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Abstract

A set of coupled conditions consisting of differential-difference equations is presented for
Casorati determinants to solve the Toda lattice equation. One class of the resulting conditions
leads to an approach for constructing complexiton solutions to the Toda lattice equation
through the Casoratian formulation. An analysis is made for solving the resulting system of
differential-difference equations, thereby providing the general solution yielding eigenfunc-
tions required for forming complexitons. Moreover, a feasible way is presented to compute the
required eigenfunctions, along with examples of real complexitons of lower order.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many integrable equations, both continuous and discrete, have soliton solutions,
which are exponentially decaying at spatial infinity. The existence of a three-soliton
solution often indicates the integrability of the equation under investigation. The
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Toda lattice equation is one of the well-known lattice model equations exhibiting the
soliton phenomenon [1]. Its multi-soliton solutions can be expressed through
Casorati determinants [2—4], and its approximate soliton solutions have been
explored around an exact soliton solution [5].

There are also positons and negatons to the Toda lattice equation, which can be
presented by generalized Casorati determinants [6,7], and solitons are just a specific
class of negatons. Positons and negatons were first presented for the Korteweg-de
Vries (KdV) equation (see, for example, Refs. [8,9]). All three classes of solutions—
solitons, positons and negatons—are associated with real eigenvalues of the
associated spectral problems. Moreover, the absolute values of soliton and negaton
solutions contain one kind of elementary transcendental functions—exponential
functions of the space variables, and the absolute values of positon solutions contain
another kind of elementary transcendental functions—trigonometrical functions of
the space variables.

A challenging problem in solution theory is how to construct a different kind of
explicit exact solutions to soliton equations, whose absolute values involve both
exponential and trigonometrical functions of the space variables and which are
associated with the complex eigenvalues of the associated spectral problems. The
absolute values do not need to be taken if solutions are real, as in the case of the
KdV equation; but do need to be taken if solutions are complex, as in the case of the
nonlinear Schrédinger equation. Exact solutions of such kind are called complexiton
solutions and have been presented for the KAV equation [10]. Note that interaction
solutions between positons and negatons can also contain both exponential and
trigonometrical functions of the space variables, but they are associated with real
eigenvalues of the associated spectral problems and thus they are not examples of so-
called complexitons. Although these solutions belong to a broader class of exact
solutions, they can be well formulated once three kinds of basic solutions—negatons,
positons and complexitons—are presented [11].

Therefore, for the Toda lattice equation, the basic question for us is whether there
exist complexiton solutions and how one can construct complexitons if they exist.
This is the topic that we would like to address in this paper. It is known that the
Casoratian formulation is a powerful technique to generate explicit solutions of
integrable lattice equations [3,4]. Solutions determined by the Casorati determinant
technique and generalized Casorati determinant technique are called Casorati
determinant solutions and generalized Casorati determinant solutions, respectively
[7]. For the Toda lattice equation, solitons are examples of Casorati determinant
solutions [2,3], and positons and nagatons are examples of generalized Casorati
determinant solutions [7].

In this paper, we would like to show that there exist complexiton solutions of the
Toda lattice equation through the Casoratian formulation. Inspired by its Lax pair,
a set of coupled conditions will be presented for guaranteeing Casorati determinants
to be solutions of the Toda lattice equation in Section 2, and this yields an approach
to a broad class of Casorati determinant solutions and generalized Casorati
determinant solutions of the Toda lattice equation. The resulting coupled conditions
will be used to construct real complexiton solutions to the Toda lattice equation in
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Section 3. Moreover, a feasible way will be proposed to construct sets of special
eigenfunctions satisfying the required conditions in Section 4, together with concrete
examples of real complexitons of lower order. A few concluding remarks will be
given in Section 5.

2. Casoratian formulation

Let us consider the Toda lattice equation in the following form:

an = an(bnfl - bn)a Bn =dap — dpy1 (21)

where (also in the rest of the paper) the dot denotes the differentiation with respect to
the time variable 7. This Toda lattice equation can be reduced to the periodic case
(ayrn = a, and b,y = b, for some positive integer N) and the finite case (only
finitely many a, and b, are non-zero). It is also more general than the square form of
the Toda lattice equation [12]:

an = ap(by — bui1), by = 2(d> @), (2.2)

n—1 "~ Yn
because there is a solution transformation

(@n(0), ba(0)) = ((an1G30)%, bu(3 1)

from the square form (2.2) to the non-square form (2.1). On the other hand, the
Toda lattice equation (2.1) is the isospectral (4; = 0) compatibility condition of the
following spectral problems:

d(n) = by1(n) + p(n — 1), (2.32)
app(n+1) + by1p(n) + p(n — 1) = Ap(n) , (2.3b)

where 4 is a spectral parameter. Namely, it has the Lax representation:

L=1I[A4,1], (2.4)

where the Lax pair is defined by

an = an5n+1,m + bnflénm + 5;171,m 5 (253)
Anm = 5n+1,m + bn—l(snm . (25b)

Under an dependent variable transformation

2

a, =1+ iz log 7, = T"J’S"_l , (2.6a)

n

d T TuTupl — Tal
by = — log - = okl = tnontl (2.6b)
dr Tn+1 TnTn+1
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we have
ay — ap(by—1 — by) =0,

.. . \2 2
TnTn — (Tn) — Tn+1Tn—1 + Tn

by —ay, + a1 =

2
Tl’l
.. . 2 2
Tug1 Tug 1 — (Tngp1)” — TngaTn + Ty
B 2
I-rH-l

and thus the Toda lattice equation (2.1) can be satisfied if we require the bilinear
equation

1 . D, . .
[2 Df — 2sinh? (2>] Ty Ty = TnTy — (7:,1)2 — Tys1Tn—1 + ri =0, 2.7)

where D, and D, are Hirota’s operators. This is called the bilinear Toda lattice
equation. Through the dependent variable transformation (2.6a,b), multi-soliton
solutions of the Toda lattice equation (2.1) can be presented by the Casorati
determinant [3,13]:

Cas(¢,(n), po(n), ..., dy(n))

o)  o(n+1) - pn+N-1)
$r(n)  Py(n+1) - py(n+ N —1)
- . . ) . , N=1, (2.8)
dy(m) Py(n+1) -+ dy(n+N—1)
provided that the functions ¢;(n), 1 <i<N, solve
o+ 1)+ ¢i(n—1)=7ip(m), (¢;(m), =d(n—1), I<i<N, 29

where 4; =2 cosh(k;) and the k;’s are arbitrary distinct real constants. The
conditions in (2.9) correspond to the case of the spectral problems (2.3a,b) with
a, =1 and b, =0, a special solution to the Toda lattice equation (2.1). This also
implies that the Casorati determinant solution is actually resulted from the Darboux
transformation of the Toda lattice equation.

In what follows, we would like to show that the Casorati determinant presents a
very broad class of exact solutions to the Toda lattice equation (2.1), among which
solitons, positons and negatons are special examples. The following theorem is a
generalization to the cases of solitons, positons and negatons.

Theorem 2.1. Assume that a set of functions ¢;(n) = ¢,(n, 1), 1 <i<N, solve a system
of differential-difference equations

N

bn+ D+ dn—1)=>" Jypn), 1<i<N, (2.10)

J=1

0ip;(n) = pi(n+9), 1<i<N, 2.11)
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where 6 = £1 and the J;’s are arbitrary constants. Then the Casorati determinant

T = Cas(¢y (), ..., py(n)

gives a solution to the bilinear Toda lattice equation (2.7), and further the
dependent variable transformation (2.6) presents a solution to the Toda lattice
equation (2.1).

Proof. We only prove the result under (2.11) with 6 = —1. The other case with 6 = 1
is completely similar. Assuming that

Py () = (@1 (), ...y ()", (2.12)
we adopt the notation

liy, i, ..,ix| :=det(@y(n+ i), Oy(n + in), ..., Pn(n + i), (2.13a)

k.l=kk+1,...,1, (2.13b)
where iy,1,...,iy and k<[ are arbitrary integers. For example, we have

|0.N —2,N| =det(®n(n), Oy(n+1),...,&ny(n+ N —2), dy(n+ N)),
| —1,1.N — 1| =det(®n(n — 1), oxy(n + 1), Ox(n + 2),...,&y(n+ N — 1)).

Directly from the conditions in (2.11) with 6 = —1, we obtain the expressions for
the first two derivatives of the t-function 7, with respect to ¢
ty=|-L1LN-1|, % =|-2,1.N=-1]4+]-1,0,2.N —1]. (2.14)

On the other hand, we have the general result for any determinant |4;]:

N N
S Al =D 1451F (2.15)
k=1 k=1

where |4;;|; denotes the determinant |A4;| with its kth row operated by the operator
S:

SP)n) = dpn+ 1)+ p(n—1) (2.16)

and |A4»,~|k denotes the determinant |A4;| with its kth column operated by the operator
S. Applying (2.15) to two determinants |0..N — 1] and | — 1,1..N — 1| and using the
conditions in (2.10), we obtain the determinant identities:

N
> Jil0.N =1 =[0.N =2,N|+|—1L,I.N — 1], (2.17)

i=1

N
> il = LLN=1|=[0.N—1|+|-21.N -1
i=1

+|/-1,0,2.N—-1|+|—-1,1.N =2,N]|. (2.18)
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Now, making use of (2.14), (2.17) and (2.18), we find that the left-hand side of
(2.7) gives the terms

. . \2 2
Tty — (Tn)” — Tug1 Tue1 + T,

=(-21.N—1/4|-1,0,2.N—ID0.N—1]— | = 1, 1.N — 1?
—|[L.N|| = 1.N = 2|+ ]0.N — 1]?
N
- <Z Jil = LLLN = 1| = |[0.N — 1| — | — 1,1..N—2,N|> 10.N — 1]
i=1

N
— (Z 2il0.N — 1] — |0..N—2,N|>| —1,1.N — 1|

i=1
—|1.N|| — 1.N = 2|+ |0.N — 17
=—|-1,1.N—=2,N||0.N — 1|+ [0.N —2,N|| — 1,1.N — 1]
—|1.N|| = 1.N =2|.

The last sum above is the Laplace expansion by N x N minors of the following
2N x 2N determinant:

2 @ 1.N-2/-10 N-1 N

where ¢ indicates the N x (N — 2) zero matrix. This can be easily shown to be
identically zero. Thus, the solution is verified. [

Note that the first half conditions in (2.9) are just a special case of the conditions in
(2.10). Therefore, we can expect to get more solutions to the Toda lattice equation
(2.1) by solving the system of differential-difference equations, (2.10) and (2.11), as
in the KdV case [11]. Moreover, the entire problem of constructing explicit solutions
is reduced to the problem of solving the system, (2.10) and (2.11).

The system of (2.10) and (2.11) can be compactly written as

(SPy)n) = Pn(n+ 1)+ Py(n— 1) = ADy(n), (Pn(n), = Pn(n+9),
(2.19)
where @y is defined by (2.12) and
A= (A nxn (2.20)
is called the coefficient matrix of the system of (2.10) [or the system of (2.10) and
(2.11)]. Note that a constant similar transformation for the coefficient matrix A does
not change the resulting Casorati determinant solution to the Toda lattice equation
(2.1). Actually, if we have M = P~'AP for some constant invertible matrix P, then
&y = POy satisfies
(SPy)(n) = Dy(n+ 1)+ dy(n — 1) = MDy(n), (Py(n), = dy(n+9).
(2.21)
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Obviously, the dependent variable transformation (2.6a,b) leads to the same
Casorati determinant solutions from @y and ®y. Therefore, by linear algebra, we
only need to consider the following two types of Jordan blocks of the coefficient
matrix A:

r 0
14
. , (2.22)
L0 1 ;V kjxk;
[A; 0

, A= ’,1:[ } 2.23
LO - L 4],

where Z;, o; and ;>0 are all real constants, and k; and /; are positive integers. The
first type of Jordan blocks has the real eigenvalue A; with algebraic multiplicity k;,
and the second type of Jordan blocks has the complex eigenvalues 4;+ = o; & f;i
with algebraic multiplicity /;.

The case of real eigenvalues corresponds to positons, nagatons and rational
solutions [7,14]. In what follows, we will focus on the case of complex eigenvalues to
present complexitons. We will show how to solve the system of differential-difference
equations, (2.10) and (2.11), in the case of complex eigenvalues such that the
Casoratian formulation leads to real complexiton solutions of the Toda lattice
equation.

3. Complexiton solutions

In order to construct complexitons, let us begin to solve the system of differential-
difference equations, (2.10) and (2.11), whose coefficient matrix consists of Jordan
blocks of the second type. Since all subsystems corresponding to Jordan blocks are
separated, it suffices to illustrate how to solve a system associated with one Jordan
block of the second type. Let us specify such a system as

SP)(n)=dm+ 1)+ P(n—1)=APn), (Pn), =PHn+9), (3.1)
where 0 = &1 and
zl A 0
: I, A x —p
b = : , A=1| ) , A= [ ] . (3.2)
N L
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If we introduce
;LZO(—F[;I., Fk =¢2k71 +¢2kia 1<k<13 (33)

then system (3.1) is obviously equivalent to the following triangular system for all
Fy:

SFy = AF + Fro1,  (Fr(n), = Fr(n+9), 1<k<l, (3.4)
where Fy = 0.

Lemma 3.1. Let 1 be a complex number not equal 2 and 6 = £1. Then the
homogeneous system of differential-difference equations

SHM) =fn+ D)+ f(n—1)=4if(n), (f(n), =f(n+9), (3.5)
has its general solution
FOse,d)n) = f(n) = cae™ + dao e, (3.6)

where w is defined by
l=w+o"", ie, 0 —lo+1=0 3.7
and ¢ and d are arbitrary constants.

Proof. Note that the general solution to the linear difference equation

(SH) =f(n+1)+f(n = 1) = if (n) = (0 + 0~ ") (n) (3.8)
has two free parameters. Moreover, it is easy to show that f(n) = " and f(n) = w™"

are two solutions to (3.8), and they are linearly independent since A#2. Hence, the
general solution to the difference equation (3.8) is given by

J() = (D" + di(Do™",

where ¢; and d, are two functions of 7. On the other hand, the differential equation
(f(n)), = f(n+ J) requires that

3] =Cl(,l)o, d; =d1(1)7()

and thus we have

= Cetw‘l dl — det(lfd ,
where ¢ and d are arbitrary constants. Therefore, the general solution to the
differential-difference equation (3.5) is given by (3.6). The proof is finished. [

Remark. The condition A = 2 is equivalent to w = 1, and moreover, »" and w™" are
linearly dependent if and only if w = 1. Therefore, 412 is necessary for guaranteeing
the linear independence of w" and w™". Actually, the case of 2 =2 corresponds to
rational solutions [14].

Theorem 3.1. Let 1 be a complex number not equal 2 and 6 = +1. Suppose that
f(A;¢,d) is the general solution to (3.5), defined by (3.6), and for each 1 <k <, define
[ =S4 cr, di) with a pair of arbitrary constants ¢ and dy. Then the general solution
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to the triangular system of differential-difference equations (3.4) is given by

k—1 k—1 )
1 &fr_ 1 & (2; Ch—p»> di—p)
F:E:_ P:E — LR <k<]. 3.9
T T ! o ’ 3:9)

Proof. First, from (3.5), we have
St =M (), =fi(n+9), 1<k<l.

Differentiating these equalities p times with respect to A, we obtain

1 &f% Sk Lol

S(E—W) z(p, 57 +(p_1)! TR I<k<l, p=1, (3.10a)
17, 1o

[(E—a{;)(n)]t _ (H_aj;k)(nw), 1<k<l, p>1. (3.10b)

Second, note that the linear system (3.4) is triangular, and so we can solve the system
one by one from F; through F);.

By Lemma 3.1, the general solution to the first subsystem for F; in (3.4) can be
defined by /| with a pair of arbitrary constants ¢; and d;. Now let 2<k </ (if / =1,
we are finished). Assume that we already solve the first k — 1 subsystems for F),
1<p<k — 1. Then the kth subsystem for Fj in (3.4) can be viewed as a non-
homogeneous linear system and thus its general solution is determined by

Fr=Fip+ Fry,

where Fj; is the general solution to the homogeneous counterpart of the
kth subsystem and Fj, is a special solution to the non-homogeneous kth sub-
system. Again by Lemma 3.1, the general solution Fy to the kth subsystem of (3.4)
can be defined by f, with a pair of arbitrary constants ¢, and di. On the other
hand, by an inspection, a special solution Fy, to the kth subsystem can be found
to be

= 1 fkp
Z_:_l o

This can be proved by using (3.10a,b). Actually, we have

(S=DFis= ) (=D
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k=1 P
(Fiam), =) K; g’ l";”)(@}

p=1
3 k—1 1 apfk_p
T L \pl on

)m+®=me+®.

Therefore, the above function Fy is a special solution to the kth subsystem. Then, it
follows that the general solution to the kth subsystem of (3.4) is given by

k-1 k-1

. 1 &%y 1 &f

Fr=Fip+Fis=fi+) ——L=% ———7
PR TR ;bnaﬂ Z&ﬂay

Finally, an induction ensures that the general solution to system (3.4) is given by
(3.9). The proof is finished. O

Theorem 3.1 provides us with an approach for solving a system of differential-
difference equations, (2.10) and (2.11), whose coefficient matrix A consists of Jordan
blocks of the second type. Once we solve the system of (2.10) and (2.11), it follows
from Theorem 2.1 that the corresponding Casorati determinant gives us a solution to
the Toda lattice equation. If the coefficient matrix A consists of m Jordan blocks of
the second type in (2.23), then the Casorati determinant solution reads as

d? d | Ty

a, =1 —i—@log Ty, by = O ngn+1

t, = Cas(¢(n),. .., ¢2/1 (n);---; ¢2(1]+.--+lm,1)+1(n), cees ¢2(1]+-..+1m)(”)) , (3.11b)

where the involved eigenfunctions are determined by Eq. (3.9) in Theorem 3.1 with
j.j = OCj +ﬁji, 1<j<m

In the following, we would like to show that the solutions defined by (3.11a,b) are
complexiton solutions. To this end, let us write

A=2coshpu=e"+e*, pneC (3.12)

(3.11a)

and thus we can have
wo=¢", ueC. (3.13)
Note that while u goes over the complex field, A = 2 cosh p will exhaust all complex

values, and thus the assumption (3.12) does not lose generality. Then by Lemma 3.1,
the general solution of system (3.5) is given by

f(n) = c exp(un + t exp(op)) + d exp(—un + t exp(—dp)) , (3.14)

where ¢ and d are arbitrary constants. The other selection of w = e™# leads to the
same solution of system (3.5). Now write

f=¢l+¢zl, ,Ll=a+bl, aGR, b#OGR (315)
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and assume that ¢ and d are real constants but ¢> 4+ @ #0 in order that f #0. Then,
we have

A =a+ pi = 2(cosh a cos b) + 2(sinh a sin b)i . (3.16)

Moreover, system (3.5) becomes the following system:

¢(n+ 1)+ ¢(n — 1) = 2(cosh a cos b)p,(n) — 2(sinh a sin b)p,(n), (3.17a)
¢,(n+ 1) + ¢5(n — 1) = 2(sinh a sin b)¢,(n) + 2(cosh a cos b)p,(n), (3.17b)
¢j(m), = ¢;(n+9), j=12 (3.17¢)

and its solution (¢, ¢,) reads as

$1(n) = (¢1(a, b; ¢, d))(n) := Re(f (n))
= et cos b cog(nh + 1e% sin §b)
+ de e s b cos(nb + 16 sin Sb),  (3.18a)
$2(n) = (¢y(a, b; ¢, d))(n) := Im(f (n))
= et €05 b gin(pb + 1% sin 5b)

— de et eos b gin(ub + te =% sin 5b) . (3.18b)

The initial set (2.10) of difference equations with the second type of Jordan blocks
[i.e., Jordan blocks in (2.23)] tells us that the solutions defined by (3.11a,b) are
associated with the complex eigenvalues of the associated spectral problem.
Expressions (3.18a,b) and (3.9) for the required eigenfunctions indicate that the
resulting real solutions contain both exponential and trigonometric functions of the
space variable n. Therefore, it follows that the solutions determined by (3.11a,b) are
real complexitons to the Toda lattice equation (2.1), which establishes the following
theorem.

Theorem 3.2. Let o; and f;, 1<j<m, be real numbers and p;#0, 1<j<m. Then the
Toda lattice equation (2.1) has a class of real complexiton solutions determined by
Sormula (3.11a,b) and formula (3.9) with /. = 7; = o; + B;i, 1<j<m.

A solution defined by (3.11a,b) is called an m-complexiton solutions (or simply, an
m-complexiton) of order (/; — 1,1, — 1,...,[,, — 1) to the Toda lattice equation (2.1).
If ; =1, 1<j<m or m =1, we simply say an m-complexiton solution or a single
complexiton solution of order /; — 1. Based on the expressions of eigenfunctions in
(3.9), we see that the order (/; — 1,/ — 1,...,1,, — 1) of the complexiton reflect the
maximum orders of derivatives of eigenfunctions with respect to the corresponding
eigenvalues.
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4. Construction of examples

Theorems 2.1 and 3.1 provide a general solution procedure using a general set of
eigenfunctions. It is, however, easier to apply some other techniques to present
concrete complexitons.

The simplest way to get a special set of eigenfunctions required in complexitons is
to take only one term in expressions (3.9) for each F. This can be realized as follows.
We set

By = (¢, )"

as before, and assume that f = ¢, + ¢,i solves system (3.5) with 4 = o+ fi. Then
the choice of ¢ = dy =0, 2<k</, presents a special set of eigenfunctions

1
Ty~ A gl I-1 T
(%wmm%m,(lnﬁ @@) @1
to the system of (2.10) and (2.11) with the coefficient matrix A:
A 0
12 A o _/)J
A= A= [ ] .
S B
0 - I, A,

Thus, a class of generalized Casorati determinant solutions to the Toda lattice
equation (2.1) can be generated from the pair of eigenfunctions @, = (qﬁl,qﬁz)T as
follows:

2

dr?
d Cas(ng(n), T 0, fDT(n)

= 0
"7 4t Cas(@(n + 1), 10,03 (n 1 1),.

a, = 1 +—log Cas ((PT(n) ¢§(n),

Ulﬁﬂﬁ”>
al l@T(n))
o' oI+ 1))

e Ty 1),

C T 1),

A more general generalized Casorati determinant solution can be constructed by

combining pairs of eigenfunctions @,(11), @1(42), ..., P2(4,) associated with complex
eigenvalues 41, 4y, ..., Ay, respectively. If the eigenvalues 41, 45, ..., 4,, have algebraic
multiplicities /1, [, . .., [,,, respectively, the generalized Casorati determinant solution
generated from
/ I i !
T 1 1 T T/ m T
(%w».(lph@ao @mﬂn(mn,m¢w0

is an m-complexiton solution of order (/y — 1, —1,...,[, — 1) to the Toda lattice

equation (2.1). Here we clearly see that the order (/; — 1,/ —1,...,1,, — 1) of the
complexiton is a sequence of the maximum orders of derivatives w1th respect to the
eigenvalues. The solution generated from the set of eigenfunctions (4.1) is a single
complexiton of order / — 1.
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However, it is not easy to compute the derivatives of eigenfunctions with respect to
eigenvalues. In what follows, to avoid this difficulty, we would like to consider the
system of (2.10) and (2.11) whose coefficient matrix consists of the simplified blocks
of the following type:

A; 0
* A o —p;
5 A] = / ﬁ] > (42)
Do By oy
* o x4 lix1;

where o; and ;>0 are real constants, and the symbol * denotes an arbitrary entry.
Since the Jordan forms of matrices of this type are of the second type, the resulting
solutions are, of course, still complexitons. This form of the coefficient matrix looks
more complicated but it will bring us convenience in computing concrete examples of
complexitons.

Let us start from a set of eigenfunctions defined by (3.18a,b). Taking derivatives of
@, = (¢, $,)" with respect to one of the two constants a and b leads to

@, A 0 @,
ll!agfpz %agA A ll!agV@z
S =
7 1),a’ '@, a’ '4 ... Lo4 4 a’ '@,

(&= 1)' e Ix] LA=D! 1)‘

and

[(k, 61‘@2)(11)} (k' 6k<1§2>(n +9), 0<k<I—1,

where ¢ denotes a or b, 0: is the derivative with respect to &, and A4 is defined by

4 {oc —ﬁ} _ [ZCoshacosb —2 sinh a sin b 43)
" |p o] |2sinhasinb 2 coshacosbh '
This implies that
ol Lol . L ol ' (4.4)
SR TR TR '
is a special solution to the system
[ ¢1 1 A 0 [ (rbl 1
¢2 ]L!aéA A ¢2
sl = : (4.5)
¢(;/—l ([ 1)' al lA . %aéA A ol ()b;l—l
L $2 L Pu ]
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and

RACHE [ $1(n+0) ]|
$,(n) $(n+9)

_ ; , (4.6)

$ay—1(n) ¢y (n+9)
L du(m) ], | ¢y(n+9) |

the Jordan form of whose coefficient matrix is of the second type.
Therefore, for ¢ = a and b, we obtain two Casorati determinant solutions to the
Toda lattice equation (2.1):
2

an_1+§ log Cas(@T(n) —0: 01 (n),.. S 1),a’ Lol (n )) (4.72)
,_d Cas(®] (1), 3;0: @] (n), . .., ;05 ' @3 () @)

"7 A% Cas(@T(n+ 1,500+ Doy 0 BN+ 1)

which correspond to the simplified blocks of the type in (4.2). Noting that ¢, and ¢,
are given explicitly by (3.18a,b), it is direct to compute the derivatives 65@2 and 61,;' D,,
k>0, and further the corresponding complexitons. Of course, from pairs of
eigenfunctions (¢,(a;, b)), $,(a;,b;)), 1<j<m, associated with different complex
values w; = a; + bji, 1<j<m, two specific m-complexitons of order (/; —1,/» —
1,...,0,,— 1) to the Toda lattice equation (2.1) can be similarly constructed by
taking derivatives of the eigenfunctions with the involved pairs of two constants a;
and b;. Two columns of eigenfunctions required in those two complexitons are

(q>§(a1, b),...

(I 1)|alc]1 lqsg(al’bl);"'§¢;r(am,b,,1),...,

1 T
a[g:ixil¢”2[‘(ams bm)) >

(I, —

where {; = a; or {; =b;, 1<j<m, and ®y(a;, b)) = (¢,(a;, b)), (l)z(aj,b))T 1<j<m,
are defined by formula (3.18a,b) with @ = g; and b = b;. This presents a large class of
real complexitons to the Toda lattice equation (2.1).

More generally, we can solve the system of (4.5) and (4.6) to get a broader set of
eigenfunctions required in complexitons. Let us still adopt

;“=a+ﬁia Fk=¢2k—l+¢2ki: 1<k<l

as in Section 3, then the system of (4.5) and (4.6) is equivalent to the following
triangular system for all F:

1 &2

SFy _;LF,(+Z o oF

Fip, (Fr(n), = Fi(n+9), 1<k<l, (4.8)

where Fy = 0. This system contains system (3.4) as a special case.
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Theorem 4.1. Let /. = A(E) be a function from C to C — {2} and 6 = £1. Suppose that
f(Z;¢,d) is the general solution to (3.5), defined by (3.6), and for 1<k<lI, define
S =fE); ek, di) with a pair of arbitrary constants c, and dy. Then the general
solution to the general triangular system of differential-difference equations (4.8) is
given by

1<k<l. (4.9)

LS, ki 1S ME); i i)
! ! o0& ’

Proof. The proof is similar to the one of Theorem 3.1. Note that the general solution
expression (4.9) can be rewritten as

Fi=Fip+ Frg,

where

k=1
X 1 0f)_
Fin=fr Frs= g P afpp

p=1

, I<k<!.

By Lemma 3.1, Fy; = f is the general solution to the homogeneous counterpart of
the kth subsystem for Fy in (4.8). Use the same argument as in the proof of Theorem
3.1, what we need to prove now is that F is a special solution to the kth subsystem
for Fj in (4.8).

At the current situation, from

Sk =Mk (), =1 (n+9), 1<k<I,

we have
o’f 1 "ﬂ(é) s
<P' afpk> qz: g 0 —q)! aép—qk’ I<k<l, p=1, (4.10a)
[(ﬁ%)(n)]t:%@a’?>(n+5), I<k<l, p=1, (4.10b)

the former equality of which is equivalent to

Lo & 10 1 g,
! agﬂ) _Zl_ 1<k<l, p=1. (4.11)

(5 —49) =2 o gl o@

Therefore, using (4.11), we can compute that

k—
(S = ME)Fis = Z<S M g—;

p=1 :
SEelZC IR I
;qzl q' o (p—g) o1
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k—1 k—1 1642(6) 1 apiqfk—p

16%)“‘ 21 gy
Zoql g 2y pl o
k— llaqi(é)
q' ocf

Il
gl

q=1

and by using the latter equality of (4.10a,b), we have

= fk—p
(Frs(n), = Z Kﬂ )( )}
p=1 )
= fk —p
Z <p o7 )(n +0) = Fis(n+9).

Therefore, the above function Fy is a special solution to the kth subsystem of (4.8),
indeed. The proof is finished. [

This theorem provides a general set of eigenfunctions required in complexitons,
while using (4.5) and (4.6). Now it is just a direct computation to construct a
complexiton solution from a z-function 7,,.

In particular, we can start from the pair of eigenfunctions ¢; and ¢, defined by
(3.18a,b) to compute examples of complexitons. First without computing derivatives
of ¢, and ¢,, the t-function of a single complexiton can be expressed as

p = Cas(¢(n), p,(n))
= Dede?! ©osh 9405 0b gin(dph + b 4 21 cosh da sin db)sinh a
+ CZGZnquavLZte‘j“ cos 0b gipn | d2€72nu7a+2te"s“ cos 0b gin b ) 4.12)
where 6 = 1 and a, b, c,d are arbitrary real constants, but »#0 and > + d*#0 in
order that 7, #0. If we fix ¢ = +d, and the t-function boils down to
1, = 2¢Pe?! ©osh 04 €08 0b Ginh(2na + a + 2t sinh da cos db)sin b

4 222! cosh 0 cos b gin(Dph 4 b 4 2t cosh dasin db)sinh a . (4.13)

Second, through computing the first-order derivatives of ¢; and ¢,, the t-function of
a single complexiton of order 1 reads as

0, (n) aqﬁz(ﬂ))
of  oe¢ )’

n = Cas (¢> (n), > (), (4.14)



W.X. Ma, K. Maruno | Physica A 343 (2004) 219-237 235

where ¢ = a or ¢ = b. More generally, upon choosing arbitrary real constants a;, b;,
i=1,2and ¢;, d;, 1<i<3, which satisfy b;#0, i = 1,2 and ¢? + d>#0, 1<i<3, we
can have a t-function of a single complexiton of order 1:

7, = Cas ((¢1(al,b1; c1,d))n), (Py(ar, by cr,dr))(n),

0(¢, (a1, b1; c1,dr))(n)
0¢, ’

O(¢p,(ay, by; ey, dl))(”)>
0¢,

and a t-function of a 2-complexiton of order (1,1):

(¢p1(a1,by; c2,dr))(n) +

(dy(ar, by; e2,dr))(n) + (4.15)

o = Cas («m(al,b]; 1, d D)), (e, bus 1, d 1)),

0y (a1, by; c1,dr))(n) O(Py(ar, by ey, dy))(n)
o0&y ’ 0¢; ’
(p1(az, ba; c2,d2))(n), (Py(az, ba; c2, dr))(n),
($1(an by cs, dy) () + 211 ”552‘2 )
0(¢y(az, ba; 2, dz))(”))
0&, ’

(Py(az, ba; 3, d3))(n) + (4.16)

where & =a; or &, =b;, i = 1,2.

5. Concluding remarks

A set of coupled conditions consisting of differential-difference equations has been
proposed for Casorati determinants to solve the Toda lattice equation. A systematic
analysis has been made for solving the resulting system of differential-difference
equations whose coefficient matrix consists of Jordan blocks of the second type,
together with the solution formula for the key subsystem associated with one Jordan
block. The resulting set of ecigenfunctions leads to complexitons through the
Casoratian formulation. Moreover, a feasible way has been presented to construct
sets of eigenfunctions required for forming complexitons, which allows us to directly
compute examples of real complexitons.

We remark that the resulting complexitons of order zero (i.e., not involving
derivatives of eigenfunctions) can be constructed from complexification of wave
numbers of 2-solitons (see Ref. [15] for the KdV case). However, the resulting
complexitons of order larger than zero (i.e., involving derivatives of eigenfunctions)
cannot be generated from complexification of solitons. Such solutions are generated
on the basis of our coupled conditions established in Theorem 2.1. On the other
hand, based on Theorem 2.1, our generalized Casorati determinant solutions give
solitons and negatons if A>2, positons if 41<2 and rational solutions to the Toda
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lattice equation if 4 = 2 [7,14]. Viewing (S — 2)¢ as a discrete version of 6id), we can
easily see that this is consistent with the phenomenon in the KdV case [11].

Our results also indicate that integrable equations can have three different kinds of
explicit exact transcendental function solutions: negatons, positons and complex-
itons. Solitons are usually a specific class of negatons. Roughly speaking, negatons
and positons are solutions which involve exponential functions and trigonometric
functions of space variables, respectively, and they are all associated with real
eigenvalues of the associated spectral problems. But complexitons are different
solutions which involve both exponential and trigonometric functions of space
variables, and they are associated with complex eigenvalues of the associated spectral
problems. Interaction solutions among negatons, positons, rational solutions and
complexitons are a class of much more general and complicated solutions to soliton
equations, in the category of elementary function solutions. There is also a large class
of f-function solutions to soliton equations. It is an interesting question for us what
inverse scattering data there exist for complexitons of the Toda lattice equation.

It is also natural to ask whether our idea of constructing complexitons can be
successfully applied to other integrable lattice equations such as the Ablowitz—Ladik
(AL) equation [16,17] and general Toda Ilattice equations [18]. Particularly
interesting to us is to make an extension to full discrete integrable equations such
as the discrete-time KdV equation [19] and the discrete-time Toda lattice equation
[20]. On the other hand, it has been pointed out that multi-positon solutions of the
KdV equation may be related to giant ocean waves such as “freak wave” (rogue
wave), breaking up ships [21]. It is our hope that complexitons can provide certain
mathematical background for related nonlinear phenomena in the field of
mathematical physics.
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