B ¼ σ�1ððb1; . . . ; b12ÞÞT A g: ð3:45Þ

Owing to the isomorphism of σ, the bilinear form
(3.44) is also symmetric and ad-invariant:

hA;Big ¼ hB;Aig; hA; ½B;C�ig ¼ h½A;B�;Cig;
A;B;C A g: ð3:46Þ

But this kind of bilinear forms is not of Killing type, since
the matrix Lie algebra g is not semisimple.
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A bilinear form, defined by (3.44), is non-degenerate
if and only if the determinant of F is not zero, i.e.,

detðFÞ ¼ �16η4
6ðα2η1 � αη2 þ βη4Þ3

� ðμη3 þ νη4Þ3 00: ð3:47Þ

Therefore, we can choose η1, η2, η3 and η4 such that
detðFÞ is non-zero to get non-degenerate bilinear forms
over g.

It is now direct to compute that

hW ;Uλig ¼ �2aη1 � 2eη2 � 2e 0η3 � 2e 00η4;

and

hW;Uuig ¼

cη1 þ gη2 þ g 0η3 þ g 00η4
bη1 þ fη2 þ f 0η3 þ f 00η4

αg 0η3 þ cη2 þ ðαη2 þ βη4Þg þ αg 00η4
bη2 þ αf 0η3 þ αf 00η4 þ ðαη2 þ βη4Þ f

cη3 þ ðμη3 þ νη4Þg 0 þ αgη3
bη3 þ αη3 f þ ðμη3 þ νη4Þ f 0

αgη4 þ cη4
bη4 þ αfη4

26666666666664

37777777777775
:

Furthermore, since we have [11]:

γ ¼ � λ
2

d
dλ

lnjhW ;Wij;

we can obtain γ ¼ 0. Thus, the corresponding variational
identity becomes

δ
δu

ð
2amþ1η1 þ 2emþ1η2 þ 2e 0mþ1η3 þ 2e 00mþ1η4

m
dx

¼

cmη1 þ gmη2 þ g 0
mη3 þ g 00

mη4
bmη1 þ fmη2 þ f 0mη3 þ f 00mη4

αg 0
mη3 þ cmη2 þ ðαη2 þ βη4Þgm þ αg 00

mη4
bmη2 þ αf 0mη3 þ αf 00mη4 þ ðαη2 þ βη4Þ fm

cmη3 þ ðμη3 þ νη4Þg 0
m þ αgmη3

bmη3 þ αfmη3 þ ðμη3 þ νη4Þ f 0m
αgmη4 þ cmη4
bmη4 þ αfmη4

26666666666664

37777777777775
:

Consequently, we obtain a Hamiltonian structure for the
hierarchy (3.31) of tri-integrable couplings:

utm ¼ J
δHm

δu
; mb0; ð3:48Þ

with the Hamiltonian operator

J ¼
η1 η2 η3 η4
η2 αη2 þ βη4 αη3 αη4
η3 αη3 μη3 þ νη4 0
η4 αη4 0 0

26664
37775
�1

n
0 �2
2 0

� �
ð3:49Þ

and the Hamiltonian functionals

Hm ¼
ð
2amþ2η1 þ 2emþ2η2 þ 2e 0mþ2η3 þ 2e 00mþ2η4

mþ 1
dx;

mb0: ð3:50Þ

3.4 Liouville integrability

The recursion relation

Km ¼ ΦKm�1; mb 1; ð3:51Þ

generated from (3.6), (3.23), (3.24) and (3.25), tells that
the recursion operator Φ (see [25] for definition) reads

Φ ¼ ΦðuÞ

¼
Φ 0 0 0
Φ1 Φþ αΦ1 0 0
Φ2 αΦ2 Φþ αΦ1 þ μΦ2 0
Φ3 βΦ1 þ αΦ3 νΦ2 Φþ αΦ1

26664
37775; ð3:52Þ

where Φ is given as in (3.10) and

Φ1 ¼

r1∂
�1q

þðpþ αr1Þ∂�1s1

r1∂
�1p

þðpþ αr1Þ∂�1r1

�s1∂
�1q

�ðqþ αs1Þ∂�1s1

�s1∂
�1p

�ðqþ αs1Þ∂�1r1

2666664
3777775;

Φ2 ¼

ðθ1 þ μr2Þ∂�1s2
þr2∂

�1ðqþ αs1Þ
ðθ1 þ μr2Þ∂�1r2
þr2∂

�1ðpþ αr1Þ
�ðθ2 þ μs2Þ∂�1s2
�s2∂

�1ðqþ αs1Þ
�ðθ2 þ μs2Þ∂�1r2
�s2∂

�1ðpþ αr1Þ

2666664
3777775;

Φ3 ¼

θ1∂�1s3 þ θ3∂�1s1
þνr2∂�1s2 þ r3∂

�1q;
θ1∂�1r3 þ θ3∂�1r1
þνr2∂�1r2 þ r3∂

�1p

�θ2∂�1s3 � θ4∂�1s1
�νs2∂�1s2 � s3∂

�1q;
�θ2∂�1r3 � θ4∂�1r1
�νs2∂�1r2 � s3∂

�1p

2666664
3777775;

in which

θ1 ¼ pþ αr1; θ2 ¼ qþ αs1;
θ3 ¼ αr3 þ βr1; θ4 ¼ αs3 þ βs1:
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It is direct but lengthy to show by Maple that Φ is
hereditary [26], i.e., it satisfies

Φ 0ðuÞ½ΦK�S�ΦΦ 0ðuÞ½K�S
¼ Φ 0ðuÞ½ΦS�K �ΦΦ 0ðuÞ½S�K ð3:53Þ

for all enlarged vector fields K and S; and that J and
M ¼ ΦJ constitutes a Hamiltonian pair [27], i.e., any lin-
ear combination N of J and M satisfies

ð
ðKÞTN 0ðuÞ½NS�Tdx þ cycleðK; S;TÞ ¼ 0 ð3:54Þ

for all enlarged vector fields K, S and T. Therefore,
the hierarchy (3.31) of tri-integrable couplings is bi-
Hamiltonian (see, e.g., [27, 28]), and so, it is Liouville
integrable. In particular, we have

½Km;Kn� :¼ K 0
mðuÞ½Kn� � K 0

nðuÞ½Km� ¼ 0; m; nb0; ð3:55Þ

and

fHm;HngJ :¼
ð

δHm

δu

� �T
J
δHn

δu
dx ¼ 0; m; nb0: ð3:56Þ

3.5 Canonical forms of matrix Lie algebras

Let M ¼ MðA1;A2;A3;A4Þ be defined by (2.9) in Section
2.2. We would like to derive canonical forms of all matrix
Lie algebras consisting of such matrices M by (2.9) asso-
ciated with four arbitrary constants α, β, μ and ν, which
determine equivalent classes of integrable couplings.

Case 1: α00 and μ00:

Under a similarity transformation

P ¼
1 � 1

α 0 β
α2

0 μ �α � αν
μ

0 0 0 1
0 0 1 ν

μ

266664
377775; ð3:57Þ

we can simplify M as follows:

PMP�1

¼
A1 0 0 0
0 A1 þ αA2 βμA2 � ανA3 þ αμA4 0
0 0 A1 þ αA2 0
0 0 0 A1 þ αA2 þ μA3

26664
37775:

ð3:58Þ

Upon resetting entries, we can show that this kind of
enlarged spectral matrices yields tri-integrable couplings
of the following type

ut ¼ KðuÞ;
u1; t ¼ S1ðu1Þ;
u2; t ¼ S2ðu1; u2Þ;
u3; t ¼ S3ðu3Þ;

8>>><>>>: ð3:59Þ

of which the first and fourth subsystems are separated.

Case 2: α00 and μ ¼ 0:

Under a similarity transformation

P ¼
1 � 1

α 0 β
α2

0 1 0 0
0 0 1 0
0 0 0 1

266664
377775; ð3:60Þ

we can simplify M as follows:

PMP�1 ¼
A1 0 0 0
0 A1 þ αA2 αA3 βA2 þ αA4

0 0 A1 þ αA2 νA3

0 0 0 A1 þ αA2

26664
37775: ð3:61Þ

Similarly upon resetting entries, we can show that
this kind of enlarged spectral matrices engenders tri-
integrable couplings of the following type

ut ¼ KðuÞ;
u1; t ¼ S1ðu1Þ;
u2; t ¼ S2ðu1; u2Þ;
u3; t ¼ S3ðu1; u2; u3Þ;

8>>><>>>: ð3:62Þ

of which the first subsystem is separated.

Case 3: α ¼ 0 and μ00:

Under a similarity transformation

P ¼

�μ 0 1 0
0 1 0 0
0 0 0 1
0 0 1

μ
ν
μ2

266664
377775; ð3:63Þ

we can simplify M as follows:

PMP�1 ¼
A1 �μA2 νA3 � μA4 0
0 A1 βA2 0
0 0 A1 0
0 0 0 A1 þ μA3

26664
37775: ð3:64Þ
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Upon resetting entries, we can show that this kind of
enlarged spectral matrices yields tri-integrable couplings
of the following type

ut ¼ KðuÞ;
u1; t ¼ S1ðu; u1Þ;
u2; t ¼ S2ðu; u1; u2Þ;
u3; t ¼ S3ðu3Þ;

8>>><>>>: ð3:65Þ

of which the fourth subsystem is separated.

Case 4: α ¼ μ ¼ 0:

In this case, we have an interesting matrix Lie algebra
consisting of the following block matrices

M ¼ MðA1;A2;A3;A4Þ ¼
A1 A2 A3 A4

0 A1 0 βA2

0 0 A1 νA3

0 0 0 A1

26664
37775: ð3:66Þ

Similarly upon resetting entries, we can show that this
kind of enlarged spectral matrices generates tri-integrable
couplings of the following type

ut ¼ KðuÞ;
u1; t ¼ S1ðu; u1Þ;
u2; t ¼ S2ðu; u2Þ;
u3; t ¼ S3ðu; u1; u2; u3Þ;

8>>><>>>: ð3:67Þ

of which the third subsystem does not depend on the
second subvector u1 of dependent variables.

Since the similarity transformation does not change
zero curvature equations, the first three cases lead to
some classes of tri-integrable couplings which can be
decomposed into integrable couplings or bi-integrable
couplings plus separated integrable systems. However,
the fourth one yields a class of specific tri-integrable
couplings, and provides an answer to a question about
the coupling system

ut ¼ KðuÞ;
u1; t ¼ S1ðu; u1Þ;
u2; t ¼ S2ðu; u2Þ;

8><>: ð3:68Þ

raised in [29]: Is there any Hamiltonian structure behind
this coupling system? Our results show that by adding
one more subsystem, one can build a bigger integrable
coupling being Hamiltonian as a whole.

4 Conclusions and remarks

We created a class of matrix loop algebras consisting of
4� 4 block matrices to generate tri-integrable couplings,
and successfully constructed a hierarchy of tri-integrable
couplings for the AKNS equations, which possesses a
bi-Hamiltonian structure. The presented matrix loop
algebras served as a beginning point to construct tri-
integrable couplings and their canonical forms were ana-
lyzed in detail. The whole construction scheme can be
used to the other existing soliton hierarchies such as the
KdV hierarchy, the Dirac hierarchy and the Kaup-Newell
hierarchy.

Together with bi-integrable couplings, tri-integrable
couplings provide us with insightful thoughts about
general structures of integrable systems with multi-
components. It will be very helpful in building an ex-
haustive list of integrable systems to collect more exam-
ples of integrable couplings. Multi-integrable couplings
yield diverse recursion operators in block matrix form.
The mathematical structures behind integrable couplings
are rich and interesting [30].

There are many other interesting questions on
integrable couplings. For instance, what other non-
semisimple matrix loop algebras can one begin with, to
generate integrable couplings? It is known that Hamilto-
nian structures exist for the perturbation systems [31, 32,
33, 34], but some enlarged spectral matrices do not yield
any non-degenerate bilinear forms over the associated
matrix loop algebras required in the variational identi-
ties [29, 35]. Are there any criteria which guarantee
the existence of Hamiltonian structures for bi- or tri-
integrable couplings? How can one compute solution
groups for integrable couplings, either by symmetry con-
straints as did for the perturbation systems [36, 37] or
by Darboux transformations engendered through moving
frames [38]?
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