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Abstract

A set of coupled conditions consisting of differential-difference equations is presented for

Casorati determinants to solve the Toda lattice equation. One class of the resulting conditions

leads to an approach for constructing complexiton solutions to the Toda lattice equation

through the Casoratian formulation. An analysis is made for solving the resulting system of

differential-difference equations, thereby providing the general solution yielding eigenfunc-

tions required for forming complexitons. Moreover, a feasible way is presented to compute the

required eigenfunctions, along with examples of real complexitons of lower order.
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1. Introduction

Many integrable equations, both continuous and discrete, have soliton solutions,
which are exponentially decaying at spatial infinity. The existence of a three-soliton
solution often indicates the integrability of the equation under investigation. The
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Toda lattice equation is one of the well-known lattice model equations exhibiting the
soliton phenomenon [1]. Its multi-soliton solutions can be expressed through
Casorati determinants [2–4], and its approximate soliton solutions have been
explored around an exact soliton solution [5].
There are also positons and negatons to the Toda lattice equation, which can be

presented by generalized Casorati determinants [6,7], and solitons are just a specific
class of negatons. Positons and negatons were first presented for the Korteweg-de
Vries (KdV) equation (see, for example, Refs. [8,9]). All three classes of solutions—
solitons, positons and negatons—are associated with real eigenvalues of the
associated spectral problems. Moreover, the absolute values of soliton and negaton
solutions contain one kind of elementary transcendental functions—exponential
functions of the space variables, and the absolute values of positon solutions contain
another kind of elementary transcendental functions—trigonometrical functions of
the space variables.
A challenging problem in solution theory is how to construct a different kind of

explicit exact solutions to soliton equations, whose absolute values involve both
exponential and trigonometrical functions of the space variables and which are
associated with the complex eigenvalues of the associated spectral problems. The
absolute values do not need to be taken if solutions are real, as in the case of the
KdV equation; but do need to be taken if solutions are complex, as in the case of the
nonlinear Schrödinger equation. Exact solutions of such kind are called complexiton
solutions and have been presented for the KdV equation [10]. Note that interaction
solutions between positons and negatons can also contain both exponential and
trigonometrical functions of the space variables, but they are associated with real
eigenvalues of the associated spectral problems and thus they are not examples of so-
called complexitons. Although these solutions belong to a broader class of exact
solutions, they can be well formulated once three kinds of basic solutions—negatons,
positons and complexitons—are presented [11].
Therefore, for the Toda lattice equation, the basic question for us is whether there

exist complexiton solutions and how one can construct complexitons if they exist.
This is the topic that we would like to address in this paper. It is known that the
Casoratian formulation is a powerful technique to generate explicit solutions of
integrable lattice equations [3,4]. Solutions determined by the Casorati determinant
technique and generalized Casorati determinant technique are called Casorati
determinant solutions and generalized Casorati determinant solutions, respectively
[7]. For the Toda lattice equation, solitons are examples of Casorati determinant
solutions [2,3], and positons and nagatons are examples of generalized Casorati
determinant solutions [7].
In this paper, we would like to show that there exist complexiton solutions of the

Toda lattice equation through the Casoratian formulation. Inspired by its Lax pair,
a set of coupled conditions will be presented for guaranteeing Casorati determinants
to be solutions of the Toda lattice equation in Section 2, and this yields an approach
to a broad class of Casorati determinant solutions and generalized Casorati
determinant solutions of the Toda lattice equation. The resulting coupled conditions
will be used to construct real complexiton solutions to the Toda lattice equation in
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Section 3. Moreover, a feasible way will be proposed to construct sets of special
eigenfunctions satisfying the required conditions in Section 4, together with concrete
examples of real complexitons of lower order. A few concluding remarks will be
given in Section 5.
2. Casoratian formulation

Let us consider the Toda lattice equation in the following form:

_an ¼ anðbn�1 � bnÞ; _bn ¼ an � anþ1 ; ð2:1Þ

where (also in the rest of the paper) the dot denotes the differentiation with respect to
the time variable t. This Toda lattice equation can be reduced to the periodic case
ðanþN ¼ an and bnþN ¼ bn for some positive integer N) and the finite case (only
finitely many an and bn are non-zero). It is also more general than the square form of
the Toda lattice equation [12]:

_an ¼ anðbn � bnþ1Þ; _bn ¼ 2ða2n�1 � a2nÞ ; ð2:2Þ

because there is a solution transformation

ðanðtÞ; bnðtÞÞ ! ððan�1ð
1
2

tÞÞ2; bnð
1
2

tÞÞ

from the square form (2.2) to the non-square form (2.1). On the other hand, the
Toda lattice equation (2.1) is the isospectral ðlt ¼ 0Þ compatibility condition of the
following spectral problems:

_fðnÞ ¼ bn�1fðnÞ þ fðn � 1Þ ; (2.3a)

anfðn þ 1Þ þ bn�1fðnÞ þ fðn � 1Þ ¼ lfðnÞ ; (2.3b)

where l is a spectral parameter. Namely, it has the Lax representation:

_L ¼ ½A;L� ; ð2:4Þ

where the Lax pair is defined by

Lnm ¼ andnþ1;m þ bn�1dnm þ dn�1;m ; (2.5a)

Anm ¼ dnþ1;m þ bn�1dnm : (2.5b)

Under an dependent variable transformation

an ¼ 1þ
d2

dt2
log tn ¼

tnþ1tn�1

t2n
; (2.6a)

bn ¼
d

dt
log

tn

tnþ1
¼

_tntnþ1 � tn _tnþ1

tntnþ1
; (2.6b)
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we have

_an � anðbn�1 � bnÞ ¼ 0 ;

_bn � an þ anþ1 ¼
€tntn � ð_tnÞ

2
� tnþ1tn�1 þ t2n
t2n

�
€tnþ1tnþ1 � ð_tnþ1Þ

2
� tnþ2tn þ t2nþ1

t2nþ1

and thus the Toda lattice equation (2.1) can be satisfied if we require the bilinear
equation

1

2
D2

t � 2 sinh2
Dn

2

� �� �
tn 	 tn ¼ €tntn � ð_tnÞ

2
� tnþ1tn�1 þ t2n ¼ 0 ; ð2:7Þ

where Dt and Dn are Hirota’s operators. This is called the bilinear Toda lattice
equation. Through the dependent variable transformation (2.6a,b), multi-soliton
solutions of the Toda lattice equation (2.1) can be presented by the Casorati
determinant [3,13]:

Casðf1ðnÞ;f2ðnÞ; . . . ;fN ðnÞÞ

¼

f1ðnÞ f1ðn þ 1Þ 	 	 	 f1ðn þ N � 1Þ

f2ðnÞ f2ðn þ 1Þ 	 	 	 f2ðn þ N � 1Þ

..

. ..
. . .

. ..
.

fN ðnÞ fN ðn þ 1Þ 	 	 	 fN ðn þ N � 1Þ

������������

������������
; NX1 ; (2.8)

provided that the functions fiðnÞ, 1pipN, solve

fiðn þ 1Þ þ fiðn � 1Þ ¼ lifiðnÞ; ðfiðnÞÞt ¼ fiðn � 1Þ; 1pipN ; ð2:9Þ

where li ¼ 2 coshðkiÞ and the ki’s are arbitrary distinct real constants. The
conditions in (2.9) correspond to the case of the spectral problems (2.3a,b) with
an ¼ 1 and bn ¼ 0, a special solution to the Toda lattice equation (2.1). This also
implies that the Casorati determinant solution is actually resulted from the Darboux
transformation of the Toda lattice equation.
In what follows, we would like to show that the Casorati determinant presents a

very broad class of exact solutions to the Toda lattice equation (2.1), among which
solitons, positons and negatons are special examples. The following theorem is a
generalization to the cases of solitons, positons and negatons.

Theorem 2.1. Assume that a set of functions fiðnÞ ¼ fiðn; tÞ, 1pipN, solve a system

of differential-difference equations

fiðn þ 1Þ þ fiðn � 1Þ ¼
XN

j¼1

lijfjðnÞ; 1pipN ; ð2:10Þ

qtfiðnÞ ¼ fiðn þ dÞ; 1pipN ; ð2:11Þ
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where d ¼ 
1 and the lij ’s are arbitrary constants. Then the Casorati determinant

tn ¼ Casðf1ðnÞ; . . . ;fNðnÞÞ

gives a solution to the bilinear Toda lattice equation (2.7), and further the

dependent variable transformation (2.6) presents a solution to the Toda lattice

equation (2.1).

Proof. We only prove the result under (2.11) with d ¼ �1. The other case with d ¼ 1
is completely similar. Assuming that

FN ðnÞ ¼ ðf1ðnÞ; . . . ;fN ðnÞÞ
T ; ð2:12Þ

we adopt the notation

ji1; i2; . . . ; iN j :¼ detðFNðn þ i1Þ;FNðn þ i2Þ; . . . ;FN ðn þ iN ÞÞ; (2.13a)

k::l :¼ k; k þ 1; . . . ; l ; (2.13b)

where i1; i2; . . . ; iN and kol are arbitrary integers. For example, we have

j0::N � 2;Nj ¼ detðFNðnÞ;FNðn þ 1Þ; . . . ;FN ðn þ N � 2Þ;FNðn þ NÞÞ ;

j � 1; 1::N � 1j ¼ detðFN ðn � 1Þ;FNðn þ 1Þ;FN ðn þ 2Þ; . . . ;FN ðn þ N � 1ÞÞ :

Directly from the conditions in (2.11) with d ¼ �1, we obtain the expressions for
the first two derivatives of the t-function tn with respect to t:

_tn ¼ j � 1; 1::N � 1j; €tn ¼ j � 2; 1::N � 1j þ j � 1; 0; 2::N � 1j : ð2:14Þ

On the other hand, we have the general result for any determinant jAijj:

XN

k¼1

jAijjk ¼
XN

k¼1

jAijj
k ; ð2:15Þ

where jAijjk denotes the determinant jAijj with its kth row operated by the operator
S:

ðSfÞðnÞ :¼ fðn þ 1Þ þ fðn � 1Þ ð2:16Þ

and jAijj
k denotes the determinant jAijj with its kth column operated by the operator

S. Applying (2.15) to two determinants j0::N � 1j and j � 1; 1::N � 1j and using the
conditions in (2.10), we obtain the determinant identities:

XN

i¼1

liij0::N � 1j ¼ j0::N � 2;Nj þ j � 1; 1::N � 1j ; ð2:17Þ

XN

i¼1

liij � 1; 1::N � 1j ¼ j0::N � 1j þ j � 2; 1::N � 1j

þ j � 1; 0; 2::N � 1j þ j � 1; 1::N � 2;Nj : (2.18)
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Now, making use of (2.14), (2.17) and (2.18), we find that the left-hand side of
(2.7) gives the terms

€tntn � ð_tnÞ
2
� tnþ1tn�1 þ t2n

¼ ðj � 2; 1::N � 1j þ j � 1; 0; 2::N � 1jÞj0::N � 1j � j � 1; 1::N � 1j2

� j1::Njj � 1::N � 2j þ j0::N � 1j2

¼
XN

i¼1

liij � 1; 1::N � 1j � j0::N � 1j � j � 1; 1::N � 2;Nj

 !
j0::N � 1j

�
XN

i¼1

liij0::N � 1j � j0::N � 2;Nj

 !
j � 1; 1::N � 1j

� j1::Njj � 1::N � 2j þ j0::N � 1j2

¼ �j � 1; 1::N � 2;Njj0::N � 1j þ j0::N � 2;Njj � 1; 1::N � 1j

� j1::Njj � 1::N � 2j:

The last sum above is the Laplace expansion by N � N minors of the following
2N � 2N determinant:

where ; indicates the N � ðN � 2Þ zero matrix. This can be easily shown to be
identically zero. Thus, the solution is verified. &

Note that the first half conditions in (2.9) are just a special case of the conditions in
(2.10). Therefore, we can expect to get more solutions to the Toda lattice equation
(2.1) by solving the system of differential-difference equations, (2.10) and (2.11), as
in the KdV case [11]. Moreover, the entire problem of constructing explicit solutions
is reduced to the problem of solving the system, (2.10) and (2.11).
The system of (2.10) and (2.11) can be compactly written as

ðSFNÞðnÞ � FN ðn þ 1Þ þ FNðn � 1Þ ¼ LFNðnÞ; ðFN ðnÞÞt ¼ FN ðn þ dÞ ;

ð2:19Þ

where FN is defined by (2.12) and

L :¼ ðlijÞN�N ð2:20Þ

is called the coefficient matrix of the system of (2.10) [or the system of (2.10) and
(2.11)]. Note that a constant similar transformation for the coefficient matrix L does
not change the resulting Casorati determinant solution to the Toda lattice equation
(2.1). Actually, if we have M ¼ P�1LP for some constant invertible matrix P, then
~FN ¼ PFN satisfies

ðS ~FNÞðnÞ � ~FN ðn þ 1Þ þ ~FNðn � 1Þ ¼ M ~FNðnÞ; ð ~FN ðnÞÞt ¼
~FN ðn þ dÞ :

ð2:21Þ
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Obviously, the dependent variable transformation (2.6a,b) leads to the same
Casorati determinant solutions from FN and ~FN . Therefore, by linear algebra, we
only need to consider the following two types of Jordan blocks of the coefficient
matrix L:

lj 0

1 lj

..

. . .
. . .

.

0 	 	 	 1 lj

2
66664

3
77775

kj�kj

; ð2:22Þ

Aj 0

I2 Aj

..

. . .
. . .

.

0 	 	 	 I2 Aj

2
66664

3
77775

lj�lj

; Aj ¼
aj �bj

bj aj

" #
; I2 ¼

1 0

0 1

� �
; ð2:23Þ

where lj, aj and bj40 are all real constants, and kj and lj are positive integers. The
first type of Jordan blocks has the real eigenvalue lj with algebraic multiplicity kj ,
and the second type of Jordan blocks has the complex eigenvalues lj;
 ¼ aj 
 bj i

with algebraic multiplicity lj .
The case of real eigenvalues corresponds to positons, nagatons and rational

solutions [7,14]. In what follows, we will focus on the case of complex eigenvalues to
present complexitons. We will show how to solve the system of differential-difference
equations, (2.10) and (2.11), in the case of complex eigenvalues such that the
Casoratian formulation leads to real complexiton solutions of the Toda lattice
equation.

3. Complexiton solutions

In order to construct complexitons, let us begin to solve the system of differential-
difference equations, (2.10) and (2.11), whose coefficient matrix consists of Jordan
blocks of the second type. Since all subsystems corresponding to Jordan blocks are
separated, it suffices to illustrate how to solve a system associated with one Jordan
block of the second type. Let us specify such a system as

ðSFÞðnÞ � Fðn þ 1Þ þ Fðn � 1Þ ¼ LFðnÞ; ðFðnÞÞt ¼ Fðn þ dÞ ; ð3:1Þ

where d ¼ 
1 and

F ¼

f1

f2

..

.

f2l�1

f2l

2
66666664

3
77777775
; L ¼

A 0

I2 A

..

. . .
. . .

.

0 	 	 	 I2 A

2
66664

3
77775

l�l

; A ¼
a �b

b a

� �
: ð3:2Þ
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If we introduce

l ¼ aþ bi; F k ¼ f2k�1 þ f2ki; 1pkpl ; ð3:3Þ

then system (3.1) is obviously equivalent to the following triangular system for all
Fk:

SF k ¼ lF k þ F k�1; ðFkðnÞÞt ¼ F kðn þ dÞ; 1pkpl ; ð3:4Þ

where F 0 ¼ 0.

Lemma 3.1. Let l be a complex number not equal 2 and d ¼ 
1. Then the

homogeneous system of differential-difference equations

ðSf ÞðnÞ � f ðn þ 1Þ þ f ðn � 1Þ ¼ lf ðnÞ; ðf ðnÞÞt ¼ f ðn þ dÞ ; ð3:5Þ

has its general solution

f ðl; c; dÞðnÞ � f ðnÞ ¼ conetod
þ do�neto�d

; ð3:6Þ

where o is defined by

l ¼ oþ o�1; i:e:; o2 � loþ 1 ¼ 0 ð3:7Þ

and c and d are arbitrary constants.

Proof. Note that the general solution to the linear difference equation

ðSf ÞðnÞ � f ðn þ 1Þ þ f ðn � 1Þ ¼ lf ðnÞ ¼ ðoþ o�1Þf ðnÞ ð3:8Þ

has two free parameters. Moreover, it is easy to show that f ðnÞ ¼ on and f ðnÞ ¼ o�n

are two solutions to (3.8), and they are linearly independent since la2. Hence, the
general solution to the difference equation (3.8) is given by

f ðnÞ ¼ c1ðtÞon þ d1ðtÞo�n ;

where c1 and d1 are two functions of t. On the other hand, the differential equation
ðf ðnÞÞt ¼ f ðn þ dÞ requires that

_c1 ¼ c1od; _d1 ¼ d1o�d

and thus we have

c1 ¼ cetod
; d1 ¼ deto�d

;

where c and d are arbitrary constants. Therefore, the general solution to the
differential-difference equation (3.5) is given by (3.6). The proof is finished. &

Remark. The condition l ¼ 2 is equivalent to o ¼ 1, and moreover, on and o�n are
linearly dependent if and only if o ¼ 1. Therefore, la2 is necessary for guaranteeing
the linear independence of on and o�n. Actually, the case of l ¼ 2 corresponds to
rational solutions [14].

Theorem 3.1. Let l be a complex number not equal 2 and d ¼ 
1. Suppose that

f ðl; c; dÞ is the general solution to (3.5), defined by (3.6), and for each 1pkpl, define

f k ¼ f ðl; ck; dkÞ with a pair of arbitrary constants ck and dk. Then the general solution
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to the triangular system of differential-difference equations (3.4) is given by

Fk ¼
Xk�1
p¼0

1

p!

qpf k�p

qlp ¼
Xk�1
p¼0

1

p!

qpf ðl; ck�p; dk�pÞ

qlp ; 1pkpl : ð3:9Þ

Proof. First, from (3.5), we have

Sf k ¼ lf k; ðf kðnÞÞt ¼ f kðn þ dÞ; 1pkpl :

Differentiating these equalities p times with respect to l, we obtain

S
1

p!

qpf k

qlp

� �
¼ l

1

p!

qpf k

qlp

� �
þ

1

ðp � 1Þ!

qp�1f k

qlp�1
; 1pkpl; pX1 ; (3.10a)

1

p!

qpf k

qlp

� �
ðnÞ

� �
t

¼
1

p!

qpf k

qlp

� �
ðn þ dÞ; 1pkpl; pX1 : (3.10b)

Second, note that the linear system (3.4) is triangular, and so we can solve the system
one by one from F1 through F l .
By Lemma 3.1, the general solution to the first subsystem for F1 in (3.4) can be

defined by f 1 with a pair of arbitrary constants c1 and d1. Now let 2pkpl (if l ¼ 1,
we are finished). Assume that we already solve the first k � 1 subsystems for Fp,
1pppk � 1. Then the kth subsystem for F k in (3.4) can be viewed as a non-
homogeneous linear system and thus its general solution is determined by

Fk ¼ Fk;h þ F k;s ;

where Fk;h is the general solution to the homogeneous counterpart of the
kth subsystem and F k;s is a special solution to the non-homogeneous kth sub-
system. Again by Lemma 3.1, the general solution Fk;h to the kth subsystem of (3.4)
can be defined by f k with a pair of arbitrary constants ck and dk. On the other
hand, by an inspection, a special solution Fk;s to the kth subsystem can be found
to be

Fk;s ¼
Xk�1
p¼1

1

p!

qpf k�p

qlp :

This can be proved by using (3.10a,b). Actually, we have

ðS � lÞFk;s ¼
Xk�1
p¼1

ðS � lÞ
1

p!

qpf k�p

qlp

� �

¼
Xk�1
p¼1

1

ðp � 1Þ!

qp�1f k�p

qlp�1

¼
Xk�2
p¼0

1

p!

qpf k�p�1

qlp ¼ F k�1 ;
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ðFk;sðnÞÞt ¼
Xk�1
p¼1

1

p!

qpf k�p

qlp

� �
ðnÞ

� �
t

¼
Xk�1
p¼1

1

p!

qpf k�p

qlp

� �
ðn þ dÞ ¼ F k;sðn þ dÞ :

Therefore, the above function Fk;s is a special solution to the kth subsystem. Then, it
follows that the general solution to the kth subsystem of (3.4) is given by

Fk ¼ Fk;h þ F k;s ¼ f k þ
Xk�1
p¼1

1

p!

qpf k�p

qlp ¼
Xk�1
p¼0

1

p!

qpf k�p

qlp :

Finally, an induction ensures that the general solution to system (3.4) is given by
(3.9). The proof is finished. &

Theorem 3.1 provides us with an approach for solving a system of differential-
difference equations, (2.10) and (2.11), whose coefficient matrix L consists of Jordan
blocks of the second type. Once we solve the system of (2.10) and (2.11), it follows
from Theorem 2.1 that the corresponding Casorati determinant gives us a solution to
the Toda lattice equation. If the coefficient matrix L consists of m Jordan blocks of
the second type in (2.23), then the Casorati determinant solution reads as

an ¼ 1þ
d2

dt2
log tn; bn ¼

d

dt
log

tn

tnþ1
(3.11a)

tn ¼ Casðf1ðnÞ; . . . ;f2l1
ðnÞ; 	 	 	 ;f2ðl1þ			þlm�1Þþ1

ðnÞ; . . . ;f2ðl1þ			þlmÞ
ðnÞÞ ; (3.11b)

where the involved eigenfunctions are determined by Eq. (3.9) in Theorem 3.1 with
lj ¼ aj þ bj i, 1pjpm.
In the following, we would like to show that the solutions defined by (3.11a,b) are

complexiton solutions. To this end, let us write

l ¼ 2 cosh m ¼ em þ e�m; m 2 C ð3:12Þ

and thus we can have

o ¼ em; m 2 C : ð3:13Þ

Note that while m goes over the complex field, l ¼ 2 cosh m will exhaust all complex
values, and thus the assumption (3.12) does not lose generality. Then by Lemma 3.1,
the general solution of system (3.5) is given by

f ðnÞ ¼ c expðmn þ t expðdmÞÞ þ d expð�mn þ t expð�dmÞÞ ; ð3:14Þ

where c and d are arbitrary constants. The other selection of o ¼ e�m leads to the
same solution of system (3.5). Now write

f ¼ f1 þ f2i; m ¼ a þ bi; a 2 R; ba0 2 R ð3:15Þ
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and assume that c and d are real constants but c2 þ d2a0 in order that fa0. Then,
we have

l ¼ aþ bi ¼ 2ðcosh a cos bÞ þ 2ðsinh a sin bÞi : ð3:16Þ

Moreover, system (3.5) becomes the following system:

f1ðn þ 1Þ þ f1ðn � 1Þ ¼ 2ðcosh a cos bÞf1ðnÞ � 2ðsinh a sin bÞf2ðnÞ ; (3.17a)

f2ðn þ 1Þ þ f2ðn � 1Þ ¼ 2ðsinh a sin bÞf1ðnÞ þ 2ðcosh a cos bÞf2ðnÞ ; (3.17b)

fjðnÞÞt ¼ fjðn þ dÞ; j ¼ 1; 2 (3.17c)

and its solution ðf1;f2Þ reads as

f1ðnÞ ¼ ðf1ða; b; c; dÞÞðnÞ :¼ Reðf ðnÞÞ

¼ cenaþteda cos db cosðnb þ teda sin dbÞ

þ de�naþte�da cos db cosðnb þ te�da sin dbÞ ; (3.18a)

f2ðnÞ ¼ ðf2ða; b; c; dÞÞðnÞ :¼ Imðf ðnÞÞ

¼ cenaþteda cos db sinðnb þ teda sin dbÞ

� de�naþte�da cos db sinðnb þ te�da sin dbÞ : (3.18b)

The initial set (2.10) of difference equations with the second type of Jordan blocks
[i.e., Jordan blocks in (2.23)] tells us that the solutions defined by (3.11a,b) are
associated with the complex eigenvalues of the associated spectral problem.
Expressions (3.18a,b) and (3.9) for the required eigenfunctions indicate that the
resulting real solutions contain both exponential and trigonometric functions of the
space variable n. Therefore, it follows that the solutions determined by (3.11a,b) are
real complexitons to the Toda lattice equation (2.1), which establishes the following
theorem.
Theorem 3.2. Let aj and bj, 1pjpm, be real numbers and bja0, 1pjpm. Then the

Toda lattice equation (2.1) has a class of real complexiton solutions determined by

formula (3.11a,b) and formula (3.9) with l ¼ lj ¼ aj þ bj i, 1pjpm.

A solution defined by (3.11a,b) is called an m-complexiton solutions (or simply, an
m-complexiton) of order ðl1 � 1; l2 � 1; . . . ; lm � 1Þ to the Toda lattice equation (2.1).
If lj ¼ 1, 1pjpm or m ¼ 1, we simply say an m-complexiton solution or a single
complexiton solution of order l1 � 1. Based on the expressions of eigenfunctions in
(3.9), we see that the order ðl1 � 1; l2 � 1; . . . ; lm � 1Þ of the complexiton reflect the
maximum orders of derivatives of eigenfunctions with respect to the corresponding
eigenvalues.
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4. Construction of examples

Theorems 2.1 and 3.1 provide a general solution procedure using a general set of
eigenfunctions. It is, however, easier to apply some other techniques to present
concrete complexitons.
The simplest way to get a special set of eigenfunctions required in complexitons is

to take only one term in expressions (3.9) for each Fk. This can be realized as follows.
We set

F2 ¼ ðf1;f2Þ
T

as before, and assume that f ¼ f1 þ f2i solves system (3.5) with l ¼ aþ bi. Then
the choice of ck ¼ dk ¼ 0; 2pkpl, presents a special set of eigenfunctions

FT
2 ðlÞ;

1

1!
qlFT

2 ðlÞ; . . . ;
1

ðl � 1Þ!
ql�1
l FT

2 ðlÞ
� �T

ð4:1Þ

to the system of (2.10) and (2.11) with the coefficient matrix L:

L ¼

A 0

I2 A

..

. . .
. . .

.

0 	 	 	 I2 A

2
66664

3
77775

l�l

; A ¼
a �b

b a

� �
:

Thus, a class of generalized Casorati determinant solutions to the Toda lattice
equation (2.1) can be generated from the pair of eigenfunctions F2 ¼ ðf1;f2Þ

T as
follows:

an ¼ 1þ
d2

dt2
log Cas FT

2 ðnÞ;
1

1!
qlFT

2 ðnÞ; . . . ;
1

ðl � 1Þ!
ql�1
l FT

2 ðnÞ

� �
;

bn ¼
d

dt
log

CasðFT
2 ðnÞ;

1
1! qlF

T
2 ðnÞ; . . . ;

1
ðl�1Þ! q

l�1
l FT

2 ðnÞÞ

CasðFT
2 ðn þ 1Þ; 11! qlF

T
2 ðn þ 1Þ; . . . ; 1

ðl�1Þ! q
l�1
l FT

2 ðn þ 1ÞÞ
:

A more general generalized Casorati determinant solution can be constructed by
combining pairs of eigenfunctions F2ðl1Þ;F2ðl2Þ; . . . ;F2ðlmÞ associated with complex
eigenvalues l1; l2; . . . ; lm, respectively. If the eigenvalues l1; l2; . . . ; lm have algebraic
multiplicities l1; l2; . . . ; lm, respectively, the generalized Casorati determinant solution
generated from

FT
2 ðl1Þ; . . . ;

1

ðl1 � 1Þ!
ql1�1
l1

FT
2 ðl1Þ; 	 	 	 ;F

T
2 ðlmÞ; . . . ;

1

ðlm � 1Þ!
qlm�1
lm

FT
2 ðlmÞ

� �T

is an m-complexiton solution of order ðl1 � 1; l2 � 1; . . . ; lm � 1Þ to the Toda lattice
equation (2.1). Here we clearly see that the order ðl1 � 1; l2 � 1; . . . ; lm � 1Þ of the
complexiton is a sequence of the maximum orders of derivatives with respect to the
eigenvalues. The solution generated from the set of eigenfunctions (4.1) is a single
complexiton of order l � 1.
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However, it is not easy to compute the derivatives of eigenfunctions with respect to
eigenvalues. In what follows, to avoid this difficulty, we would like to consider the
system of (2.10) and (2.11) whose coefficient matrix consists of the simplified blocks
of the following type:

Aj 0

� Aj

..

. . .
. . .

.

� 	 	 	 � Aj

2
66664

3
77775

lj�lj

; Aj ¼
aj �bj

bj aj

" #
; ð4:2Þ

where aj and bj40 are real constants, and the symbol � denotes an arbitrary entry.
Since the Jordan forms of matrices of this type are of the second type, the resulting
solutions are, of course, still complexitons. This form of the coefficient matrix looks
more complicated but it will bring us convenience in computing concrete examples of
complexitons.
Let us start from a set of eigenfunctions defined by (3.18a,b). Taking derivatives of

F2 ¼ ðf1;f2Þ
T with respect to one of the two constants a and b leads to

S

F2

1
1! qxF2

..

.

1
ðl�1Þ! q

l�1
x F2

2
666664

3
777775 ¼

A 0
1
1! qxA A

..

. . .
. . .

.

1
ðl�1Þ! q

l�1
x A 	 	 	 1

1! qxA A

2
666664

3
777775

l�l

F2

1
1! qxF2

..

.

1
ðl�1Þ! q

l�1
x F2

2
666664

3
777775

and

1

k!
qk
xF2

� �
ðnÞ

� �
t

¼
1

k!
qk
xF2

� �
ðn þ dÞ; 0pkpl � 1 ;

where x denotes a or b, qx is the derivative with respect to x, and A is defined by

A ¼
a �b

b a

� �
¼

2 cosh a cos b �2 sinh a sin b

2 sinh a sin b 2 cosh a cos b

� �
: ð4:3Þ

This implies that

FT
2 ;
1

1!
qxFT

2 ; . . . ;
1

ðl � 1Þ!
ql�1
x FT

2

� �T

ð4:4Þ

is a special solution to the system

S

f1

f2

..

.

f2l�1

f2l

2
66666664

3
77777775
¼

A 0
1
1! qxA A

..

. . .
. . .

.

1
ðl�1Þ! q

l�1
x A 	 	 	 1

1! qxA A

2
666664

3
777775

l�l

f1

f2

..

.

f2l�1

f2l

2
66666664

3
77777775

ð4:5Þ
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and

f1ðnÞ

f2ðnÞ

..

.

f2l�1ðnÞ

f2lðnÞ

2
66666664

3
77777775

t

¼

f1ðn þ dÞ

f2ðn þ dÞ

..

.

f2l�1ðn þ dÞ

f2lðn þ dÞ

2
66666664

3
77777775
; ð4:6Þ

the Jordan form of whose coefficient matrix is of the second type.
Therefore, for x ¼ a and b, we obtain two Casorati determinant solutions to the

Toda lattice equation (2.1):

an ¼ 1þ
d2

dt2
log Cas FT

2 ðnÞ;
1

1!
qxFT

2 ðnÞ; . . . ;
1

ðl � 1Þ!
ql�1
x FT

2 ðnÞ

� �
; (4.7a)

bn ¼
d

dt
log

CasðFT
2 ðnÞ;

1
1! qxF

T
2 ðnÞ; . . . ;

1
ðl�1Þ! q

l�1
x FT

2 ðnÞÞ

CasðFT
2 ðn þ 1Þ; 1

1! qxF
T
2 ðn þ 1Þ; . . . ; 1

ðl�1Þ! q
l�1
x FT

2 ðn þ 1ÞÞ
; (4.7b)

which correspond to the simplified blocks of the type in (4.2). Noting that f1 and f2

are given explicitly by (3.18a,b), it is direct to compute the derivatives qk
aF2 and qk

bF2,
kX0, and further the corresponding complexitons. Of course, from pairs of
eigenfunctions ðf1ðaj ; bjÞ;f2ðaj ; bjÞÞ, 1pjpm, associated with different complex
values mj ¼ aj þ bji, 1pjpm, two specific m-complexitons of order ðl1 � 1; l2 �
1; . . . ; lm � 1Þ to the Toda lattice equation (2.1) can be similarly constructed by
taking derivatives of the eigenfunctions with the involved pairs of two constants aj

and bj. Two columns of eigenfunctions required in those two complexitons are

FT
2 ða1; b1Þ; . . . ;

1

ðl1 � 1Þ!
ql1�1
x1

FT
2 ða1; b1Þ; 	 	 	 ;F

T
2 ðam; bmÞ; . . . ;

�
1

ðlm � 1Þ!
qlm�1
xm

FT
2 ðam; bmÞ

�T

;

where xj ¼ aj or xj ¼ bj, 1pjpm, and F2ðaj ; bjÞ ¼ ðf1ðaj ; bjÞ;f2ðaj ; bjÞÞ
T, 1pjpm,

are defined by formula (3.18a,b) with a ¼ aj and b ¼ bj. This presents a large class of
real complexitons to the Toda lattice equation (2.1).
More generally, we can solve the system of (4.5) and (4.6) to get a broader set of

eigenfunctions required in complexitons. Let us still adopt

l ¼ aþ bi; F k ¼ f2k�1 þ f2ki; 1pkpl

as in Section 3, then the system of (4.5) and (4.6) is equivalent to the following
triangular system for all F k:

SF k ¼ lF k þ
Xk�1
p¼1

1

p!

qpl
qxp F k�p; ðFkðnÞÞt ¼ F kðn þ dÞ; 1pkpl; ð4:8Þ

where F 0 ¼ 0. This system contains system (3.4) as a special case.
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Theorem 4.1. Let l ¼ lðxÞ be a function from C to C� f2g and d ¼ 
1. Suppose that

f ðl; c; dÞ is the general solution to (3.5), defined by (3.6), and for 1pkpl, define

f k ¼ f ðlðxÞ; ck; dkÞ with a pair of arbitrary constants ck and dk. Then the general

solution to the general triangular system of differential-difference equations (4.8) is

given by

Fk ¼
Xk�1
p¼0

1

p!

qpf k�p

qxp ¼
Xk�1
p¼0

1

p!

qpf ðlðxÞ; ck�p; dk�pÞ

qxp ; 1pkpl : ð4:9Þ

Proof. The proof is similar to the one of Theorem 3.1. Note that the general solution
expression (4.9) can be rewritten as

Fk ¼ Fk;h þ F k;s;

where

Fk;h ¼ f k; Fk;s ¼
Xk�1
p¼1

1

p!

qpf k�p

qxp ; 1pkpl :

By Lemma 3.1, F k;h ¼ f k is the general solution to the homogeneous counterpart of
the kth subsystem for Fk in (4.8). Use the same argument as in the proof of Theorem
3.1, what we need to prove now is that Fk;s is a special solution to the kth subsystem
for F k in (4.8).
At the current situation, from

Sf k ¼ lðxÞf k; ðf kðnÞÞt ¼ f kðn þ dÞ; 1pkpl ;

we have

S
1

p!

qpf k

qxp

� �
¼
Xp

q¼0

1

q!

qqlðxÞ
qxq

1

ðp � qÞ!

qp�qf k

qxp�q ; 1pkpl; pX1 ; (4.10a)

1

p!

qpf k

qxp

� �
ðnÞ

� �
t

¼
1

p!

qpf k

qxp

� �
ðn þ dÞ; 1pkpl; pX1 ; (4.10b)

the former equality of which is equivalent to

ðS � lðxÞÞ
1

p!

qpf k

qxp

� �
¼
Xp

q¼1

1

q!

qqlðxÞ
qxq

1

ðp � qÞ!

qp�qf k

qxp�q ; 1pkpl; pX1 : ð4:11Þ

Therefore, using (4.11), we can compute that

ðS � lðxÞÞFk;s ¼
Xk�1
p¼1

ðS � lðxÞÞ
1

p!

qpf k�p

qxp

¼
Xk�1
p¼1

Xp

q¼1

1

q!

qqlðxÞ
qxq

1

ðp � qÞ!

qp�qf k�p

qxp�q
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¼
Xk�1
q¼1

Xk�1
p¼q

1

q!

qqlðxÞ
qxq

1

ðp � qÞ!

qp�qf k�p

qxp�q

¼
Xk�1
q¼1

1

q!

qqlðxÞ
qxq

Xk�1
p¼q

1

ðp � qÞ!

qp�qf k�p

qxp�q

¼
Xk�1
q¼1

1

q!

qqlðxÞ
qxq

Xðk�qÞ�1

p¼0

1

p!

qpf ðk�qÞ�p

qxp

¼
Xk�1
q¼1

1

q!

qqlðxÞ
qxq F k�q

and by using the latter equality of (4.10a,b), we have

ðFk;sðnÞÞt ¼
Xk�1
p¼1

1

p!

qpf k�p

qxp

� �
ðnÞ

� �
t

¼
Xk�1
p¼1

1

p!

qpf k�p

qxp

� �
ðn þ dÞ ¼ F k;sðn þ dÞ :

Therefore, the above function Fk;s is a special solution to the kth subsystem of (4.8),
indeed. The proof is finished. &

This theorem provides a general set of eigenfunctions required in complexitons,
while using (4.5) and (4.6). Now it is just a direct computation to construct a
complexiton solution from a t-function tn.
In particular, we can start from the pair of eigenfunctions f1 and f2 defined by

(3.18a,b) to compute examples of complexitons. First without computing derivatives
of f1 and f2, the t-function of a single complexiton can be expressed as

tn ¼ Casðf1ðnÞ;f2ðnÞÞ

¼ 2cde2t cosh da cos db sinð2nb þ b þ 2t cosh da sin dbÞ sinh a

þ c2e2naþaþ2teda cos db sin b � d2e�2na�aþ2te�da cos db sin b ; (4.12)

where d ¼ 
1 and a; b; c; d are arbitrary real constants, but ba0 and c2 þ d2a0 in
order that tna0. If we fix c ¼ 
d, and the t-function boils down to

tn ¼ 2c2e2t cosh da cos db sinhð2na þ a þ 2t sinh da cos dbÞ sin b


 2c2e2t cosh da cos db sinð2nb þ b þ 2t cosh da sin dbÞ sinh a : (4.13)

Second, through computing the first-order derivatives of f1 and f2, the t-function of
a single complexiton of order 1 reads as

tn ¼ Cas f1ðnÞ;f2ðnÞ;
qf1ðnÞ

qx
;
qf2ðnÞ

qx

� �
; ð4:14Þ
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where x ¼ a or x ¼ b. More generally, upon choosing arbitrary real constants ai, bi,
i ¼ 1; 2 and ci, di, 1pip3, which satisfy bia0, i ¼ 1; 2 and c2i þ d2

i a0, 1pip3, we
can have a t-function of a single complexiton of order 1:

tn ¼ Cas ðf1ða1; b1; c1; d1ÞÞðnÞ; ðf2ða1; b1; c1; d1ÞÞðnÞ;

�

ðf1ða1; b1; c2; d2ÞÞðnÞ þ
qðf1ða1; b1; c1; d1ÞÞðnÞ

qx1
;

ðf2ða1; b1; c2; d2ÞÞðnÞ þ
qðf2ða1; b1; c1; d1ÞÞðnÞ

qx1

�
(4.15)

and a t-function of a 2-complexiton of order (1,1):

tn ¼ Cas ðf1ða1; b1; c1; d1ÞÞðnÞ; ðf2ða1; b1; c1; d1ÞÞðnÞ;

�
qðf1ða1; b1; c1; d1ÞÞðnÞ

qx1
;
qðf2ða1; b1; c1; d1ÞÞðnÞ

qx1
;

ðf1ða2; b2; c2; d2ÞÞðnÞ; ðf2ða2; b2; c2; d2ÞÞðnÞ;

ðf1ða2; b2; c3; d3ÞÞðnÞ þ
qðf1ða2; b2; c2; d2ÞÞðnÞ

qx2
;

ðf2ða2; b2; c3; d3ÞÞðnÞ þ
qðf2ða2; b2; c2; d2ÞÞðnÞ

qx2

�
; (4.16)

where xi ¼ ai or xi ¼ bi, i ¼ 1; 2.
5. Concluding remarks

A set of coupled conditions consisting of differential-difference equations has been
proposed for Casorati determinants to solve the Toda lattice equation. A systematic
analysis has been made for solving the resulting system of differential-difference
equations whose coefficient matrix consists of Jordan blocks of the second type,
together with the solution formula for the key subsystem associated with one Jordan
block. The resulting set of eigenfunctions leads to complexitons through the
Casoratian formulation. Moreover, a feasible way has been presented to construct
sets of eigenfunctions required for forming complexitons, which allows us to directly
compute examples of real complexitons.
We remark that the resulting complexitons of order zero (i.e., not involving

derivatives of eigenfunctions) can be constructed from complexification of wave
numbers of 2-solitons (see Ref. [15] for the KdV case). However, the resulting
complexitons of order larger than zero (i.e., involving derivatives of eigenfunctions)
cannot be generated from complexification of solitons. Such solutions are generated
on the basis of our coupled conditions established in Theorem 2.1. On the other
hand, based on Theorem 2.1, our generalized Casorati determinant solutions give
solitons and negatons if l42, positons if lo2 and rational solutions to the Toda
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lattice equation if l ¼ 2 [7,14]. Viewing ðS � 2Þf as a discrete version of q2xf, we can
easily see that this is consistent with the phenomenon in the KdV case [11].
Our results also indicate that integrable equations can have three different kinds of

explicit exact transcendental function solutions: negatons, positons and complex-
itons. Solitons are usually a specific class of negatons. Roughly speaking, negatons
and positons are solutions which involve exponential functions and trigonometric
functions of space variables, respectively, and they are all associated with real
eigenvalues of the associated spectral problems. But complexitons are different
solutions which involve both exponential and trigonometric functions of space
variables, and they are associated with complex eigenvalues of the associated spectral
problems. Interaction solutions among negatons, positons, rational solutions and
complexitons are a class of much more general and complicated solutions to soliton
equations, in the category of elementary function solutions. There is also a large class
of y-function solutions to soliton equations. It is an interesting question for us what
inverse scattering data there exist for complexitons of the Toda lattice equation.
It is also natural to ask whether our idea of constructing complexitons can be

successfully applied to other integrable lattice equations such as the Ablowitz–Ladik
(AL) equation [16,17] and general Toda lattice equations [18]. Particularly
interesting to us is to make an extension to full discrete integrable equations such
as the discrete-time KdV equation [19] and the discrete-time Toda lattice equation
[20]. On the other hand, it has been pointed out that multi-positon solutions of the
KdV equation may be related to giant ocean waves such as ‘‘freak wave’’ (rogue
wave), breaking up ships [21]. It is our hope that complexitons can provide certain
mathematical background for related nonlinear phenomena in the field of
mathematical physics.
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