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The Hirota-Satsuma-Ito equation in (2+1)-dimensions passes the three-soliton test. This paper aims to generalize this equation to a
new one which still has abundant interesting solution structures. Based on the Hirota bilinear formulation, a symbolic computation
with a new class of Hirota-Satsuma-Ito type equations involving general second-order derivative terms is conducted to require
having lump solutions. Explicit expressions for lump solutions are successfully presented in terms of coefficients in a generalized
Hirota-Satsuma-Ito equation. Three-dimensional plots and contour plots of a special presented lump solution are made to shed

light on the characteristic of the resulting lump solutions.

1. Introduction

In the classical theory of differential equations, the main
question is to study the existence of solutions to given
equations, including many nonlinear equations describing
real-world problems. Cauchy problems are to deal with the
existence, uniqueness, and stability of solutions satisfying
initial data. Laplace’s method is developed for solving Cauchy
problems for linear ordinary differential equations and the
Fourier transform method for linear partial differential
equations. In modern soliton theory, the isomonodromic
transform method and the inverse scattering transform
method have been designed to solve Cauchy problems for
nonlinear ordinary and partial differential equations [1-
3]. Explicitly solvable differential equations include various
constant-coefficient and linear differential equations, but it
is extremely difficult to compute exact solutions to variable-
coeflicient or nonlinear equations.

However, the Hirota bilinear method provides us with a
working approach to soliton solutions, historically found for
nonlinear integrable equations [4, 5]. Soliton solutions are
analytic ones exponentially localized in all directions in space
and time. Let a polynomial P determine a Hirota bilinear
differential equation:

P(D,D,,D,)f-f=0, ey

in (2+1)-dimensions, where D,,D,, and D, are Hirota’s
bilinear derivatives. The corresponding partial differential
equation with a dependent variable u is determined usually
by one of the logarithmic transformations: # = 2(In f), and
u = 2(In f),,. Within the Hirota bilinear formulation, soliton
solutions are expressed through

f=) exp

u=0,1

N
Z.‘"iEi + ZMi.“j“ij , (2)
i=1

i<j
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where ), means the sum over all possibilities for 4,
Uss - - - » Yy taking either 0 or 1, and the wave variables and the
phase shifts are defined by

E=kx+Ly-wt+&, 1<i<N, (3)
P(ki —kpli—l,w; - w,-)
P(ki+kpl+1,w; +w,)

% = —

1<i<j<N, (4

in which k;,[;, and w;, 1 < i < N, satisfy the corresponding
dispersion relation and &;;, 1 < i < N, are arbitrary phase
shifts.

Lump solutions are a class of analytic rational solutions
which are localized in all directions in space, originated from
solving integrable equations in (2+1)-dimensions (see, e.g.,
[6-8]). Taking long wave limits of N-soliton solutions can
generate special lumps [9]. Many integrable equations in
(2+1)-dimensions exhibit the remarkable richness of lump
solutions (see, e.g., [6, 7]). Such equations contain the
KPI equation [10], whose special lump solutions have been
derived from N-soliton solutions [11], the three-dimensional
three-wave resonant interaction [12], the BKP equation [13,
14], the Davey-Stewartson equation II [9], the Ishimori-I
equation [15], and the KP equation with a self-consistent
source [16]. An important step in the process of getting
lumps is to determine positive quadratic function solutions
to bilinear equations [6]. Then, through the mentioned
logarithmic transformations, we present lump solutions to
nonlinear equations (see, e.g., [6] for the case of Hirota
bilinear equations and [7] for the case of generalized bilinear
equations).

In this paper, we would like to generalize the Hirota-
Satsuma-Ito (HSI) equation in (2+1)-dimensions to a new
one which still has abundant interesting solution structures.
Hirota bilinear forms are the starting point for our discussion
(see, e.g., [6, 7,17, 18] for other equations). We will consider
a general class of HSI type equations while keeping the
existence of lump solutions. A general such generalized HSI
equation in (2+1)-dimensions and its lump solutions will be
determined through symbolic computations with Maple. For
a special presented lump solution, three-dimensional plots
and contour plots will be made via the Maple plot tool, to shed
light on the characteristic of the presented lump solutions. A
few concluding remarks will be given in the last section.

2. Lump Solutions

It is known that the Hirota-Satsuma shallow water wave
equation [4],

U, = Uy, +3uu, — 3u,v, —u,,

(5)
Vv, = —U,
has a bilinear form,
(D,D.-D,D,-D%)f-f =0, (6)
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under the logarithmic transformations u = 2(In f),, and v =
2(In f),. An integrable (2 + 1)-dimensional extension of the
Hirota-Satsuma equation reads

3(uu,), +u

U, +u,, =0, (7)

XXX yt
which passes the Hirota three-soliton test [19], and has a
bilinear form under the logarithmic transformation u =

2(In f),:
(DD, +D,D, +D}) f- f =0. (8)

Equation (7) is called the Hirota-Satsuma-Ito (HSI) equation
in (2+1)-dimensions [19]. We would like to add three terms
to generalize the abovementioned HSI equation to a new one
which still possesses abundant interesting solution structures:

P(u)=3 (uxut)x T Usxxt T aluyt + Oy, + 63uxy

)

+ 04ty + 051y, = 0.

This generalized HSI equation has a bilinear form under the
logarithmic transformation u = 2(Inf) :

B(f)=(D}D,+&,D,D, +8,D} +08,D,D,
(10)
+08,D.D; +85D}) f - f =0.

Precisely, under u = 2(In f),, we have the relation P(u) =
(B(f)/ fz)x. In what follows, we would like to determine
lump solutions to the gHSI equation in (2+1)-dimensions (9),
through symbolic computations with Maple.

We start to search for positive quadratic solutions to the
gHSI bilinear equation (10) to generate lump solutions to the
gHSI equation (9):

f= ((113c+c22y+(13t+a4)2 +(a5x+a6y+a7t+a8)2 a
11

+ dg.

Plugging this function into the gHSI bilinear equation (10)
generates a system of nonlinear algebraic equations on the
parameters aq;, 1 < i < 9. Conducting direct symbolic
computation to solve this system gives a set of solutions for
the parameters where

b
a9 == T 2
(a,04 + a,8,)" + (a50, + as0,)
_ b2
K (a,04 + 9251)2 + (as0, + a681)2 , 12
3 (af + ag) b,
ay =

(aya5 - a2a5)2 (038, — 8,058, + 6365)



Complexity

and all other g;’s are arbitrary. The involved three constants
are defined as follows:

b = [(afa2 + 2a,asa, — azaé) 6, +a (aﬁ + aé) o
+a, (af + aé)@s] O + [al (alz + ag) 6,
+a, (af + a§)83 + (alazz + 2a,a504 — alaé)és] 84>
b, = [(—af% +2a,a,05 + a§a6)82 +as (a22 + aé) N
+ ag (af + aé)@s] O + [as (alz + ag) 6,
+ ag (af + ag) &8s+ (—a%as + 2a,a,a4 + asaé) 65] 13)
-8,
b, = (af + aé) (a,a, + asag) (8,0, + 8;0,) + (af
+ aé) (azz + aé) 0,65 + (af + aé)z 8,0, + (a22 + aé)
(a0, + asag) 8,05 + [(“1‘12 + a5a6)2
— (ayag — aQaS)Z] 8,0s.
Those formulas in (12) and (13) were obtained under a
simplification process with Maple.
From (12), we can easily see that it is sufficient to
guarantee f > 0 if we require
(878, — 8,030, + 8385) by > 0, (14)

and, thus, the function f defined by (12) and (13) under the
abovementioned condition and

a,aq — ayas #+ 0 15)
leads to lump solutions

2fs

u=2(Inf) = 7 (16)
to the gHSI equation in (2+1)-dimensions (9).
When one takes
6, =1,
6, =1, 17)
8;,=0,=06,=0,

one obtains the original HSI equation in (2+1)-dimensions
(7), and the function f by (12) and (13) presents a class of
lump solutions to the HSI equation (7):

u=2(Inf)_,
f= (a1x+a2y+a3t+a4)2 (18)

2
+ (asx +agy + ast +ag)” + ao,

3
where
2 2 2
aa, + 20,050 — Aya;
= a +a? ’
b T 4g
2 2
_ @410 — 2a,a,05 — a;ag
a; = > (19)

2 2
a, +a6

2
3 (af + ag) (a,a, + asag)

(“1“6 - %35)2

>

and all other ;s are arbitrary. Solving the abovementioned
parameter solutions on a; and a, for a, and a4 and substitut-
ing the resulting expressions for a, and g, into the formula
for ay in (19), we get

2 2
. aya; + 2a,asa, — a;a;
, = —

a2 + a2 ’
_ aja; - 2a,a;a5 - aza,
as = 2Z1a2 > (20)
3 T4
2, 2\ (2, 2
3 (al + as) (a3 + a7) (a,a5 + asa,)
g = — 3 .
(“1“’7 - 3335)
It is easy to see that
2, 2
(al + as) (a,a; - azas) 1)
a0 — Ards = D) >
a; +a;
and, thus, the conditions of
a,a; +asa; <0,
(22)

aa, —azas # 0

guarantee that (16) with (11) and (20) will present lump
solutions to the HSI equation (7) [20].

Particularly taking
8, =1,
5, =1,
8, =-1, (23)
0y=1,
ds =-1,

we obtain a special gHSI equation as follows:

Uysxt T 3 (uxut)x TUy t U — Uy T Uy — Uy, = 0, (24)

vt 24 Yy

which has a Hirota bilinear form

(DiD,+D,D,+D,-D,D,+D,D,~D}) f - f
(25)
= 0,
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FIGURE 1: Profiles of u when ¢ = 0, 3, 6: 3D plots (top) and contour plots (bottom).

under the logarithmic transformation (16). Associated with

a =1,
a, = -2,
a, =2,
(26)
as = 2,
ag = =3,
ag = =5,

(16) with (11) and (22) present the lump solution to the special
gHSI equation (24):

u
2(10x — 16y — t — 16) (27)
S (x-2y -G/ t+2) 4 (2x -3y + (1/2)t-5)* +15

Three three-dimensional plots and contour plots of this
lump solution are made via Maple plot tools, to shed light
on the characteristic of the presented lump solutions, in
Figure 1.

All the exact solutions generated above add valuable
insights into the existing theories on soliton solutions and
dromion-type solutions, developed through various power-
ful solution techniques including the Hirota perturbation
approach, the Riemann-Hilbert approach, the Wronskian
technique, symmetry reductions, and symmetry constraints
(see, e.g., [21-31]).

3. Concluding Remarks

We have studied a generalized (2+1)-dimensional Hirota-
Satsuma-Ito (HSI) equation to explore different equations
which possess lump solutions, through symbolic computa-
tions with Maple. The results enrich the theory of lumps and
solitons, providing a new example of (2+1)-dimensional non-
linear equations, which possess beautiful lump structures.
Three-dimensional plots and contour plots of a specially
chosen lump solution were made by using the plot tool in
Maple.

Many nonlinear equations possess lump solutions,
which include (2+1)-dimensional generalized KP, BKP,
KP-Boussinesq, Sawada-Kotera, and Bogoyavlensky-Kono-
pelchenko equations [32-36]. Some recent studies also
demonstrate the strikingly high richness of lump solutions
to linear partial differential equations [37] and nonlinear
partial differential equations in (2+1)-dimensions (see,
e.g., [38-41]) and (3+1)-dimensions (see, e.g., [42-48]).
Diversity of lump solutions supplements exact solutions
generated from different kinds of combinations (see, e.g.,
[49-52]) and can yield various Lie-Backlund symmetries,
which can be used to determine conservation laws by
symmetries and adjoint symmetries [53-55]. Moreover,
diverse interaction solutions [35] have been exhibited
for many integrable equations in (2+1)-dimensions,
including lump-soliton interaction solutions (see, e.g.,
[56-58]) and lump-kink interaction solutions (see, e.g.,
[59-62]).
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We finally remark that we could add one more term to
the gHSI equation (9) to formulate a more generalized HSI
bilinear equation,

(DD, +6,D,D, +8,D% + 8,D,D, + 8,D.D,
(28)
+8,D},+8:D;) f - f =0,

where§;, 1 < i < 6, are all constants, but we failed to drive any
lump solution to the corresponding nonlinear equation on
u = 2(In f),. The first term in the abovementioned bilinear
equation is crucial in determining lump solutions but the
last term brings the difficulty to work out lump solutions.
There is no hint on how to solve any big system of resulting
nonlinear algebraic equations. Nevertheless, some general
considerations on the existence of lumps have been made for
the Hirota bilinear case [6] and the generalized bilinear cases

[7].
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