DE GRUYTER

DOI 10.1515/ijnsns-2013-0011 ==

Int. ). Nonlinear Sci. Numer. Simul. 2013; 14(6): 377-388

Wen-Xiu Ma*, Jinghan Meng and Huiqun Zhang

Tri-integrable Couplings by Matrix Loop Algebras
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cation is made for the AKNS equations as an illustrative
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tries and conserved functionals.
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1 Introduction

Zero curvature equations over semisimple matrix loop
algebras produce integrable coupled systems (see, e.g.,
[1-4]). There are also vector or matrix generalizations
of integrable equations formulated in terms of non-
associative algebraic structures and their deformations
(see, e.g., [5, 6]). Integrable couplings provide valuable
new insights into the classification of integrable systems
with multi-components [7, 8]. Zero curvature equations
over non-semisimple matrix loop algebras are the basis
for generating integrable couplings [9, 10], and the asso-
ciated variational identities offer tools to furnish their
Hamiltonian structures [11, 12]. A key step to success is
to create non-semisimple matrix loop algebras and find
bilinear forms required in the variational identities over
the resulting matrix loop algebras.

Let a given integrable system

us = K(u)

be defined through a zero curvature equation

U—Vy+[U,V]=0. (1.2)
The Lax pair U = U(u,A) and V = V(u,A), with A being
the spectral parameter, are square matrices, often belong-
ing to a semisimple matrix loop algebra. Integrable cou-
plings are certain enlarged non-trivial integrable systems
including the original system (1.1) as a subsystem [7, 8].
Since the integrability of a system has nothing to do
with any arrangement of equations in the system, we
will focus on triangular integrable systems, within which
an initially given system is listed as the first subsystem.

By a tri-integrable coupling of a given integrable
system (1.1), we mean an enlarged triangular integrable
system of the following form:

Ug = I<(u)7
Uyt = Sl(u7 ul)a (1 3)
U = Sp(u, Uy, up), ‘

us ¢ = S3(u, ug, up, u3).

We call this system a nonlinear integrable coupling, if at
least one of S;(u,u;), S2(u,us,u;) and Ss(u, vy, up, u3) is
nonlinear with respect to any of the subvectors uy, u,, us
of new dependent variables.

Inspired by a study on bi-integrable couplings [13],
we would like to explore non-semisimple loop algebras
consisting of block matrices, associated with which en-
larged zero curvature equations generate tri-integrable
couplings. Non-semisimple Lie algebras are semi-direct
sums of semi-simple Lie subalgebras and solvable Lie
subalgebras [14]. The notion of semi-direct sums

g§=g&g (1.4)
means that the two Lie subalgebras g and g, satisfy
8:8c] < 8, (1.5)

where [g,8.] = {|A,B]|A €g,B € g.}, with [-,-] denoting
the Lie bracket of g. Obviously, g. is an ideal Lie sub-
algebra of g. The subscript ¢ indicates a contribution to
the construction of coupling systems. We also require
the closure property between g and g, under the matrix
multiplication

88c.8:8 < &, (L6)
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where g8, = {AB|A € g1,B € g}, while we use the dis-
crete zero curvature equation over semi-direct sums of
matrix loop algebras to generate discrete coupling sys-
tems [10]. Hamiltonian structures of the resulting cou-
pling systems can usually be furnished through the
variational identities on general loop algebras [11].

In this paper, we will create a class of non-
semisimple matrix loop algebras consisting of 4 x 4
block matrices, and apply them to the construction of
tri-integrable couplings, based on the associated zero
curvature equations. An application will be made for the
AKNS soliton hierarchy as an illustrative example. Hamil-
tonian structures of the resulting tri-integrable couplings
of the AKNS equations will be established through the
associated classical variational identities. The presented
matrix loop algebras will be shown to be a starting point
to construct integrable Hamiltonian couplings of given
integrable systems.

2 Matrix loop algebras and
tri-integrable couplings
2.1 Soliton hierarchy

A soliton hierarchy is usually associated with a spectral
problem
¢, =U¢p, U=U(uAeg, (2.1)

where g is often a semi-simple matrix loop algebra. Sup-
pose that the stationary zero curvature equation

Wy, =[U, W] (2.2)
has a solution of the form
W=Wud)=> Wl (2.3)

i>0

where Wy ;eg, i > 0. Introduce the temporal spectral
problems

By, = VMp, m=0, (2.4)

with the Lax matrices being defined by
rakd

= VM) = (A"W), +Aneg, m=0, (25)
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where P, denotes the polynomial part of P in A. The

introduction of the modification terms A,, aims to guar-

antee that the zero curvature equations
U, — VM 4 [U,vim] = o,

m >0, (2.6)

engender a soliton hierarchy with a Hamiltonian struc-
ture:

Ut :Km(u):]%a mZO,

m

(2.7)

of which the first system u;, = K; is assumed to be the
given system (1.1) with V = VI, The above Hamiltonian
functionals .#;,, are generally presented by using the
variational identity [11, 12]:

6 (/oU 0 ou
R\
5 J< A,W>dx A AA< 7W>, (2.8)

where vy is a constant, W is a solution of (2.2), and <-,->
is a bilinear form on the loop algebra g which is non-
degenerate, symmetric and ad-invariant [12]. If g is non-
semisimple, <-,-> must not be the Killing form. If (4,A>
is positive for every non-zero matrix A € g, then the Lie
algebra (g, (-, ->) becomes quadratic.

2.2 Matrix loop algebras
Let a, B, u and v be four arbitrarily given constants,
which could be zero. We create a class of triangular block

matrices

M(A17A27A37A4)

Al Az A3 Az,

0 A +aA; aAs BA> + Ay (29)
0 0 A+ ah; + uAs VA3 ’ ’

0 0 0 A+ a4,

where A;, A, A3, A4 are square submatrices of the same
order. Under the matrix commutator

[My, M) = MM, — MyM, (2.10)

we have the closure property

[M(A1,A;,A3,As), M(By,B,, B3, Bs)] = M(Cy, Gy, C3, Cy),
(211)
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where

C, = [A1, By],
Co = [A1, B)] + [As, Bi] + alAs, By,
Cs = [A1, B3] + a[Ay, B3] + [A3, By
+ a[As3, By] + p[As, Bs],
Ca = [Av, By] + BlAs, By] + alAs, Bu]
+ V[Ag,Bﬂ + [A4,B1] + (X[A4,Bz].

(2.12)

This property guarantees that all block matrices de-
fined by (2.9) form a matrix Lie algebra for fixed con-
stants a, 8, u and v. We point out that any larger number
of blocks in creating matrix Lie algebras gives us more
difficulties in theoretical verification. Now, we introduce
a class of matrix loop algebras possessing a semi-direct
sum decomposition

g=gag, (213)
with
g ={M(41(A),0,0,0) | entries of
A; — Laurent series in A},
(2.14)

gc = {M(0,A5(7),A3(A),A4(A)) | entries of
A; — Laurent series in 4,2 < i < 4},

and thus, they must be non-semisimple. Obviously, one
of non-trivial ideals of every g is g..

Such presented matrix loop algebras serve as a
foundation upon which zero curvature equations gener-
ate nonlinear Hamiltonian tri-integrable couplings, while
many other existing loop algebras lead to linear Hamilto-
nian integrable couplings (see, e.g., [15-20]). The block
A; corresponds to the original integrable system, and the
other three blocks A,, A3 and A, are used to generate the
supplementary vector fields S, S, and S;. We remark that
the commutators [A,, B;] and [As3, Bs] will yield nonlinear
terms in the resulting tri-integrable couplings.

2.3 Tri-integrable couplings

In order to generate tri-integrable couplings, defined by
(1.3), for a given integrable system (1.1) possessing a zero
curvature representation (1.2) with a Lax pair U = U(u,A)
and V = V(u,A), we use the corresponding enlarged spec-
tral matrix

U=

i

(L_l,A) :M(U, Ul,Uz,U3) Gg, (215)
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and the corresponding enlarged Lax matrix

V=V@A)=MVV,V,,V3)eg, (2.16)
where @ = (u”,uf, ul , ul)", A is the spectral parameter,
and

Ui = Ui(u, A), Vi=Vi(u,ug,...,u;d), 1<i<3, (217)
are square matrices of the same order as U and V. Then,

associated with this new enlarged Lax pair U and V, the
enlarged zero curvature equation

U —V,+[U,V]=0 (2.18)
presents the following triangle system
U —Vy+[U, V] =0,
Ue — Vix + [U, W] + [U, V] + a[Uy, V1] = 0,
U2,t - VZ‘x + [Ua VZ] + a[Ula VZ} + [U27 V} (2 19)

+ a[Uy, Vi] + p[Us, V5] = 0,
Us ¢ — Vs x + [U, V3] + BlUs, V1] + a[Uy, V3]
+ V[U27 VZ} + [U37 V] + a[U37 Vl] =0.

The first equation above precisely gives the originally
given integrable system (1.1), and thus, the above whole
system (2.19) provides a coupling system for the system
(1.1). This shows a basic idea of enlarging given integra-
ble systems by using the presented class of matrix loop
algebras g.

Following the general scheme for constructing soli-
ton hierarchies [21, 22], we solve the corresponding en-
larged stationary zero curvature equation

Wy = [U, W], (2.20)
by setting the following form
Wy = Wi(uy,A) = Z Wy A
i>0
W, = Wz(u7 U, uz,ﬂ) = Z Wz‘i/\ii, (2.21)
i>0
Ws = Ws(u,up, up,u3,4) = > Wi,
i>0
for
W = W(i,A) = M(W, Wy, W,, W3) e g, (2.22)

of which W is defined by (2.3). The enlarged stationary
zero curvature equation (2.20) equivalently presents
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Wy =[U, W],
Wl,x = [U, Wl] + [Ul, W} + C([Ul7 Wl}?
Wy x = [U, W] + a[U;, W] + [Uz, W]
+ a[Uy, W1] + u[Uy, Wo),
W3 x = [U, W5] + B[Uy, W] + a[Uy, W3]
+ V[Uz, Wz} + [U37 W] + a[U3, Wl]

(2.23)

Then, we define the enlarged Lax matrices V™ as

v — My v vt vty e g, (2.24)

with the submatrices V™ being defined by (2.5) and

V" = A"Wi), 4+ A, 1<i<3, m>=0, (2.25)
where P, again denotes the polynomial part of P in A. An
important step to construct a hierarchy of triangular inte-

grable couplings is to choose the modification terms A, ;
such that the enlarged zero curvature equations

U, — VM [0, 7] =0, m=>o, (2.26)
yield a hierarchy of enlarged soliton equations
i, = Kn(@), m=>0. (2.27)

This hierarchy provides tri-integrable couplings for the
given soliton hierarchy (2.7):

203

m

2= | = K@

W t,
L U3, t,
[ Kin(u)

Sim(u,u
= 1m (U, 2) , m>0.
So.m (U, Uy, uz)

| S3,m(u, Uy, Uz, u3)

(2.28)

Hamiltonian structures of such tri-integrable couplings
can be established through applying the associated varia-
tional identities [11, 12], which contains the trace identity
[21] as a particular example.

3 Application to the AKNS
equations

3.1 The AKNS hierarchy

Let us recall the AKNS soliton hierarchy [23]. The tradi-
tional spectral problem for the AKNS hierarchy is given by
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¢, = U9, U:mmmz{j ﬂ7

ok e-la)

(3.1)
The stationary zero curvature equation
W, = [U, W] (3.2)
gives rise to
ay = pc — gb,
by = —2Ab — 2pa, (33)
Ccy = 2qa + 2Ac,
if we assume that W is of the form
b ) . b .
W:[“ ]:ZWOJ-/P:Z[G’ : }/rl. (3.4)
¢ -a =0 isolG —di
Upon taking the initial values
ap = —1, b() =Cy = O, (35)
the system (3.3) equivalently yields
bis1 = —1bix — pa;,
Cir1 = 3Cix — qai, i>0. (3.6)
Aiy1,x = PCiy1 — qbiy,
We impose the integration conditions
ai'u:O = bi‘u:O = bilu:o =0, i>1, (3'7)

to determine the sequence of {a;, b;,c;|i > 1} uniquely.
Then, the first few sets can be computed as follows:

a; = 0;

1 .
a = ipq,

1 1 2
63 =39« — 309,

bi=p, a=gq,
b, =—ip,, ©=3qx,
bs = %pxx - %pz%

a3 = % (pax — pxq)-

Now, the zero curvature equations

Uy, — VM +[U, V"] =0  with
v =@A"w),, m=o, (3.8)

generate the AKNS hierarchy of soliton equations:
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-2b
U, = Km _ { m+1}
2Cm41
—2p SHMm
=™ =]——, m=>0 3.
o= meo o)

where the Hamiltonian operator, the hereditary recursion
operator and the Hamiltonian functions are defined by

]_{0 —2} o_|10+pla pdp
2 0] 7| —qo'q  1o-gop|
2am,>
= > .
Hm Jm+1dx’ m >0, (3.10)

in which 0 = £, respectively.

3.2 Tri-integrable couplings of the AKNS
equations

We use a special non-semisimple matrix loop algebra
g =g & g, with

{g_{M(A1,0,070)|A16§1(2)}, G11)
8c = {M(OaA27A3aA4) ‘AZaA—)’aAll € 51(2)}a
where the loop algebra §1(2) is defined by
sl(2) = {A(A) e s1(2) | entries of
A(A) — Laurent series in A}. (3.12)

To construct tri-integrable couplings for the AKNS
equations, we adopt the corresponding enlarged spectral
matrix

U=

=il

(ﬂ,/l) :M(U, U1,U2,U3) Gg, (313)

with U = U(u,A) being defined as in (3.1) and

where @ = (uT,ulT,uzT,ug)T, and r; and s;, 1 <i <3, are
new dependent variables.

To solve the corresponding enlarged stationary zero
curvature equation (2.20), we search for solutions of the
following form

W= W(@,A) = MW, W, Wp,Ws) eg,  (3.15)
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where W is given by (3.4). Then, the enlarged stationary
zero curvature equation gives

Wi x = [U, W] + [Uy, W] + a[Uy, Wy,
WZ,X = [U7 WZ] + a[Ula WZ} + [U2> W]

+ a[Uz, Wl] + H[Uz, Wz]7 (316)
W37X = [U7 Wg} +ﬁ[U1, W1] + a[Ul, Wg]
+ V[U27 WZ] + [U37 W} + (X[U37 Wl]
Assume that Wy, W,, W3 are of the form
e f i
Wy = Wi (u,uy,A) = = ZWMA s
§ —e i>0
e/ !
W, = Wz(u,ul,uz,/l) = |: , _fe,:|
=> Wy, (3.17)
i>0
e/l f//
W3 = W3(u7 Uy, Uy, u37/1) = |:g// _e//:|
=> Wy
i>0
The above system (3.16) equivalently leads to
ex = —Sib+nc—(q+as)f + (p+an)g,
fi = —2rna —2(p + an)e — 2Af, (3.18)
8« = 2510+ 2(q + asy)e + 2Ag;
e, = —S;b+1rc—(q+ as, + usy)f’
+(p+ar +un)g’ — asf + ang, (3.19)
fi = —2ra—2(p+ ar + ur)e’ = 2Af' — 2arse, '
g, =250+ 2(q + as; + us;)e’ + 2Ag’ + 2as;e;
and
e;) = —s3b+r3¢ — (fsy + as3)f
+ (Bri + ar3)g — vsof ' +vng’
—(g+as)f" + (p+an)g”,
) = —2Af" —2(ar; + Bri)e — 2vre’  (3.20)
—2(p+an)e” — 2ra,
gl =2Ag" + 2(as3 + fs1)e + 2vs,e’
+2(q + asy)e” + 2s3a.
Trying a solution W with
e=> el f=) fd', g=> g,
i>0 i>0 i>0
e = "ell, =" fAT g => g, 32)
i0 i0 i>0
e = Zei///\—i’ f// _ Zﬁ'/%_iv g// _ Zgi/lA_iv
i>0 i>0 i>0
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and taking f=-3lg+ 0 +a)s]p* - (1+a)(g+as)pn
—la(1+a)gr} — (1 + a)ris
€y = e(’) = e(')’ = -1, + %pxx "‘%(1 + )1 xx,
fo=8="fy=8,=f] =8) =0, (3.22) g =—3[p+ (1 +anlg’ -~ 1+a)(p +an)gs:
—la(1+ a)pst — 1a*(1+ a)ris}
then we can have + 390+ 3 (14 O)s10m,
€3 = %{[CIX + (1 +a)six]p — [px + (1 + a)rixlg
fir= —%ﬁ',x —nai— (p+an)e; + (1 +a)(gx + asl,x)rl —(I+a)(px + arl,x)51}~
8it1 = %gz:x —s1a; — (q + asy)e;, (3.23) In the second sequence, the first three sets of functions
eiy1,x = —Stbi1 + nciy — (@ + asy) fi are as follows:
+ (p + an)git;
! = _%ﬂx — 1ya; — (p + ary + pny)el — are;, flj =p+tan+(@+pu+1)n,
gy = 18! — 5ii — (q+ as; + ps)el — asae, 0 ? = g.+ as; + (a+ pu+1)sy,
e 1 = —Sibip1 + 1Ciyy — (q + asy + usy) fi L
4 (p+ary + ur)gl, — asafir1 + aragisa; fi=—=ipx—lar = 3(a+p+1)ry,
g =30 +3asix +3(a+p+1)sy,
and e} =3{pq+las;+ (@ +pu+1)s)|p
+ [ar; + (a+ p+ 1)r)q
+ afas; + (a + p+1)s3)n
flly = =3 — (ars + Bri)e; — vrae] + (a+p+1)(as; + psy)r};
—(p+an)el —na,
i1 =38/ — (as3 + Psi)e; — vsse] and
- (q +as,)e] — s3aj, (3.25)

e’ v = —S3biy1 + 3¢ — (Bs1 + ass) fin
+ (Bri +ars)giy1 — VSzfiﬁrl + Wzgilﬂ

—(@+as)ff{; + (p+ar)gy,

"
i+1,x

where i > 0. Then under the integration conditions

€ili—o = filizo = 8ila—o = 0,
€la—o = fi'lazo = 8ilz=o =0,
€lz—o = f'lico = &{'lizo = 0.

i>1, (3.26)

the recursion relations in (3.23), (3.24) and (3.25) uniquely
generate three sequences of {f, g ei}is1, {f7,8,€}is1
and {f/,g{ e}, respectively. In the first sequence,
the first three sets of functions are as follows:

fi=p+QQ+am,
gi=q+(1+a)s
€1:0;

and

fi = —3la+asi+ (a+p+1)s]p
—{a(grn +ans) + (a+u+1)
X [qra + a(r281 + 1152) + U sy} p
— R+ ala+p+)nr+ip(a+p+1)rig
—1a?las; + (a+ p+1)s)r]
—a(a+u+1)(as; + psy)rr,
—u(a+p+1)(asy + psy)rs
+ %pxx + %arl.,xx + % ((1 + U + 1)7’27)00

gi=-3[p+an+ (a+p+1)r)q’
—{a(psi +ars;) + (a+u+1)
X [ps2 + a(r1sy + 1251) + Unsi)tq
— [a?s?+ala+p+1)s15 +Iu(a+pu+1)s?p
—1a%ar; + (a+ p+ 1)ry]s?
—a(a+pu+1)(ar; + ur)$is;
—u(a+p+1)(ary + pry)s?
+ %qXX + %asl,xx + % (a +u+ 1)52,XX7

€3 =4 {lax +asix+ (@ +p+1)s2:p
—[pxt+arx+ (a+pu+1)rylq
+algy +as;x + (@ + p+1)sy4]n
—a[pxtary+ (a+pu+1)r s
+ (a4 pu+1)(gx + asy,x + USz x)12
—(@+pu+1)(px —aryx — Urax)S2}-

In the third sequence, the first three sets of functions are
as follows:
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=(a+ B +p+vr+(a+Drs,
gl =(a+P)si+q+vs; + (a+1)s3,

e/ =0;
;= _%px _%(a"‘ﬁ)rlx _%Vrz,x —%([X + 113 x,
&) =3 +3(a+P)si +3vsax +3(a+1)s54,

ey =3{lg+ (a+P)s; +vs; + (a+1)s3]p
+ [(@+B)r +vra + (a+ 1)r3]q
+ [(@? + 2aB + B)s1 + avs; + a(a + 1)s3)n
+ajvr, + (a4 )]sy + v(a + p+ 1)rsy };

Y =—1[g+ (a+ B)si + vs2 + (a+ 1)s3]p?
—{[(a+ B)r1 + vr — (a + 1)15]q

+ [(a® +2aB + B)s1 + avs; + a(a + 1)s3]n
—ajvr, + (a+ Drs)s; —v(a+ p+ 1)rs:}p
- {l (@ +aB + B)rf +alvr, + (a+ 1rsn
+iv(a+p+1)r3lq

— a[(ﬂ+ 3a +1a%)s; +1la(a+1)s; + Lavs,|r?

—a{a[vr, + (@ + V)rs3s; + v(a + p+ s in
—v(a+p+1)(as; +ps2)r3 + 4 P
+ % (a + ﬂ)rl,xx + %Vrz,xx + % ((X + 1)r3’xx,

"

gy =-1[p+ (a+B)r+vr+ (a+1)rs)q?
—{[(a+B)s1 +vs; — (a+1)s3]p
+ [(&® + 2aB + B)r1 + avr, + a(a + 1)r3]s;
—afvs; + (a+1)s3ln —v(a+ p+ 1)rsy g
{; &+ aB + B)s? + alvs; + (a + 1)s3]s;
+3v@+u+1)s3}p
- a[(ﬁ +3aB+1a®)n +La(a+ 1)rs + lavns?
— a{a[VSz + (a+1)s3]r + v(a + U+ Dns}s
§ ((X + U+ 1)((1')’1 +}lr2)52 +3 7 Dxx
+ % ((X =+ ﬁ)sl xx + 7 V52, xx + ( + 1)53,an
(9
— [px

ey = H{[qx + (@ + B)six + VS2.x + (@ +1)s34]p
+(@+Prix+vrx+ (a+1)r4q

+[(a+B)gx + (@ +2aB + B)si.x

+avsy x + ala+1)s3 x|n

—[(a+B)px + (& +2aB + )1«

+avry x +a(a+1)rs x$

+ V(@ + asyx + (@4 p+ 1)s24]1

—V[px+anx+ (a+u+1)ryls;

+ (a+1)(gx + as1x)rs — (@4 1)(px + ar x)ss}-

Let us further adopt the enlarged Lax matrices

yim — M(V[m], Vl[m]’ Vz[m]7 V3[m]) eg,

where V" is defined as in (3.8) and

m>0, (3.27)
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m— A"Wy),, m=>o0, (3.28)

which means that A, ; are chosen as zero.
Then, the m-th enlarged zero curvature equation

U,, = vim — [T, vim) (3.29)

gives rise to

U, = V" — [U, vin],

U, = Vi — (U, V"] — [Uy, VI — a(U;, V™),

Une, = V3 - v. v = UV - aUn v
— U, V"] = (U, V"],

Us.q, = VI — (U V"] — B[UL V™) — a[U;, V3"
—V[U2, V"] — [Us, V] — a(Us, V™).

All above systems of equations determine a hierarchy of
coupling systems for the AKNS equations:

Ds,,
qt,
rl‘,tm Km(u)
_ S1, tm = S m(u7 Ul)
u = = K u) = ’

" m(®) Sy, m (U, tr, )
52t S3,m (U, up, Up, U3)

3ty

L S3,tm |
[ —2byi1 ]
2Cm11
_me+l
_ _zi}zl , m=>o0. (3.31)
281

—Zf,;,/H

| 281 |

It is direct to check that all members in (3.31) with m > 2
provide nonlinear tri-integrable couplings for the AKNS
equations. The first nonlinear tri-integrable coupling sys-
tem having four subsystems reads

ptz = _2b3a qtz = 2C3;
e = —2f3, Sit = 283;
1t - f3/ 1,6 B g3,‘ (332)
N, =—2f3, St = 283;
r3,tz = _2f3//7 537 t, — 2g3//7

where bs, 3, f5, g3, f§, &, f and g{ are defined as
before.
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3.3 Hamiltonian structures

In order to establish Hamiltonian structures for the pre-
sented tri-integrable couplings in (3.31), we apply the
variational identity [12, 24]:

6 (/oU 0 oUu
21/ _ vy 9w/ %Y
5aJ<aA,W>dx YA <aa’W>' (3.33)

To construct symmetric and ad-invariant bilinear forms
on g conveniently, we first transform the semi-direct sum
g into a vector form. Define a mapping

0:§—R% A~ (ay,...,an), (3.34)
where
A =M(A,A,A3,A4) €3,
AG5iia (i
Ai:{“ 3’1}, 1<i<a (3.35)
ai —azi-2

This mapping ¢ induces a Lie algebraic structure on R,
isomorphic to the matrix Lie algebra g. The correspond-

ing Lie bracket |-, -] on R can be computed as follows
[a,b]" =a"R(b), a=(a,...,an)",
b=(by,... . bp)" e R2 (3.36)
where
R(b) = M(Ry, R, R5,R,),
0 2bsi.y —2bs;
Ri=| by —2bya, O |, 1<i<4 (3.37)
—bsi_1 0 2bs3;i_)

This Lie algebra (R', [, ]) is isomorphic to the matrix Lie
algebra g, and the mapping o, defined by (3.34), is a Lie
algebra isomorphism between the two Lie algebras.
A bilinear form on R can be defined by

{a,by = a’Fb, (3.38)
where F is a constant matrix (actually, F = ({e;, ;)51
where ey, ..., e, are the standard basis of R'?). The sym-
metric property

{a,b) = <b,ay (3.39)

requires that

FT=F. (3.40)
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Under this symmetric condition, the ad-invariance prop-

erty

<a,[b,c]y ={[a,b], c) (3.41)
equivalently requires that
F(R(b))" = —R(b)F, be R (3.42)

This matrix equation with an arbitrary b leads to a linear
system of equations on the elements of the matrix F.
Solving the resulting system tells

m n; 13 Ny
Fo|Mm aptpn, any o oan,
15 ans unz+vn, 0
Ny ang 0 0
2 0 0
®|0 0 1], (3.43)
010

where n;, 1 <i < 4, are arbitrary constants and ® is the
Kronecker product. Now, the corresponding bilinear form
on the semi-direct sum g is given as follows:

(A,B); = {0(A),0(B)>gr = (a1,-..,an)F(bi,...,bp)"
= (2a1b; + axbs + asby)n,

+ 2ayby + azbg + asbs + 2a,b; + 2aasb,
+ asbs + aasbg + agh, + aa6b5)n2
+ (2a1b; + azby + asbg + 2aa,b; + aasbg
+ aagbg + 2a;b; + 2aazb, + 2}1617b7 + aghs
+ aagbe + pasbg + ash, + aashs + pasbg)n;
+ (2a1byo + azbrz + asby + 2aasbyo + 2Bas b,
+ Basbe + aasby; + Pagbs + aaghy + 2vazb;
+ vagby + vagbg + 2aaiob, + 2a,0by

+ aanbe + anbs + aanbs + anb2)n,, (3.44)
where
A= 0‘1((a17 Ce 7012))T Eg,
B=0Y((b,....bp)) g (3.45)

Owing to the isomorphism of o, the bilinear form
(3.44) is also symmetric and ad-invariant:

<A7B>§ = <BvA>§7

But this kind of bilinear forms is not of Killing type, since
the matrix Lie algebra g is not semisimple.
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A bilinear form, defined by (3.44), is non-degenerate
if and only if the determinant of F is not zero, i.e.,

det(F) = —16n,°(a’n, — an, *ﬂ’h)g
X (un; + Wla)3 # 0. (3.47)
Therefore, we can choose n;, 1,, n; and n, such that
det(F) is non-zero to get non-degenerate bilinear forms
over g.
It is now direct to compute that

(W, Up>g = —2an, — 2en, — 2e'n; — 2e"n,,,

and

cny +8n+8'ns+8"n,
by + fn, +f'm3 +f"n,
ag'n; + cn, + (an, + pn,)g +ag'n,
bn, + af'ny + af "ny, + (an, + Pn,) f
cns + (uns +vn,)g' + agns
bn; 4 ansf + (uns +vn,,)f’
agn, +cn,
L bn, +afn, |

Furthermore, since we have [11]:

Ad S
Y= _i a 1n|<W7 W>‘7
we can obtain y = 0. Thus, the corresponding variational
identity becomes

EJzamHnl + 2emitly + 265,471 + 2654410 dx
bu m
CmMy + 8mMy + 8z + Smlls
bty + filla + foulls + s
AgM5 + Cmlly + (@1 + BNl )8m + A1,
bnn, + afus + afyny + (an, + Bg) fin
Cmll; + (M3 + VN4)8p + A8mll3
buns + afmnz + (Mn3 +vn,) fir
agmMy, + CmMy
L bty + afmny, i

Consequently, we obtain a Hamiltonian structure for the
hierarchy (3.31) of tri-integrable couplings:

, (3.48)

with the Hamiltonian operator
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-1

m P ! My
j— N, an,+pBn, ans an,
N3 ans uns+v, O
My any 0 0
®|° 2 (3.49)
2 0 '
and the Hamiltonian functionals
7 — Jzamﬂ’h + 2emi2M, + 25, o5 + 2 o, dx
o m+1 ’
m=0. (3.50)
3.4 Liouville integrability
The recursion relation
Kp=®Kn1, m=>1, (3.51)

generated from (3.6), (3.23), (3.24) and (3.25), tells that
the recursion operator ® (see [25] for definition) reads

® — d)
0] 0 0 0
O O+ ad 0 0
D @+ah . (352)
CDZ ach D+ aCD1 + }.l(Dz 0
CD3 ﬁCD] + aCD3 vd, D + ad,

where @ is given as in (3.10) and

[ no'g no 'p
o +(p+ar)o's; +(p+an)o'n
1= )
—5107 g —507p
| —(g+as)o's; —(qg+as)o'n
I (01 =+ ]11’2)()_152 (91 + }lrz)a_lrz
o +1,0 (g +as;) 410 (p+an)
) —
—(6+us2)07's;  —(6:+ ps2)o 7'
| =520 (g +as)  —s07'(p+an)
[ 9167153 + 9367151 91(371)’3 + 936717'1
+vd s, + 1307 Yg, +vRo i+ r07p
(D3 == I
*9267153 — 94()7131 *02671@ — 64()711’1
| —vs07's; —5307'q,  —vs0 ', —s307'p
in which
6p=p+arn, 6,=q+as,
0; = ar; + Pry, 0, = ass + Bs;.
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It is direct but lengthy to show by Maple that @ is
hereditary [26], i.e., it satisfies

@' (0)[DK]S — DD’ () [K]S
= @' (a)[®SIK — ©D'(u1)[S|K (3.53)

for all enlarged vector fields K and S; and that J and
M = ®J constitutes a Hamiltonian pair [27], i.e., any lin-
ear combination N of J and M satisfies

J(K)TN’(H) INS|Tdx + cycle(R,5,T) =0 (3.54)

for all enlarged vector fields K, S and T. Therefore,
the hierarchy (3.31) of tri-integrable couplings is bi-
Hamiltonian (see, e.g., [27, 28]), and so, it is Liouville
integrable. In particular, we have

(R, Ko := R (8)[Kr] — K. (@)[Kn] = 0, mon >0, (3.55)
and

L 5Ty \ - 87,
(T, T} = J( = )] ldc=0, mn=0. (356)

3.5 Canonical forms of matrix Lie algebras

Let M = M(A,A,, A3, A,) be defined by (2.9) in Section
2.2. We would like to derive canonical forms of all matrix
Lie algebras consisting of such matrices M by (2.9) asso-
ciated with four arbitrary constants a, 8, 4 and v, which
determine equivalent classes of integrable couplings.

Case 1: a« # O and u # O:

Under a similarity transformation

1 -z 0 &
0O uy —-a %
P=10 0 o 11 (3.57)
\4
0O O 1 ¥

we can simplify M as follows:

PMP!
Aq 0 0 0
_ 0 A +aA; ﬁ}lAz —avAs +auA, 0
|0 0 Ay +ak, 0
0 0 0 A1 —+ aAz —+ }lA3

(3.58)
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Upon resetting entries, we can show that this kind of
enlarged spectral matrices yields tri-integrable couplings
of the following type

=K(u),
Ut = 51(111),
Uyt = Sy(ug, Uy),

( (3.59)
us ¢ = S3(u3),

of which the first and fourth subsystems are separated.

Case2: a #0and yu =0:

Under a similarity transformation

1 -1 0 £
P= 0 1. 00 , (3.60)
0O 0 1 0
0O 0 O 1
we can simplify M as follows:
Aq 0 0 0
_ 0 A+ ah; aAs BA; + aA,
PMP! = 3.61
0 0 A+ aA; VA3 ( )
0 0 0 Ar + ah,

Similarly upon resetting entries, we can show that
this kind of enlarged spectral matrices engenders tri-
integrable couplings of the following type

= K(u),
U ¢ = 81(11 )
3.62
Ut = Sz(u ) ( )
us ¢ = S3(ur, Uz, U3),
of which the first subsystem is separated.
Case3:a=0and u #0:
Under a similarity transformation
-4 0 1 0
0O 1 0 O
P=14 0 0 1| (3.63)
1
0 0, &
we can simplify M as follows:
Al —],lAz VA3 — ],lA4 0
_ 0 A BA; 0
PMP! = 3.64
0 0 Ay 0 ( )
0 0 0 A1 + ]lAg
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Upon resetting entries, we can show that this kind of
enlarged spectral matrices yields tri-integrable couplings
of the following type

ur = K(u),

Uyt = 81(11,111)7

U ¢ = Sa(u, uy, uz),
us ¢ = S3(u3),

(3.65)

of which the fourth subsystem is separated.

Case 4:a=u=0:

In this case, we have an interesting matrix Lie algebra
consisting of the following block matrices

A A A5 Ay
0 A 0 B4
0 0 A1 VA3
0 0o 0 A4

M = M(Ay, Ay, A, Ay) = (3.66)

Similarly upon resetting entries, we can show that this
kind of enlarged spectral matrices generates tri-integrable
couplings of the following type

ur = K(u),
uye = S1(u, uy),

’ 3.67
Uyt = So(u, uy), ( )

us ¢ = S3(u, uy, U, uz),

of which the third subsystem does not depend on the
second subvector u; of dependent variables.

Since the similarity transformation does not change
zero curvature equations, the first three cases lead to
some classes of tri-integrable couplings which can be
decomposed into integrable couplings or bi-integrable
couplings plus separated integrable systems. However,
the fourth one yields a class of specific tri-integrable
couplings, and provides an answer to a question about
the coupling system

us = K(u),
UL[ = Sl(u7u1),
Uyt = Sr(u,up),

(3.68)

raised in [29]: Is there any Hamiltonian structure behind
this coupling system? Our results show that by adding
one more subsystem, one can build a bigger integrable
coupling being Hamiltonian as a whole.
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4 Conclusions and remarks

We created a class of matrix loop algebras consisting of
4 x 4 block matrices to generate tri-integrable couplings,
and successfully constructed a hierarchy of tri-integrable
couplings for the AKNS equations, which possesses a
bi-Hamiltonian structure. The presented matrix loop
algebras served as a beginning point to construct tri-
integrable couplings and their canonical forms were ana-
lyzed in detail. The whole construction scheme can be
used to the other existing soliton hierarchies such as the
KdV hierarchy, the Dirac hierarchy and the Kaup-Newell
hierarchy.

Together with bi-integrable couplings, tri-integrable
couplings provide us with insightful thoughts about
general structures of integrable systems with multi-
components. It will be very helpful in building an ex-
haustive list of integrable systems to collect more exam-
ples of integrable couplings. Multi-integrable couplings
yield diverse recursion operators in block matrix form.
The mathematical structures behind integrable couplings
are rich and interesting [30].

There are many other interesting questions on
integrable couplings. For instance, what other non-
semisimple matrix loop algebras can one begin with, to
generate integrable couplings? It is known that Hamilto-
nian structures exist for the perturbation systems [31, 32,
33, 34], but some enlarged spectral matrices do not yield
any non-degenerate bilinear forms over the associated
matrix loop algebras required in the variational identi-
ties [29, 35]. Are there any criteria which guarantee
the existence of Hamiltonian structures for bi- or tri-
integrable couplings? How can one compute solution
groups for integrable couplings, either by symmetry con-
straints as did for the perturbation systems [36, 37] or
by Darboux transformations engendered through moving
frames [38]?
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