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Through the Hirota bilinear formulation, a (2 + 1)-dimensional combined fourth-order

nonlinear equation is proposed, which possesses lump solutions. Two classes of lump

solutions are presented explicitly in terms of the coefficients in the combined nonlinear
equation. A set of examples of equations is provided to show the diversity of the consid-

ered combined nonlinear equation, together with three-dimensional plots, x-curves and

y-curves of two specific lump solutions in two cases of the combined equation.
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1. Introduction

The description of the laws of physics changing over time and space is usually

expressed in terms of partial differential equations (PDEs). For the vast majority

of nonlinear problems in mathematics and physical sciences, the involved PDEs

cannot be solved through analytical methods. Exactly solvable PDEs are often

constant-coefficient and linear. Nevertheless, soliton theory provides a few working
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approaches to nonlinear PDEs,1–3 and one of them is the Hirota bilinear approach

to soliton solutions, historically developed for integrable equations.4,5

Soliton solutions are analytic and exponentially localized in all directions in time

and space. Within the Hirota bilinear formulation, a (2 + 1)-dimensional PDE with

a dependent variable u is connected with a Hirota bilinear differential equation

P (Dx, Dy, Dt)f · f = 0 ,

where P is a polynomial and Dx, Dy and Dt are Hirota’s bilinear derivatives. The

link is often taken as one of the logarithmic derivative transformations:

u = 2(ln f)x, u = 2(ln f)xx .

Soliton solutions can then be formulated as follows:

f =
∑
µ=0,1

exp

 N∑
i=1

µiξi +
∑
i<j

µiµjaij

 ,

ξi = kix+ liy − ωit+ ξi,0, 1 ≤ i ≤ N ,

where
∑
µ=0,1 denotes the sum over all possibilities for µ1, µ2, . . . , µN taking either

0 or 1, the phase shifts are defined by

eaij = −P (ki − kj , li − lj , ωj − ωi)
P (ki + kj , li + lj , ωj + ωi)

, 1 ≤ i < j ≤ N ,

with ki, li and ωi, 1 ≤ i ≤ N, satisfying the corresponding dispersion relation, and

ξi,0, 1 ≤ i ≤ N, in the wave variables being arbitrary phase shifts.

Lump solutions are a class of rational function solutions which are localized in

all directions in space, which originated from solving (2 + 1)-dimensional integrable

equations (see, e.g. Refs. 6, 7, 8). Long wave limits of N -soliton solutions can pro-

duce special lumps as envelope solutions.9 Many studies on (2 + 1)-dimensional

integrable equations domenstrate the remarkable richness of lump solutions (see,

e.g. Refs. 6 and 7), which can be used to describe diverse nonlinear wave phe-

nomena in engineering and physical sciences. The KPI equation possesses diverse

lump solutions (see, e.g. Ref. 10), among which are specific lump solutions derived

from N -soliton solutions.11 Other such integrable equations possessing lump so-

lutions contain the three-dimensional three-wave resonant interaction,12 the BKP

equation,13,14 the Davey–Stewartson equation II,9 the Ishimori-I equation,15 the

Kadomtsev–Petviashvili (KP) equation with a self-consistent source16 and the sec-

ond KP equation.17 A crucial step in the process of constructing lump solutions

is to determine positive quadratic function solutions to Hirota bilinear equations.6

One then gets lump solutions to nonlinear equations by the logarithmic derivative

transformations.

In this paper, we would like to consider a (2 + 1)-dimensional combined fourth-

order nonlinear equation which possesses diverse lump solutions. The Hirota bilinear

form is the starting point for our construction (see, e.g. Refs. 6, 7 and 18, 19,

2150160-2



March 25, 2021 10:36 MPLB S0217984921501608 page 3

A (2 + 1)-dimensional fourth-order nonlinear PDE

20 for other equations). We will propose a (2 + 1)-dimensional combined fourth-

order nonlinear equation which includes all linear second-order derivative terms

and possesses lump solutions. We will concisely present the expressions for the

parameters involved in lump solutions with Maple symbolic computations. For two

specially chosen nonlinear equations, three-dimensional plots, x-curves and y-curves

will be made for two specific lump solutions via Maple plot tools, to shed light on

the presented lump solutions. Together with conclusions, a few concluding remarks

will be given in Sec. 3.

2. A Fourth-Order Nonlinear PDE and Its Lump Solutions

2.1. A fourth-order nonlinear PDE in (2 + 1)-dimensions

We would like to consider a general combined fourth-order nonlinear equation in

(2 + 1)-dimensions as follows:

P (u) = (6uxuxx + uxxxx) + α[3(uxut)x + uxxxt] + β[3(uxuy)x + uxxxy]

+ γ1uyt + γ2uxx + γ3uxt + γ4uxy + γ5uyy + γ6utt = 0 , (2.1)

where the constants α, β and γi, 1 ≤ i ≤ 6, are arbitrary. The equation contains

three combinations of fourth-order derivative terms and all linear second-order

derivative terms. It is straightforward to see that it has a Hirota bilinear form21

B(f) = (D4
x + αD3

xDt + βD3
xDy + γ1DyDt

+ γ2D
2
x + γ3DxDt + γ4DxDy + γ5D

2
y + γ6D

2
t )f · f = 0 , (2.2)

under the logarithmic derivative transformation

u = 2(ln f)x =
2fx
f

. (2.3)

Precisely, we have the relation P (u) = (B(f)
f2 )x, where u and f satisfy the link (2.3).

Therefore, if f solves (2.2), then u determined by (2.3) will present a solution

to (2.1).

Particularly, on the one hand, when α = β = 0, γ3 = −γ5 = 1 and the other γ s

are zero, we obtain the potential KP equation in (2 + 1) dimensions

6uxuxx + uxxxx + uxt − uyy = 0 , (2.4)

which possesses lump solutions10 and is equivalent to the bilinear KP equation

(D4
x +DxDt −D2

y)f · f = 0 , (2.5)

under the logarithmic derivative transformation (2.3).

On the other hand, when α = 0, β = 1, γ3 = γ5 = 1 and the other γs are zero,

we obtain a generalized Bogoyavlensky–Konopelchenko equation:

6uxuxx + uxxxx + 3(uxuy)x + uxxxy + uxt + uyy = 0 , (2.6)
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which possesses a Hirota bilinear form

(D4
x +D3

xDy +DxDt +D2
y)f · f = 0 , (2.7)

under (2.3), and has lump solutions.22

2.2. Lump solutions

In this section, we are going to construct lump solutions to the (2 + 1)-dimensional

combined fourth-order nonlinear equation (2.1), through conducting symbolic com-

putations.

We begin with a search for positive quadratic solutions to the combined bilinear

equation (2.2):

f = (a1x+ a2y + a3t+ a4)2 + (a5x+ a6y + a7t+ a8)2 + a9, (2.8)

where ai, 1 ≤ i ≤ 9, are constant parameters to be determined, to determine lump

solutions for the combined nonlinear equation (2.1). There are two solutions situa-

tions for the combined nonlinear equation (2.1), which we can deal with by making

symbolic computations.

The first solution situation is associated with γ6 = 0. A direct symbolic compu-

tation provides us with a set of solutions for the parameters, which tells

a3 = − b1
(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2

,

a7 = − b2
(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2

,

a9 =
3(a21 + a25)(αb3 − βb4 − b5)

(a1a6 − a2a5)2(γ21γ2 − γ1γ3γ4 + γ23γ5)
,

(2.9)

with all arbitrary other as. The above five constants are determined by

b1 = [(a21a2 + 2a1a5a6 − a2a25)γ2 + a1(a22 + a26)γ4 + a2(a22 + a26)γ5]γ1

+ [a1(a21 + a25)γ2 + a2(a21 + a25)γ4 + (a1a
2
2 + 2a2a5a6 − a1a26)γ5]γ3 ,

b2 = [(−a21a6 + 2a1a2a5 + a25a6)γ2 + a5(a22 + a26)γ4 + a6(a22 + a26)γ5]γ1

+ [a5(a21 + a25)γ2 + a6(a21 + a25)γ4 + (−a22a5 + 2a1a2a6 + a5a
2
6)γ5]γ3 ,

b3 = (a21 + a25)(a1a2 + a5a6)(γ1γ2 + γ3γ4) + (a21 + a25)(a22 + a26)γ1γ4

+ (a21 + a25)2γ2γ3 + (a22 + a26)(a1a2 + a5a6)γ1γ5 + [(a1a2 + a5a6)2

− (a1a6 − a2a5)2]γ3γ5 ,

b4 = (a1a2 + a5a6)[(a2γ1 + a1γ3)2 + (a6γ1 + a5γ3)2] ,

b5 = (a21 + a25)[(a22 + a26)γ21 + 2(a1a2 + a5a6)γ1γ3 + (a21 + a25)γ23 ] .
(2.10)
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The second solution situation is associated with γ5 = 0. Similarly, a direct

symbolic computation presents a set of solutions for the parameters, which tells

a2 = − c1
(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2

,

a6 = − c2
(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2

,

a9 = − 3(a21 + a25)(αc3 − βc4 + c5)

(a1a7 − a3a5)2(γ21γ2 − γ1γ3γ4 + γ24γ6)
,

(2.11)

and all arbitrary other as. The above five constants are determined by

c1 = [(a21a3 + 2a1a5a7 − a3a25)γ2 + a1(a23 + a27)γ3 + a3(a23 + a27)γ6]γ1

+ [a1(a21 + a25)γ2 + a3(a21 + a25)γ3 + (a1a
2
3 + 2a3a5a7 − a1a27)γ6]γ4 ,

c2 = [(−a21a7 + 2 a1a3a5 + a25a7)γ2 + a5(a23 + a27)γ3 + a7(a23 + a27)γ6]γ1

+ [a5(a21 + a25)γ2 + a7(a21 + a25)γ3 + (−a23a5 + 2 a1a3a7 + a5a
2
7)γ6]γ4 ,

c3 = (a1a3 + a5a7)[(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2] ,

c4 = (a21 + a25)(a1a3 + a5a7)(γ1γ2 + γ3γ4) + (a21 + a25)(a23 + a27)γ1γ3

+ (a21 + a25)2γ2γ4 + (a23 + a27)(a1a3 + a5a7)γ1γ6

+ [(a1a3 + a5a7)2 − (a1a7 − a3a5)2]γ4γ6 ,

c5 = (a21 + a25)[(a23 + a27)γ21 + 2(a1a3 + a5a7)γ1γ4 + (a21 + a25)γ24 ] .

(2.12)

All those expressions in the above formulas (2.9)–(2.12) have been presented

through some simplification with the computer algebra system Maple.

For the second solution situation associated with γ5 = 0, one needs to check the

conditions on the parameters, under which the presented solutions become lumps.

Obviously, one has

a1a6 − a2a5 =

(a1a7 − a3a5)[(a21 + a25)(γ1γ2 − γ3γ4)− (a23 + a27)γ1γ6

− 2(a1a3 + a5a7)γ4γ6]

(a3γ1 + a1γ4)2 + (a7γ1 + a5γ4)2
.

Therefore, one knows that a1a6 − a2a5 6= 0 if and only if{
a1a7 − a3a5 6= 0, γ21 + γ24 6= 0 ,

(a21 + a25)(γ1γ2 − γ3γ4)− (a23 + a27)γ1γ6 − 2(a1a3 + a5a7)γ4γ6 6= 0 ,
(2.13)

which guarantees, together with a9 > 0, that the corresponding set of the parame-

ters in (2.11) will generate lump solutions to the combined nonlinear equation (2.1).

2.3. Abundant examples of equations

We would like to present abundant illustrative examples of the considered combined

nonlinear equation (2.1), which possess lumps, according to three categories of

combinations of fourth-order derivative terms.
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2.3.1. The case of α = β = 0

When α = β = 0, the combined bilinear equation (2.2) reduces to

(D4
x + γ1DyDt + γ2D

2
x + γ3DxDt + γ4DxDy + γ5D

2
y + γ6D

2
t )f · f = 0 . (2.14)

When γ1γ2 6= 0, or γ3γ5 6= 0, or γ4γ6 6= 0, or γ1γ3γ4 6= 0, or γ1γ3γ5 6= 0, or

γ1γ4γ6 6= 0, and the corresponding other γs are zero, the bilinear equation (2.14)

gives six corresponding (2+1)-dimensional reduced nonlinear equations which pos-

sess lump solutions, based on the two presented classes of exact solutions by (2.9)

and (2.11).

A special lump solution by (2.9) in the first subcase with γ1 = −γ2 = 1 will be

plotted in the next subsection. The second subcase with γ3 = −γ5 = 1 is just the

potential KP equation (2.4), as mentioned previously.

Generally, the second subcase and the third subcase, and the fifth subcase and

the sixth subcase become each other, under an exchange of t and y, γ3 and γ4 and

γ5 and γ6.

2.3.2. The case of α = β = 1

When α = β = 1, the combined bilinear equation (2.2) reduces to

(D4
x +D3

xDt +D3
xDy + γ1DyDt + γ2D

2
x + γ3DxDt + γ4DxDy

+ γ5D
2
y + γ6D

2
t )f · f = 0 . (2.15)

When γ1γ2 6= 0, or γ3γ5 6= 0, or γ4γ6 6= 0, or γ1γ3γ4 6= 0, or γ1γ3γ5 6= 0, or

γ1γ4γ6 6= 0, and the corresponding other γs are zero, the bilinear equation (2.15)

similarly gives six corresponding (2 + 1)-dimensional reduced nonlinear equations

which possess lump solutions, based on the two presented classes of exact solutions

by (2.9) and (2.11).

Again, the second subcase and the third subcase, and the fifth subcase and the

sixth subcase, become each other, under an exchange of t and y, γ3 and γ4 and γ5
and γ6.

A special lump solution by (2.11) in the fourth subcase with γ1 = −γ3 = γ4 = 1

will be plotted in the next section.

2.3.3. The case of α = 1 and β = 0

When α = 1 and β = 0, the combined bilinear equation (2.2) reduces to

(D4
x +D3

xDt + γ1DyDt + γ2D
2
x + γ3DxDt + γ4DxDy + γ5D

2
y + γ6D

2
t )f · f = 0 .

(2.16)

When γ1γ2 6= 0, or γ3γ5 6= 0, or γ4γ6 6= 0, or γ1γ3γ4 6= 0, or γ1γ3γ5 6= 0, or

γ1γ4γ6 6= 0, and the corresponding other γs are zero, the bilinear equation (2.16)

also gives six corresponding (2 + 1)-dimensional reduced nonlinear equations which
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possess lump solutions, based on the two presented classes of exact solutions by

(2.9) and (2.11).

The third subcase with γ4 = γ6 = 1 produces the generalized Bogoyavlensky–

Konopelchenko equation (2.6), after an exchange of t and y. Another example is

the following (2 + 1)-dimensional combined nonlinear equation:

6uxuxx + uxxxx + 3(uxut)x + uxxxt + +uyt + uxt + uyy = 0, (2.17)

which corresponds to the fifth subcase with γ1 = γ3 = γ5 = 1.

2.3.4. The case of α = 0 and β = 1

This case is covered by the previous case under an exchange of t and y.

2.4. Plots of two specific lumps

For the first case, particularly taking

γ1 = −γ2 = 1, γ3 = γ4 = γ5 = γ6 = 0 , (2.18)

we obtain a special fourth-order nonlinear equation as follows:

6uxuxx + uxxxx + uyt − uxx = 0 , (2.19)

which has a Hirota bilinear form

(D4
x +DyDt −D2

x)f · f = 0 , (2.20)

under the logarithmic derivative transformation (2.3). Associated with

a1 = 1, a2 = −2, a4 = 10, a5 = 3, a6 = −1, a8 = 5 , (2.21)

which, together with (2.9), leads to

a3 = 2, a7 = −4, a9 = 60 , (2.22)

the logarithmic derivative transformation (2.3) with f defined by (2.8) provides the

following lump solution to the special fourth-order nonlinear equation (2.19):

u1 =
20(−2t+ 2x− y + 5)

(2t+ x− 2y + 10)2 + (−4t+ 3x− y + 5)2 + 60
. (2.23)

A three-dimensional plot, x-curves and y-curves of this lump solution at t = 0 are

made via Maple plot tools, to shed light on the characteristic of the presented lump

solutions, as shown in Fig. 1.

For the second case, specially taking

γ1 = γ3 = γ4 = 1, γ2 = γ5 = γ6 = 0 , (2.24)

we obtain another special fourth-order nonlinear equation as follows:

6uxuxx + uxxxx + 3(uxut)x + uxxxt + 3(uxuy)x

2150160-7
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Fig. 1. Profiles of u1 at t = 0: 3d plot (left), x-curves (middle) and y-curves (right).

+uxxxy + uyt + uxt + uxy = 0 , (2.25)

which has a Hirota bilinear form

(D4
x +D3

xDt +D3
xDy +DyDt +DxDt +DxDy)f · f = 0 , (2.26)

under the logarithmic derivative transformation (2.3). Associated with

a1 = 3, a3 = −1, a4 = 3, a5 = 1, a7 = 3, a8 = 6 , (2.27)

which, together with (2.11), leads to

a2 = −1, a6 = −2, a9 = 30 , (2.28)

the logarithmic derivative transformation (2.3) with f defined by (2.8) provides the

following lump solution to the special fourth-order nonlinear equation (2.25):

u2 =
20(2x− y + 3)

(−t+ 3x− y + 3)2 + (3t+ x− 2y + 6)2 + 30
. (2.29)

A three-dimensional plot, x-curves and y-curves of this lump solution at t = 1 are

made via Maple plot tools, to shed light on the characteristic of the presented lump

solutions, as shown in Fig. 2.

We point out that all the exact lump solutions generated above add valuable

insights into the existing theories on soliton solutions and dromion-type solutions,

Fig. 2. Profiles of u2 at t = 1: 3d plot (left), x-curves (middle) and y-curves (right).
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established with various efficient techniques such as the Hirota perturbation ap-

proach, the Riemann–Hilbert approach, the Wronskian technique, symmetry re-

ductions and symmetry constraints (see, e.g. Refs. 23–34).

3. Concluding Remarks

Within the Hirota bilinear formulation, a (2+1)-dimensional combined fourth-order

nonlinear equation was proposed and its lump solutions were constructed explicitly

via Maple symbolic computations. Three-dimensional plots, x-curves and y-curves

of two special lump solutions in two cases of the combined nonlinear equation were

also made by Maple plot tools to shed light on the presented lump solutions. Our re-

sults provide novel examples of (2+1)-dimensional nonlinear equations that possess

lump solution structures, and enrich the existing theory of lumps and solitons.

We remark that the second and third combinations of fourth-order derivative

terms can be emerged together into one new combination in the considered nonlinear

model, but the transformed linear second-order derivative terms will be different as

well as solvability situations will be changed. The combined nonlinear equation (2.1)

has a symmetric characteristic for the independent variables t and y, and we have

two situations of lump solutions. Indeed, the linear terms utt and uyy have a serious

effect on the determination of lump solutions with symbolic computations. Some

general considerations have been made on the existence of lump solutions for the

Hirota bilinear case6 and the generalized bilinear cases.7

There is a large class of nonlinear equations which possess lump solutions, and

it contains (2 + 1)-dimensional generalized KP, BKP, KP–Boussinesq and Sawada–

Kotera equations.35–38 Some recent studies also show the strikingly high richness

of lump solutions to linear partial differential equations39,40 and nonlinear partial

differential equations in (2 + 1)-dimensions (see, e.g. Refs. 41–46) and (3 + 1) di-

mensions (see, e.g. Refs. 47–50). Diverse lump solutions enrich the existing solution

theories which originated from different kinds of combinations (see, e.g. Refs. 51–

54), and can lead to abundant Lie–Bäcklund symmetries, which can also be used to

determine conservation laws by symmetries and adjoint symmetries.55–57 Moreover,

diverse interaction solutions38 have been reported for different integrable equations

in (2+1) dimensions, including lump–soliton interaction solutions (see, e.g. Refs. 58–

60) and lump–kink interaction solutions (see, e.g. Refs. 61–63). All those show the

diversity of exact solutions and the difficulty to get them for nonlinear PDEs.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of

China (11975145 and 11972291), and the Natural Science Foundation for Colleges

and Universities in Jiangsu Province (17 KJB 110020).

2150160-9



March 25, 2021 10:36 MPLB S0217984921501608 page 10

W. X. Ma et al.

References

1. M. J. Ablowitz and H. Segur, Solitons and Inverse Scattering Transform (SIAM,
Philadelphia, 1981).

2. S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory of Solitons:
The Inverse Scattering Method (Consultants Bureau, New York, 1984).

3. P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University
Press, Cambridge, 1989).

4. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, New
York, 2004).

5. P. J. Caudrey, Philos. Trans. R. Soc. A 369 (2011) 1215.
6. W. X. Ma and Y. Zhou, J. Differential Equations 264 (2018) 2633.
7. W. X. Ma, Y. Zhou and R. Dougherty, Int. J. Mod. Phys. B 30 (2016) 1640018.
8. W. Tan, H. P. Dai, Z. D. Dai and W. Y. Zhong, Pramana J. Phys. 89 (2017) 77.
9. J. Satsuma and M. J. Ablowitz, J. Math. Phys. 20 (1979) 1496.

10. W. X. Ma, Phys. Lett. A 379 (2015) 1975.
11. S. V. Manakov, V. E. Zakharov, L. A. Bordag and V. B. Matveev, Phys. Lett. A 63

(1977) 205.
12. D. J. Kaup, J. Math. Phys. 22 (1981) 1176.
13. C. R. Gilson and J. J. C. Nimmo, Phys. Lett. A 147 (1990) 472.
14. J. Y. Yang and W. X. Ma, Int. J. Mod. Phys. B 30 (2016) 1640028.
15. K. Imai, Prog. Theor. Phys. 98 (1997) 1013.
16. X. L. Yong, W. X. Ma, Y. H. Huang and Y. Liu, Comput. Math. Appl. 75 (2018)

3414.
17. W. X. Ma and L. Q. Zhang, Pramana J. Phys. 94 (2020) 43.
18. Y. Zhou and W. X. Ma, Comput. Math. Appl. 73 (2017) 1697.
19. X. Lu, W. X. Ma, Y. Zhou and C. M. Khalique, Comput. Math. Appl. 71 (2016) 1560.
20. K. Hosseini, W. X. Ma, R. Ansari, M. Mirzazadeh, R. Pouyanmehr and F. Samadani,

Phys. Scr. 95 (2020) 065208.
21. J. Hietarinta, in Integrability of Nonlinear Systems, eds. Y. Kosmann-Schwarzbach,

B. Grammaticos and K. M. Tamizhmani (Springer, Berlin, Heidelberg, 1997),
pp. 95–103.

22. S. T. Chen and W. X. Ma, Front. Math. China 13 (2018) 525.
23. Y. Zhou, S. Manukure and W. X. Ma, Commun. Nonlinear Sci. Numer. Simulat. 68

(2019) 56.
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