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The Hirota-Satsuma-Ito equation in (2+1)-dimensions passes the three-soliton test.This paper aims to generalize this equation to a
new one which still has abundant interesting solution structures. Based on the Hirota bilinear formulation, a symbolic computation
with a new class of Hirota-Satsuma-Ito type equations involving general second-order derivative terms is conducted to require
having lump solutions. Explicit expressions for lump solutions are successfully presented in terms of coefficients in a generalized
Hirota-Satsuma-Ito equation. Three-dimensional plots and contour plots of a special presented lump solution are made to shed
light on the characteristic of the resulting lump solutions.

1. Introduction

In the classical theory of differential equations, the main
question is to study the existence of solutions to given
equations, including many nonlinear equations describing
real-world problems. Cauchy problems are to deal with the
existence, uniqueness, and stability of solutions satisfying
initial data. Laplace’s method is developed for solving Cauchy
problems for linear ordinary differential equations and the
Fourier transform method for linear partial differential
equations. In modern soliton theory, the isomonodromic
transform method and the inverse scattering transform
method have been designed to solve Cauchy problems for
nonlinear ordinary and partial differential equations [1–
3]. Explicitly solvable differential equations include various
constant-coefficient and linear differential equations, but it
is extremely difficult to compute exact solutions to variable-
coefficient or nonlinear equations.

However, the Hirota bilinear method provides us with a
working approach to soliton solutions, historically found for
nonlinear integrable equations [4, 5]. Soliton solutions are
analytic ones exponentially localized in all directions in space
and time. Let a polynomial 𝑃 determine a Hirota bilinear
differential equation:

𝑃 (𝐷𝑥, 𝐷𝑦, 𝐷𝑡) 𝑓 ⋅ 𝑓 = 0, (1)

in (2+1)-dimensions, where 𝐷𝑥, 𝐷𝑦, and 𝐷𝑡 are Hirota’s
bilinear derivatives. The corresponding partial differential
equation with a dependent variable 𝑢 is determined usually
by one of the logarithmic transformations: 𝑢 = 2(ln𝑓)𝑥 and𝑢 = 2(ln𝑓)𝑥𝑥.Within theHirota bilinear formulation, soliton
solutions are expressed through

𝑓 = ∑
𝜇=0,1

exp( 𝑁∑
𝑖=1

𝜇𝑖𝜉𝑖 + ∑
𝑖<𝑗

𝜇𝑖𝜇𝑗𝑎𝑖𝑗) , (2)
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where ∑𝜇=0,1 means the sum over all possibilities for 𝜇1,𝜇2, . . . , 𝜇𝑁 taking either 0 or 1, and the wave variables and the
phase shifts are defined by

𝜉𝑖 = 𝑘𝑖𝑥 + 𝑙𝑖𝑦 − 𝜔𝑖𝑡 + 𝜉𝑖,0, 1 ≤ 𝑖 ≤ 𝑁, (3)

and

e𝑎𝑖𝑗 = −𝑃 (𝑘𝑖 − 𝑘𝑗, 𝑙𝑖 − 𝑙𝑗, 𝜔𝑗 − 𝜔𝑖)𝑃 (𝑘𝑖 + 𝑘𝑗, 𝑙𝑖 + 𝑙𝑗, 𝜔𝑗 + 𝜔𝑖) , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, (4)

in which 𝑘𝑖, 𝑙𝑖, and 𝜔𝑖, 1 ≤ 𝑖 ≤ 𝑁, satisfy the corresponding
dispersion relation and 𝜉𝑖,0, 1 ≤ 𝑖 ≤ 𝑁, are arbitrary phase
shifts.

Lump solutions are a class of analytic rational solutions
which are localized in all directions in space, originated from
solving integrable equations in (2+1)-dimensions (see, e.g.,
[6–8]). Taking long wave limits of 𝑁-soliton solutions can
generate special lumps [9]. Many integrable equations in
(2+1)-dimensions exhibit the remarkable richness of lump
solutions (see, e.g., [6, 7]). Such equations contain the
KPI equation [10], whose special lump solutions have been
derived from𝑁-soliton solutions [11], the three-dimensional
three-wave resonant interaction [12], the BKP equation [13,
14], the Davey-Stewartson equation II [9], the Ishimori-I
equation [15], and the KP equation with a self-consistent
source [16]. An important step in the process of getting
lumps is to determine positive quadratic function solutions
to bilinear equations [6]. Then, through the mentioned
logarithmic transformations, we present lump solutions to
nonlinear equations (see, e.g., [6] for the case of Hirota
bilinear equations and [7] for the case of generalized bilinear
equations).

In this paper, we would like to generalize the Hirota-
Satsuma-Ito (HSI) equation in (2+1)-dimensions to a new
one which still has abundant interesting solution structures.
Hirota bilinear forms are the starting point for our discussion
(see, e.g., [6, 7, 17, 18] for other equations). We will consider
a general class of HSI type equations while keeping the
existence of lump solutions. A general such generalized HSI
equation in (2+1)-dimensions and its lump solutions will be
determined through symbolic computations with Maple. For
a special presented lump solution, three-dimensional plots
and contour plotswill bemade via theMaple plot tool, to shed
light on the characteristic of the presented lump solutions. A
few concluding remarks will be given in the last section.

2. Lump Solutions

It is known that the Hirota-Satsuma shallow water wave
equation [4],

𝑢𝑡 = 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑡 − 3𝑢𝑥V𝑡 − 𝑢𝑥,
V𝑥 = −𝑢, (5)

has a bilinear form,

(𝐷𝑡𝐷3𝑥 − 𝐷𝑡𝐷𝑥 − 𝐷2𝑥)𝑓 ⋅ 𝑓 = 0, (6)

under the logarithmic transformations 𝑢 = 2(ln𝑓)𝑥𝑥 and V =2(ln𝑓)𝑥. An integrable (2 + 1)-dimensional extension of the
Hirota-Satsuma equation reads

3 (𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡 + 𝑢𝑦𝑡 + 𝑢𝑥𝑥 = 0, (7)

which passes the Hirota three-soliton test [19], and has a
bilinear form under the logarithmic transformation 𝑢 =2(ln𝑓)𝑥:

(𝐷3𝑥𝐷𝑡 + 𝐷𝑦𝐷𝑡 + 𝐷2𝑥) 𝑓 ⋅ 𝑓 = 0. (8)

Equation (7) is called the Hirota-Satsuma-Ito (HSI) equation
in (2+1)-dimensions [19]. We would like to add three terms
to generalize the abovementioned HSI equation to a new one
which still possesses abundant interesting solution structures:

𝑃 (𝑢) = 3 (𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑥𝑥𝑥𝑡 + 𝛿1𝑢𝑦𝑡 + 𝛿2𝑢𝑥𝑥 + 𝛿3𝑢𝑥𝑦
+ 𝛿4𝑢𝑥𝑡 + 𝛿5𝑢𝑦𝑦 = 0. (9)

This generalized HSI equation has a bilinear form under the
logarithmic transformation 𝑢 = 2(ln𝑓)𝑥:

𝐵 (𝑓) = (𝐷3𝑥𝐷𝑡 + 𝛿1𝐷𝑦𝐷𝑡 + 𝛿2𝐷2𝑥 + 𝛿3𝐷𝑥𝐷𝑦
+ 𝛿4𝐷𝑥𝐷𝑡 + 𝛿5𝐷2𝑦) 𝑓 ⋅ 𝑓 = 0. (10)

Precisely, under 𝑢 = 2(ln𝑓)𝑥, we have the relation 𝑃(𝑢) =(𝐵(𝑓)/𝑓2)𝑥. In what follows, we would like to determine
lump solutions to the gHSI equation in (2+1)-dimensions (9),
through symbolic computations with Maple.

We start to search for positive quadratic solutions to the
gHSI bilinear equation (10) to generate lump solutions to the
gHSI equation (9):

𝑓 = (𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4)2 + (𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8)2
+ 𝑎9. (11)

Plugging this function into the gHSI bilinear equation (10)
generates a system of nonlinear algebraic equations on the
parameters 𝑎𝑖, 1 ≤ 𝑖 ≤ 9. Conducting direct symbolic
computation to solve this system gives a set of solutions for
the parameters where

𝑎3 = − 𝑏1(𝑎1𝛿4 + 𝑎2𝛿1)2 + (𝑎5𝛿4 + 𝑎6𝛿1)2 ,
𝑎7 = − 𝑏2(𝑎1𝛿4 + 𝑎2𝛿1)2 + (𝑎5𝛿4 + 𝑎6𝛿1)2 ,

𝑎9 = 3 (𝑎21 + 𝑎25) 𝑏3(𝑎1𝑎6 − 𝑎2𝑎5)2 (𝛿21𝛿2 − 𝛿1𝛿3𝛿4 + 𝛿24𝛿5) ,
(12)
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and all other 𝑎𝑖’s are arbitrary. The involved three constants
are defined as follows:

𝑏1 = [(𝑎21𝑎2 + 2𝑎1𝑎5𝑎6 − 𝑎2𝑎25) 𝛿2 + 𝑎1 (𝑎22 + 𝑎26) 𝛿3
+ 𝑎2 (𝑎22 + 𝑎26) 𝛿5] 𝛿1 + [𝑎1 (𝑎21 + 𝑎25) 𝛿2
+ 𝑎2 (𝑎21 + 𝑎25) 𝛿3 + (𝑎1𝑎22 + 2𝑎2𝑎5𝑎6 − 𝑎1𝑎26) 𝛿5] 𝛿4,

𝑏2 = [(−𝑎21𝑎6 + 2𝑎1𝑎2𝑎5 + 𝑎25𝑎6) 𝛿2 + 𝑎5 (𝑎22 + 𝑎26) 𝛿3
+ 𝑎6 (𝑎22 + 𝑎26) 𝛿5] 𝛿1 + [𝑎5 (𝑎21 + 𝑎25) 𝛿2
+ 𝑎6 (𝑎21 + 𝑎25) 𝛿3 + (−𝑎22𝑎5 + 2𝑎1𝑎2𝑎6 + 𝑎5𝑎26) 𝛿5]
⋅ 𝛿4,

𝑏3 = (𝑎21 + 𝑎25) (𝑎1𝑎2 + 𝑎5𝑎6) (𝛿1𝛿2 + 𝛿3𝛿4) + (𝑎21
+ 𝑎25) (𝑎22 + 𝑎26) 𝛿1𝛿3 + (𝑎21 + 𝑎25)2 𝛿2𝛿4 + (𝑎22 + 𝑎26)
⋅ (𝑎1𝑎2 + 𝑎5𝑎6) 𝛿1𝛿5 + [(𝑎1𝑎2 + 𝑎5𝑎6)2
− (𝑎1𝑎6 − 𝑎2𝑎5)2] 𝛿4𝛿5.

(13)

Those formulas in (12) and (13) were obtained under a
simplification process with Maple.

From (12), we can easily see that it is sufficient to
guarantee 𝑓 > 0 if we require

(𝛿21𝛿2 − 𝛿1𝛿3𝛿4 + 𝛿24𝛿5) 𝑏3 > 0, (14)

and, thus, the function 𝑓 defined by (12) and (13) under the
abovementioned condition and

𝑎1𝑎6 − 𝑎2𝑎5 ̸= 0 (15)

leads to lump solutions

𝑢 = 2 (ln𝑓)
𝑥
= 2𝑓𝑥𝑓 (16)

to the gHSI equation in (2+1)-dimensions (9).
When one takes

𝛿1 = 1,
𝛿2 = 1,
𝛿3 = 𝛿4 = 𝛿5 = 0,

(17)

one obtains the original HSI equation in (2+1)-dimensions
(7), and the function 𝑓 by (12) and (13) presents a class of
lump solutions to the HSI equation (7):

𝑢 = 2 (ln𝑓)
𝑥
,

𝑓 = (𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4)2
+ (𝑎5𝑥 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8)2 + 𝑎9,

(18)

where

𝑎3 = −𝑎21𝑎2 + 2𝑎1𝑎5𝑎6 − 𝑎2𝑎25𝑎22 + 𝑎26 ,
𝑎7 = 𝑎21𝑎6 − 2𝑎1𝑎2𝑎5 − 𝑎25𝑎6𝑎22 + 𝑎26 ,

𝑎9 = 3 (𝑎21 + 𝑎25)2 (𝑎1𝑎2 + 𝑎5𝑎6)
(𝑎1𝑎6 − 𝑎2𝑎5)2 ,

(19)

and all other 𝑎𝑖’s are arbitrary. Solving the abovementioned
parameter solutions on 𝑎3 and 𝑎7 for 𝑎2 and 𝑎6 and substitut-
ing the resulting expressions for 𝑎2 and 𝑎6 into the formula
for 𝑎9 in (19), we get

𝑎2 = −𝑎21𝑎3 + 2𝑎1𝑎5𝑎7 − 𝑎3𝑎25𝑎23 + 𝑎27 ,
𝑎6 = 𝑎21𝑎7 − 2𝑎1𝑎3𝑎5 − 𝑎25𝑎7𝑎23 + 𝑎27 ,
𝑎9 = −3 (𝑎21 + 𝑎25) (𝑎23 + 𝑎27) (𝑎1𝑎3 + 𝑎5𝑎7)

(𝑎1𝑎7 − 𝑎3𝑎5)2 .
(20)

It is easy to see that

𝑎1𝑎6 − 𝑎2𝑎5 = (𝑎21 + 𝑎25) (𝑎1𝑎7 − 𝑎3𝑎5)𝑎23 + 𝑎27 , (21)

and, thus, the conditions of

𝑎1𝑎3 + 𝑎5𝑎7 < 0,
𝑎1𝑎7 − 𝑎3𝑎5 ̸= 0 (22)

guarantee that (16) with (11) and (20) will present lump
solutions to the HSI equation (7) [20].

Particularly taking

𝛿1 = 1,
𝛿2 = 1,
𝛿3 = −1,
𝛿4 = 1,
𝛿5 = −1,

(23)

we obtain a special gHSI equation as follows:

𝑢𝑥𝑥𝑥𝑡 + 3 (𝑢𝑥𝑢𝑡)𝑥 + 𝑢𝑦𝑡 + 𝑢𝑥𝑥 − 𝑢𝑥𝑦 + 𝑢𝑥𝑡 − 𝑢𝑦𝑦 = 0, (24)

which has a Hirota bilinear form

(𝐷3𝑥𝐷𝑡 + 𝐷𝑦𝐷𝑡 + 𝐷2𝑥 − 𝐷𝑥𝐷𝑦 + 𝐷𝑥𝐷𝑡 − 𝐷2𝑦) 𝑓 ⋅ 𝑓
= 0, (25)
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Figure 1: Profiles of 𝑢 when 𝑡 = 0, 3, 6: 3D plots (top) and contour plots (bottom).

under the logarithmic transformation (16). Associated with
𝑎1 = 1,
𝑎2 = −2,
𝑎4 = 2,
𝑎5 = 2,
𝑎6 = −3,
𝑎8 = −5,

(26)

(16)with (11) and (22) present the lump solution to the special
gHSI equation (24):
𝑢
= 2 (10𝑥 − 16𝑦 − 𝑡 − 16)

(𝑥 − 2𝑦 − (3/2) 𝑡 + 2)2 + (2𝑥 − 3𝑦 + (1/2) 𝑡 − 5)2 + 15 .
(27)

Three three-dimensional plots and contour plots of this
lump solution are made via Maple plot tools, to shed light
on the characteristic of the presented lump solutions, in
Figure 1.

All the exact solutions generated above add valuable
insights into the existing theories on soliton solutions and
dromion-type solutions, developed through various power-
ful solution techniques including the Hirota perturbation
approach, the Riemann-Hilbert approach, the Wronskian
technique, symmetry reductions, and symmetry constraints
(see, e.g., [21–31]).

3. Concluding Remarks

We have studied a generalized (2+1)-dimensional Hirota-
Satsuma-Ito (HSI) equation to explore different equations
which possess lump solutions, through symbolic computa-
tions with Maple. The results enrich the theory of lumps and
solitons, providing a new example of (2+1)-dimensional non-
linear equations, which possess beautiful lump structures.
Three-dimensional plots and contour plots of a specially
chosen lump solution were made by using the plot tool in
Maple.

Many nonlinear equations possess lump solutions,
which include (2+1)-dimensional generalized KP, BKP,
KP-Boussinesq, Sawada-Kotera, and Bogoyavlensky-Kono-
pelchenko equations [32–36]. Some recent studies also
demonstrate the strikingly high richness of lump solutions
to linear partial differential equations [37] and nonlinear
partial differential equations in (2+1)-dimensions (see,
e.g., [38–41]) and (3+1)-dimensions (see, e.g., [42–48]).
Diversity of lump solutions supplements exact solutions
generated from different kinds of combinations (see, e.g.,
[49–52]) and can yield various Lie-Bäcklund symmetries,
which can be used to determine conservation laws by
symmetries and adjoint symmetries [53–55]. Moreover,
diverse interaction solutions [35] have been exhibited
for many integrable equations in (2+1)-dimensions,
including lump-soliton interaction solutions (see, e.g.,
[56–58]) and lump-kink interaction solutions (see, e.g.,
[59–62]).
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We finally remark that we could add one more term to
the gHSI equation (9) to formulate a more generalized HSI
bilinear equation,

(𝐷3𝑥𝐷𝑡 + 𝛿1𝐷𝑦𝐷𝑡 + 𝛿2𝐷2𝑥 + 𝛿3𝐷𝑥𝐷𝑦 + 𝛿4𝐷𝑥𝐷𝑡
+ 𝛿5𝐷2𝑦 + 𝛿6𝐷2𝑡 )𝑓 ⋅ 𝑓 = 0, (28)

where 𝛿𝑖, 1 ≤ 𝑖 ≤ 6, are all constants, but we failed to drive any
lump solution to the corresponding nonlinear equation on𝑢 = 2(ln𝑓)𝑥. The first term in the abovementioned bilinear
equation is crucial in determining lump solutions but the
last term brings the difficulty to work out lump solutions.
There is no hint on how to solve any big system of resulting
nonlinear algebraic equations. Nevertheless, some general
considerations on the existence of lumps have been made for
the Hirota bilinear case [6] and the generalized bilinear cases
[7].
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