
February 4, 2020 14:59 MPLB S0217984920500499 page 1

Modern Physics Letters B

Vol. 34, No. 3 (2020) 2050049 (15 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0217984920500499

Application of a new hybrid method for solving singular fractional

Lane–Emden-type equations in astrophysics

Wen-Xiu Ma

Department of Mathematics, Zhejiang Normal University,

Jinhua 321004, Zhejiang, China

Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
Department of Mathematics and Statistics,

University of South Florida, Tampa, FL 33620, USA

College of Mathematics and Systems Science,
Shandong University of Science and Technology,

Qingdao 266590, Shandong, China

International Institute for Symmetry Analysis and Mathematical Modelling,
Department of Mathematical Sciences, North-West University,

Mafikeng Campus, Mmabatho 2735, South Africa

Mohamed M. Mousa†,‡,§ and Mohamed R. Ali†

†Department of Mathematics, Benha Faculty of Engineering,

Benha University, Benha, Egypt
‡Department of Mathematics,

College of Sciences and Human Studies at Hotat Sudair,

Majmaah University, Majmaah 11952, Saudi Arabia
§mm.mousa@mu.edu.sa

Received 27 July 2019

Revised 17 September 2019
Accepted 25 September 2019

Published 19 December 2019

In this research, a hybrid numerical method combining cosine and sine (CAS) wavelets
and Green’s function approach is created to acquire the arrangements of fractional Lane–

Emden Problem. The suggested methodology for detecting the solution of nonlinear
equations dependent on variations of germinal algorithms is applied on nonlinear frac-

tional Lane–Emden Problem under some smooth conditions and results in an iterative

scheme of nonlinear equations Because of its efficiency, this technique is applied on a
large variety of equations from the boundary value problems to the optimization. This
paper is extending the suggested methodology technique for fractional Lane–Emden

Problem. Moreover, the feature of the present novel method is utilized to convert the
problem under observance into a system of algebraic equations that can be illuminated

by suitable algorithms. A rapprochement of results has likewise been obtained using the
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present strategy and those reported using other techniques seem to indicate the preci-

sion and computational efficiency to establish the suitability of the Green-CAS wavelet
method.

Keywords: New hybrid method; Lane–Emden type equations; nonlinear ODE; colloca-

tion method; Newton’s iterative techniques.

1. Introduction

The Lane–Emden Problem (LEP) is a common differential equation in scientific

material science. In astronomy, LEP is a dimensionless type of Poisson’s equation

for the gravitational capability of basic models of a star.1 Because of its peculiari

conduct at the beginning, it is numerically tested to take care of the Lane–Emden

issue, similar to the distinct, direct and nonlinear introductory esteemed issues in

quantum mechanics and astronomy. This paper manages the numerical solution

for the singular fractional LEP utilizing Green’s function-CAS wavelet method.

A specified function can be spoken to insofar as several fundamental functions are

limited both in area and scale utilizing wavelets. Favorable circumstances of wavelet

examination incorporate the limit of completing nearby investigation to reveal flag

highlights, for example, patterns, limits, and discontinuities which distinct exam-

ination strategies may neglect to recognize.2 The multiresolution examination of

wavelet change makes it a useful, accurate asset for an assortment of capacities and

administrators. Wavelet investigation results in inadequate frameworks which thus

empower quick calculation. Such beneficial parts of wavelet investigation make it an

incredible logical procedure to manage differential conditions in which the arrange-

ment may progress toward becoming misshaped because of singularities or sharp

changes.

There has been much research on wavelet-based technique for the integer order

LEP lately. Disbanding the LEP utilizing Chebyshev wavelet operational matrix

was contemplated in Ref. 3. Reference 4 got the arrangements for the popularize

LEP utilizing Haar wavelet estimation. Moreover, Ref. 5, utilized ultraspherical

wavelets for unraveling such equations. Kazemi Nasab et al.6 proposed Chebyshev

wavelet finite difference technique for unraveling nonlinear Lane–Emden conditions

emerging in astronomy. Laguerre wavelets was utilized in Ref. 7. Sacrificial arrange-

ment strategies for fractional differential equations (FDE) developed over the last

decade include HAM,8 VIM,9 FDM for FPDE,10 ADM,11 FDTM12 and BPOM.13

Bhrawy et al.14 employed HAM to find nominal sacrificial arrangements for FDE.

For fractional LEP, the LSM was applied in Ref. 6. In Ref. 15, distributing ar-

rangements of morse index of the fractional LEP are given. Laplace transform

with Chebyshev collocation method to solve FPDE is given in Ref. 16. Latterly,

MDTM was suggested in Ref. 2 to acquire the numerical arrangements of the sin-

gular fractional LEP. Akgul et al.17 suggested the kernel method to investigate the

singular fractional LEP. The operational matrices of fractional order integration for

the Basis function were investigated in Ref. 18 to disband the differential equations

of fractional order.
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In this paper, we deem the singular fractional LEP shaped by

Dαν(x) +
L

xα−β
Dβν(x) + g(x, ν(x)) = h(x), (1.1)

submissive to the attaching types of initial or boundary conditions:

I : ν(0) = A1, ν(1) = B1, (1.2)

II : ν(0) = A2, ν′(1) = B2. (1.3)

The organization of this paper is as follows. In Sec. 2, some basic definitions of

fractional calculus are given. In Sec. 3, we present the Orthonormal CAS wavelets

scheme. The procedure of representation of Green-CAS method to discuss the nu-

merical arrangements to the FLE equation with boundary conditions is demon-

strated in Sec. 4 and finally in Sec. 5, the numerical experiments are presented that

illustrate the efficiency of the proposed method.

2. Definitions and Bases

There exist more definitions for fraction derivatives — the more pulper definition is

the Riemann–Liouville (RL) approach. The (RL) approach to fractional calculus,

the concept of fractional integral of order α(α > 0), is an indigenous effect of

Cauchy’s formula for regenerate integrals, f(t) to an unpretentious convolution.

This integral can be considered like19

Jnf(t) =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ)dτ, t > 0, n ∈ Z+, (2.1)

where n is positive integer number and inserting the positive real number α, the

Riemann–Liouville fractional-order integral is calculated as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0, α ∈ R+, (2.2)

the inverse of our factor Dα is

Jαtβ =
Γ(β + 1)

Γ(β + 1 + α)
tβ+α, γ > −1, t > 0. (2.3)

Figure 1 shows the effect of the variety of the values for β and α of (2.3). By using

(2.3) and Taylor series, the fractional-order integral (Jα) for cos(t) and sin(t) is

presented by

Jα cos(t) =
∞∑
β=0

(−1)γ
t2γ+α

Γ(2β + α+ 1)
Jα sin(t) =

∞∑
β=0

(−1)β
t2β+1+α

Γ(2β + α+ 2)
.

(2.4)

Figure 2 shows the effect of fractional-order integral (Jα) on cos(t) for distinct

estimates of fractional order α.
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Fig. 1. (Color online) Distinguish assessments of γ for Jαtγ .

Fig. 2. (Color online) Distinguish assessments of α for Jα cos t.

Definition 2.1. Using (2.1) and (2.2), we present some preliminary definitions

for Riemann–Liouville (RL) fractional derivative which can be considered as

follows19–21:

Dα
t f =


dnf(t)

dtn
if n = α, n ∈ N,

dn

dtn
In−αf(t) if 0 ≤ n− 1 < α < n, n ∈ N.

(2.5)
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If it exists, Dα
t is the total derivative of integer order α, (α > 0) and Inf(t) is the

RL fractional integral of order n which is defined as

In−αf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1f(s)ds, n > 0, (2.6)

where Γ(n− α) is the Gamma function.

Definition 2.2. The RL fractional partial derivative is given by

∂αt =


∂nf

∂tn
, n = α,

1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− s)n−α−1f(s, x)ds, 0 ≤ n− 1 < α < n,

(2.7)

where ∂αt is the partial derivative of integer order n.

The RL fractional derivative (Dα) for basic assignments is as follows:

Dα cos(t) =
∞∑
β=0

(−1)β
t2β−α

Γ(2β − α+ 1)
, (2.8)

Dα sin(t) =

∞∑
β=0

(−1)β
t2β+1−α

Γ(2β − α+ 2)
. (2.9)

Figure 3 shows the effect of RL fractional derivative (Dα) on sin(t) with the

fraction order for different values for α.

Fig. 3. (Color online) The RL fractional derivative Dα cos t for different values of α.
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3. CAS Wavelet

Wavelet permission is a new area in applied mathematics. Wavelets are individual

sort of family of functions structured from specie transformations, namely trans-

lation and dilation of a single function called the mother wavelet, which can be

adequate for the CAS wavelet form:

Ψa,b(t) = |a|
−1
2 Ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0 . (3.1)

If the parameter |a| < 1, the wavelet (3.1) corresponds to higher frequencies having

smaller backup in time domain and becomes a compressed form of mother wavelet.

On the contrary, when |a| > 1, the wavelet has larger backup in time domain

and corresponds to lower frequencies. Discretizing the parameters via a = a−k0 ,

b = nb0a
−k
0 , a0 > 1, b0 > 1

Ψk,n(t) = |a0|
k
2 Ψ(ak0t− nb0) , (3.2)

where Ψk,n(t) yields a subsistence for L2(R). If a0 = 2 and b0 = 1, then these

wavelets for all integers k and n yield an orthonormal basis. The orthonormal CAS

wavelets are illustrated on the range [0, 1] through

Ψk,n(x) =


2
k
2 CASm(2kx− n+ 1), x ∈

[
n− 1

2k
,
n

2k

]
,

0, otherwise,

(3.3)

where CASm(x) = cos(2mϕx) + sin(2mϕx) and n = 0, 1, 2, 3, . . . , 2k − 1, is the

translation parameter. The non-negative integer k is the level of resolution and m

is any integer.

ν(x) =

2k−1∑
n=0

M∑
m=−M

cnmψnm(x) = ATΨ(x) , (3.4)

where A and Ψ are two vectors given as

A = [a0,−M , a0,−M+1, . . . , a0,M , a1,−M , a1,−M+1, . . . , a1,M , . . . ,

a2k−1,−M , a2k−1,−M+1, . . . , a2k−1,M ]T , (3.5)

Ψ(x) = [ψ0,−M , ψ0,−M+1, . . . , ψ0,M , ψ1,−M , ψ1,−M+1, . . . , ψ1,M , . . . ,

ψ2k−1,−M , ψ2k−1,−M+1, . . . , ψ2k−1,M ]T . (3.6)

4. Numerical Steps to FLEP

The fractional Green’s function is exploited in Ref. 23 design to FDE consist-

ing of derivatives of order kα only, where k ∈ z. We propose a new method

for disbanding nonlinear ordinary fractional boundary value problems numerically,

2050049-6



February 4, 2020 14:59 MPLB S0217984920500499 page 7

Application of a new hybrid method for solving singular fractional Lane–Emden-type

called the Green-CAS technique. In general, this method does not require the use

of operational matrix Pαm,n and the operational matrix related to boundary value

problems for FLEP with Dirichlet boundary conditions and for mixed boundary

conditions. However, for some cases, Green-CAS is utilized along with operational

matrices. The investigation shows that the method is even more efficacious against

some of the relevant numerical methods discussed in previous studies. Interestingly,

accuracy is not compromised, rather enhanced by using the Green-CAS method for

disbanding fractional boundary value problems.

In this part, we described the procedure of implementation of the proposed

method to converge the numerical arrangements to the FLE equations with bound-

ary conditions. But, in some FDEs, we have utilized the proposed method along

with the CAS wavelet operational matrix.

Status 1: Using Eq. (1.1) with the boundary condition (1.2), we have

Dαν(x) =
2k−1∑
n=0

M∑
m=−M

cnmΨnm(x) . (4.1)

Stratifying the integral operator on the two parts of (4.1), we have

ν(x) =

2k−1∑
n=0

M∑
m=−M

cnm(IαΨnm(x)) + xS1 + S2 . (4.2)

Stratifying the boundary conditions (1.2), we have

S2 = A1, S1 = B1 −A1 −
2k−1∑
n=0

M∑
m=−M

cnm(IαΨnm(1)) . (4.3)

So,

ν(x) =
2k−1∑
n=0

M∑
m=−M

cnm

×





∫ 1

0

1

Γ(α)
((x− ζ)α−1 − x(1− ζ)α−1)Ψnm(ζ)dζ, 0 ≤ ζ ≤ x

∫ 1

0

− x

Γ(α)
((1− ζ)α−1)Ψnm(ζ)dζ, x ≤ ζ ≤ 1


+xB1 − xA1 +A1 . (4.4)
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And, the fractional derivative of ν(x) with the mixed boundary conditions can

be composed as

D
β
ν(x) =

2k−1∑
n=0

M∑
m=−M

cnm

×





(∫ 1

0

1

Γ(α− β)

(
(x− ζ)α−β−1 −

x1−β

Γ(α)Γ(2− β)
(1− c)α−1

))
Ψnm(ζ)dζ, 0 ≤ ζ ≤ x

(∫ 1

0

−
x1−β

Γ(α)Γ(2− β)
(1− ζ)α−1

)
Ψnm(ζ)dζ, x ≤ ζ ≤ 1



+
x1−β

Γ(2− β)
B1 −

x1−β

Γ(2− β)
A1.

(4.5)

Posture (4.1)–(4.5) in (1.1) result,

2k−1∑
n=0

M∑
m=−M

cnmΨnm(x) +
L

(2i−1)α−β

2m

×


2k−1∑
n=0

M∑
m=−M

cnm





(∫ 1

0

1

Γ(α− β)

(
(x− ζ)α−β−1 −

x1−β

Γ(α)Γ(2 − β)
(1 − ζ)α−1

)
Ψnm(ζ)dζ) , 0 ≤ ζ ≤ x

(∫ 1

0
−

x1−β

Γ(α)Γ(2 − β)
(1 − ζ)α−1Ψnm(ζ)dζ

)
, x ≤ ζ ≤ 1



+
x1−β

Γ(2 − β)
B1 −

x1−β

Γ(2 − β)
A1

)
+ g

x, 2k−1∑
n=0

M∑
m=−M

cnm

×



∫ 1

0

1

Γ(α)
((x− ζ)α−1 − x(1 − ζ)α−1)Ψnm(ζ)dζ, 0 ≤ ζ ≤ x

∫ 1

0
−

x

Γ(α)
((1 − ζ)α−1)Ψnm(ζ)dζ, x ≤ ζ ≤ 1




+xB2 − xA2 +A2 =

2k−1∑
n=0

M∑
m=−M

hnmΨnm(x) . (4.6)

Disband (4.6) at the collocation point xi = (2i−1)
2m where i = 1, 2, 3, . . . ,m. Then

we can solve the system of nonlinear equations to obtain the unknown constant

coefficients.

Status 2: In fact, we can use Eq. (1.1) with mixed boundary condition (1.3), we

have

S2 = A2, S1 = B2 −
2k−1∑
n=0

M∑
m=−M

cnm(Iα−1Ψnm(1)) .

2050049-8
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Then,

ν(x) =

2k−1∑
n=0

M∑
m=−M

cnm

×




∫ 1

0

1

Γ(α)

(
(x− ζ)α−1 − x

Γ(α− 1)
(1 − ζ)α−2

)
Ψnm(ζ)dζ, 0 ≤ ζ ≤ x(∫ 1

0
− x

Γ(α− 1)
(1 − ζ)α−2dζ

)
, x ≤ ζ ≤ 1


+xB2 +A2 .

(4.7)

And, the fractional derivative of ν(x) with the mixed boundary conditions can be

composed as

Dβν(x) =

2k−1∑
n=0

M∑
m=−M

cnm

×





(∫ 1

0

1

Γ(α− β)

(
(x− ζ)α−β−1 −

x1−β

Γ(α− 1)Γ(2 − β)
(1 − ζ)α−2

))
Ψnm(ζ)dζ ,

0 ≤ ζ ≤ x ,

(∫ 1

0
−

x1−β

Γ(α− 1)Γ(2 − β)
(1 − ζ)α−2

)
Ψnm(ζ) dζ, x ≤ ζ ≤ 1



+
x1−β

Γ(2 − β)
B2 .

(4.8)

Posture (4.7)–(4.8) in (1.1) result,

2k−1∑
n=0

M∑
m=−M

cnmΨnm(x) +
L

(2i−1)α−β

2m

×
2k−1∑
n=0

M∑
m=−M

cnm

×





(∫ 1

0

1

Γ(α− β)

(
(x− ζ)α−β−1 −

x1−β

Γ(α− 1)Γ(2 − β)
(1 − ζ)α−2

))
Ψnm(ζ) dζ ,

0 ≤ ζ ≤ x ,(∫ 1

0
−

x1−β

Γ(α− 1)Γ(2 − β)
(1 − ζ)α−2

)
Ψnm(ζ) dζ, x ≤ ζ ≤ 1



+
x1−β

Γ(2 − β)
B2 + g(x

2k−1∑
n=0

M∑
m=−M

cnm

2050049-9
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×



∫ 1

0

1

Γ(α)

(
(x− ζ)α−1 −

x

Γ(α− 1)
(1 − ζ)α−2

)
Ψnm(ζ) dζ, 0 ≤ ζ ≤ x∫ 1

0
−

x

Γ(α− 1)
((1 − ζ)α−2)dζ, x ≤ ζ ≤ 1



+xB2 +A2) =

2k−1∑
n=0

M∑
m=−M

hnmΨnm(x) .

(4.9)

Disband (4.9) at the collocation point xi = (2i−1)
2m , where i = 1, 2, 3, . . . ,m. Then

we can solve the system of nonlinear equations to obtain the unknown constant

coefficients.

Next, we arrange Eqs. (4.6) and (4.9) that yield m̂ nonlinear equations which

can be illuminated for the obscure vector C by Newton’s iterative procedure. Due

to their significant importance, numerous numerical and analytical strategies have

been created for these issues hence it is not sensible to deduce its exact solution

by an algebraic operation, for instance, iterative numerical solvers dependent on

Newton’s method. It is notable that the underlying estimates for Newton’s itera-

tive system are imperative. A strategy can be utilized for picking the underlying

estimates.

Fig. 4. (Color online) Schematic depiction of the suggested methodology for detecting the solu-

tion of nonlinear equations dependent on variations of germinal algorithms.
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yn = xn −
2y(xn)y′(xn)

2y′2(xn)− y(xn)y′(xn)
, (4.10)

xn+1 = xn −
2(y(xn)+y(yn)) y

′
(xn))

2y′2(xn)− (y(xn) + y(yn))y′(xn)
. (4.11)

The nonexclusive flow outline strategy is given in Fig. 4.

Since the correct arrangement of this issue isn’t known, from the figure, it man-

ifests that we get accurate results by Green CAS at k = 5, M = 5 in contrast with

different techniques. We will get a more accurate result by increasing the value

of k,M .

5. Demonstrative Models

In this branch, fractional LEP of several modality is disbanded to establish the

relevance and accuracy of the chosen method in settling singular fractional LEP

cases.

Example 5.1. Suppose the subsequent nonlinear fractional spherical isothermal

LEP-type equation

Dαν(x) +
2

xα−β
Dβν(x) = e−ν(x), 0 ≤ x ≤ 1 , (5.1)

is submissive to the boundary conditions

u(0) = 1, u′(0) = 0 . (5.2)

We utilized the technique in Ref. 24 to acquire the exact solution of this prob-

lem when α = 1.5, β = 0.75 as ν(x) = 0.2368456765x1.5 − 0.02568610429x3 +

0.005004915254x4.5 − 0.001292847099x6 + 0:0004026307151x7.5. We employ the

Green-CAS technique with distinct estimates of M and k for disbanding this prob-

lem. In Table 1, we compare the absolute errors of ν(x) at distinct points.

Table 1. Arbitrage of absolute errors in Example 5.1 for α = 1.5, β = 0.75.

Green’s function — CWFD in Ref. 26 Green’s function — CAS CWFD in Ref. 26

x CAS at M = 7, k = 2 at M = 7, k = 2 at M = 10, k = 2 at M = 10, k = 2

0.1 1.3 × 10−4 1.3 × 10−4 3.5 × 10−7 4.3 × 10−5

0.2 1.3 × 10−4 1.3 × 10−4 4.4 × 10−6 3.3 × 10−5

0.3 9.8 × 10−5 9.8 × 10−5 2.1 × 10−7 3.9 × 10−6

0.4 6.4 × 10−5 6.4 × 10−5 1.4 × 10−6 3.4 × 10−5

0.5 2.8 × 10−5 2.8 × 10−5 2.6 × 10−6 3.3 × 10−5

0.6 6.3 × 10−4 6.3 × 10−4 7.1 × 10−5 1.6 × 10−4

0.7 1.0 × 10−3 1.0 × 10−3 4.2 × 10−5 2.1 × 10−4

0.8 1.4 × 10−3 1.4 × 10−3 3.4 × 10−5 1.5 × 10−4

0.9 1.9 × 10−3 1.9 × 10−3 6.5 × 10−6 8.2 × 10−6
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Fig. 5. (Color online) Arbitrage of ν(x) for M = 12, k = 2 and different values of α and β for

Example 5.2.

Example 5.2. Suppose the attaching nonlinear fractional LEP

Dαν(x) +
2

xα−β
Dβν(x) + sinh(ν(x)) = 0, 0 ≤ x ≤ 1 , (5.3)

is submissive to the boundary conditions

ν(0) = 1, ν′(0) = 0 . (5.4)

Wazwaz et al.25 employed ADM to acquire a series solution of (5.3), when α = 2,

as follows:

ν(x) = 1− (e2 − 1)x2

12e
+

(e4 − 1)x4

480e2
− (2e6 + 3e2 − 3e4 − 2)x6

30240e3

+
(61e8 − 104e6 + 104e2 − 61)x8

26127360e4
.

We apply the novel method introduced in the previous section with M = 12, k = 2

and solve this problem with distinct estimates of α and β. It can be seen from

Fig. 5 that the solution of the fractional differential equation approaches that of

the integer-order differential equation.

Example 5.3. Suppose the attaching linear fractional LEP

Dαν(x) +
2

xα−β
Dβν(x) =

0.76129u(x)

ν(x) + 0.03119
, 0 ≤ x ≤ 1 , (5.5)

is submissive to the boundary conditions

ν′(0) = 0, 5ν(1) + ν′(1) = 5 . (5.6)

2050049-12
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Table 2. Comparison of approximate solutions α = 1.9, 1.7 and β = 0.9, 0.7 for Example 5.3.

Green’s function — CAS CWFD at Green’s function — CAS CWFD at
x α = 1.9, β = 0.9 α = 1.9, β = 0.9 α = 1.7, β = 0.7 α = 1.7, β = 0.7

0.1 0.816514521141765 0.816514521141764 0.790555364088862 0.790555364088865
0.2 0.821123173757562 0.821123173757560 0.797659339431067 0.797659339431068

0.3 0.828429359689671 0.828429359689670 0.807825369576836 0.807825369576831

0.4 0.838326176512754 0.838326176512752 0.820716305422745 0.820716305422740
0.5 0.850740215946675 0.850740215946676 0.836100384725764 0.836100384725762

0.6 0.865614149890048 0.865614149890049 0.853839766598643 0.853839766598646

0.7 0.882901208768501 0.882901208768500 0.873779197287925 0.873779197287922
0.8 0.902571377092314 0.902571377092311 0.895829358309582 0.895829358309583

0.9 0.9245982832360296 0.924598283236026 0.919913436181024 0.919913436181026

There is no exact solution for this problem even for the integer case. We solve this

problem using CWFD. In Table 2, the estimates for distinct fractional estimates of

α and β at distinct points are tabulated. We make arbitrage between the results

obtained by the CWFD method and Green’s function — CAS method.

Table 2 demonstrates that our outcomes are near the outcomes revealed in

other papers and show the materialness and precision of the proposed technique.

It may very well be plainly seen from Table 2, as α and β approach 2 and 1, the

arrangement of fragmentary differential condition ways to deal with that of the

number request differential equation.

Example 5.4. Suppose the attaching nonlinear singular fractional two-point

BVP7

Dαν(x) +
1

xα−β
Dβν(x) +

ν2(x)

x(1− x)

= 4 arctanx+
1 + 3x2

x(1 + x2)
+

(1 + x2)2 arctan2(x)

x(1− x)
, 0 < x < 1, (5.7)

Fig. 6. The outline of ν(x) for distinct rate of α and β for Example 5.5.

2050049-13
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with the BC.

ν(0) + ν′(0) = 1, ν(1) + ν′(1) = 4.14159265358979. (5.8)

The analytic solution of the above case at α = 2 and β = 1 is specified as ν(x) =

(1+x2) arctan(x). The schemes of ν(x) at several estimates of α and β are sketched

in Fig. 6.

6. Conclusion

A novel method named Green-CAS method has been developed for disbanding

fractional differential equations with boundary conditions. The method exploits

CAS wavelets as primary underlying tool. Principally, the method is utilized to solve

linear differential equations. The suggested methodology for detecting the solution

of nonlinear equations dependent on variations of germinal algorithms has been

employed to find results for otherwise nonlinear equations as well. The method has

likewise been analyzed for convergence. Some numerical applications have also been

documented. Their results and comparisons against previously employed methods

have been inscribed in tables and graphs. It can be concluded that Green-CAS

method is not just computationally efficient but relatively precise and accurate

as well.
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