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1. Introduction

The invariant subspace method, recently proposed in [1,2] and refined in [3], is one of powerful methods to construct
exact solutions to nonlinear evolution equations. Various invariant subspaces defined as subspaces of solutions to linear
ordinary differential equations have been used to solve special nonlinear evolution equations (see, e.g. [4-6]), particu-
larly nonlinear evolution equations in mechanics and physics (see, e.g. Galaktionov and Svirshchevskii’s book [4]). Evo-
lution equations that admit invariant subspaces define symmetries of given linear ordinary differential equations [5,7].

There are two important aspects on the invariant subspace method. One is that the linear superposition principle has
a good effect on the formulation of exact solutions to nonlinear evolution equations. It is known that N-soliton solutions
to soliton equations such as the KdV equation, the mKdV equation, the nonlinear Schrédinger equation and the sine-
Gordon equation, derived by Hirota’s bilinear method [8], are all in a linear space of exponential functions under change
of variables, and the linear superposition principle plays an important role in presenting soliton, negaton and complex-
iton solutions [4], [8-14]. The other is the generalized separation of variables of either dependent variables [15,16] or
independent variables [17]. Particularly, nonlinear differential equations in higher dimensions often possess variable sep-
aration solutions [17,18].

The basic solution procedure of the refined invariant subspace method [3] is as follows. Let us focus on a scalar evolution
equation

U = Flu] = F(X, £, U Uy, Uy, - ), (1.1)

where u = u(x,t) is a function of x, t € R and uy = &, uy = 2u . Introduce a k-dimensional linear space
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Wi = L0000, ... fi) = {2CH00/Ci = const. 1 < i <k}, (12)
by a subspace of solutions to an nth-order linear ordinary differential equation:

Lyl =y™ + a1 (x)y" Y+ +a(x)y=0, y"=Dy, D= % i>0, (1.3)
where ag, ay,...,a, 1 are given continuous functions. We assume that W, is an invariant space of the evolution Eq. (1.1):

F[Wk] c Wy, i.e.7 F[u] e Wy, Yue W,.

This invariance condition implies that there exist k functions F;,F,, ..., F; such that

k k _
FICh0] = SR(C oo COf0 (1.4
i=1 i=1
for whatever constants Cq,Cy, ..., Ci. Then, a system of ordinary differential equations
dy;, - .
R i), 1<i<k (15)

yields a set of exact solutions to the evolution Eq. (1.1):
k
u=;wmmw (1.6)
iz

with generalized separated variables. This refined approach was proposed and analyzed in [3]. We remark that one may not
able to define a subspace W, by a kth-order linear ordinary differential equation [3], and that when k < n, the invariance
conditions F|W,] C W, and F|W,] C W, require different sets of conditions on the evolution Eq. (1.1) and its associated invari-
ant subspaces.

The invariant subspace method can be used to present exact solutions to systems of nonlinear evolution equations. On the
basis of the existence of invariant subspaces that systems of linear ordinary differential equations define, Qu and Zhu [6]
classified a particular class of systems of nonlinear parabolic equations. Zhu and Qu [19] presented an estimation of maximal
dimensions of invariant subspaces for two-component systems of nonlinear evolution equations, and Shen et al. [20] gen-
eralized this estimation to multi-component systems of nonlinear evolution equations and presented certain classifications
of systems of nonlinear parabolic equations and exact solutions, by observing invariant subspaces.

In this paper, we would like to apply the invariant subspace method to solve systems of dispersive evolution equations. A
class of two-component nonlinear systems of dispersive equations is classified and a set of sufficient conditions is presented
for the existence of invariant subspaces that the considered systems admit. A few concrete examples of the discussed sys-
tems illustrate the effectiveness of the invariant subspace theory in presenting exact and explicit solutions with generalized
separated variables.

2. The refined invariant subspace method

We use the following notations

ul = ui(x, t), u}:%, 1<i<q,j=1, (2.1)
which can be easily extended to cases of multiple spatial variables. Take a system of evolution equations of the form

U =Flul = (F'[ul, FPu),... . Flu)’, u=@"u?,.. . u), (2.2)
where all components of Flu]:

Flul =F(x.tu',.ouf ) ouf), 1<i<q, (2.3)

are given sufficient smooth functions in the indicated variables and can be considered as generalized differential operators.
Step 1: Determining invariant subspaces.

. : . ki .
Wi, = L), fi (9} = {;qf;(an ~ const. 1< < ki}, 1<i<q, (24)
iz

where foreach 1 <i<gq, fi(x),... ,f,il_ (x) are linearly independent solutions to an n; th-order linear ordinary differential equa-
tion with continuous function coefficients:
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(nj—1)

Liy) =y™ +d,_ xy"" + ... +d (x)y; + dy(x)y; = 0, (2.5)

where n; > k;. The invariance condition F|Wy, ] C Wy, .k, for the subspace Wy, i, = Wllq X ... X qu with respect to

FlujeW,, YueW, . 1<i<q, (2.6)
namely,
D"Flu] +a,_,(x)D"'Flu+ ...+ ay)Fu] =0, ueW, i, 1<i<q. (2.7)

This set of equations provides a criterion for determining invariant subspaces that the system of evolution Eqs. (2.2) admits.
Step 2: Solving ODEs.
The invariance conditions in (2.7) mean that there exist functions F}, 1<j<k;, 1<i<q,suchthat

|k kq ki . .
F 2C}]§1(x),...,2Cffj"(x) :2F;(c},...,c,ll,...,c‘{,...,cgq)f;(x), (2.8)
j= J= j=

an exact solution of the form
. ki . .
w=Y.Cfix, 1<i<q, (2.9)
j=1

if and only if the C}(t)‘s satisfy a system of ordinary differential equations:

dC} Ficl 1 q q i i
E:Fj(Cl,...,Ckl,...Cl,...,qu), 1<j<k, 1<i<q, (2.10)
which is often much simpler than the system of evolution Egs. (2.2). It then yields an exact solution (2.9) to the system (2.2)
to solve this system of ordinary differential equations (2.10).

In concrete situations, we normally take linear ordinary differential equations with constant coefficients in (2.5) to begin
with. The whole job of applying the refined invariant subspace method is to check the invariance conditions (2.7) and solve
the resulting system of ordinary differential equations (2.10).

We point out that the orders of linear ordinary differential equations defining invariant subspaces are not arbitrary, and
they are subject to the differential orders of the nonlinear operators F', 1 <i < q (see, e.g. [4,19]). As soon as the maximal
orders of the desired linear ordinary differential equations are determined, we can classify systems of evolution equations
under consideration, and compute exact solutions from the corresponding invariant subspaces.

3. Applications

In this section, we analyze a (1 + 1)-dimensional nonlinear system of dispersive evolution equations to illustrate how to
generate invariant subspaces and the corresponding exact solutions. We consider the following nonlinear system of disper-
sive evolution equations:

U = F = (U + 0 UO),, + 0222, (3.1)
Ve = G = Uy + f1Ul + B0, (3.2)

where 4,02, 8,8, are constants, 04,0, are not simultaneously equal to zero to keep the nonlinearity, and we denote
: 2 2 . .
Uy =%, v, =% un =24 v,=2% ..,asin soliton theory.

3.1. Classification

Let us take an invariant subspace W,, = W} x W3 defined by two second-order linear ordinary differential equations:

W =Ly =y + @y +ay =0}, W; = {z|l[z] =2 + b1z + boz = 0}, (33)
where ag, a;, bg, by are constants to be determined. The corresponding invariance conditions read

(D*F + a;DF + aoF)\uEW;_ygwg =0, (34)

(D26+b1DG+bOG)|u€W;v€W% =0 (3.5)

Substitute the expressions for F and G into the above equations, and replace u,, by —a;uy — apu and vy, by —b, v, — bov a few
times to remove all higher-order partial derivatives of u and v with respect to x. Then, we collect the coefficients of the three
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terms (vx)z, vv, and 2 in the first simplified equation and the coefficients of the two terms u, and u in the second simplified
equation, and set all the resulting coefficients to be zero, to obtain the sufficient conditions:

(00)% : Toyb? + 0y ag + 201, — 4oty bg — 304a;by =0, (3.6)
vy : 1201 boby — aaghy — 404a1bg + 20501 — oyby — 20by + oqarh? =0, (3.7)
V% 4y b}, + 000 — o1 bob? + oyarboby — oty aghy — 2012b9 = 0, (3.8)
uy - at —3apa? + ai — pya; — a3by + 2apa1by + Byby + a2by — aghy = 0, (3.9)
u:apad —2aka; — Biap — aoathy + aiby + apaibo + f1bg = 0. (3.10)

This guarantees the invariance conditions (3.4) and (3.5). We began with two second-order ordinary differential equations
with constant coefficients, and so there exist linearly dependent terms in (ux)z, vy and v? for whatever solution », but u and
u, could be linearly independent (see a theorem in [3]). Therefore, the conditions ((3.6)-(3.8)) are sufficient but not neces-
sary to guarantee the first invariance condition (3.4), but the conditions (3.9) and (3.10) are both sufficient and necessary to
guarantee the second invariance condition (3.5).

Solving the above system of algebraic equations by Maple, we obtain the following list of 11 examples, each of which con-
sists of a system of evolution equations and a system of linear ordinary differential equations defining an invariant subspace:

U = (U + 01 V), — 3000702, [ Li(y) =y + a1y +§aiy =0, (3.11)
Vp = Upe + S @GUA+ B0, L(2)=72" +{mZ + % aiz=0; '
U = (Upex + 01 VVy), — 2 0105V, Ly)=y' +ay —£aly=0, (3.12)
U = Upe + 28 @3u + By, L2)=72'+im7 — £alz=0;
U = (Upex + 01 VVy), — & 0107V, L) =y +ay +%aly =0, (3.13)
Vr = Ugee + 55 G1U + fr 0, Ly(z) =2' +3a1Z — 3503z = 0; '
U = (Unoe + 01 V) — 35000707, [Li(y) =Y+ @y + 503y =0, (3.14)
Ut = U + Z5 03U+ B0, L(z) =2' +3a7 + £ a3z = 0; '
U = (U + 01 V), — 2onadv?, [ Li(y) =y +ay +aly =0, (3.15)
Vr = Ugyy — BU+ B0, L(z)=72"+{a7 +1a3z=0; '
U = (Uyge + 01 V), — 20102 12, {L1 W) =y"+ay =0, (3.16)
Ve = Ugex + f1UU + o0, L(2) =2" + a1Z = 0;
Ur = (Up + 01 V), —gonai 2, [ Li(y)=y"+ay =0, (3.17)
U = Uy + GU+ o0, L(2) =72"+ @17 = 0; )
Up = (U + 001 VD), — 20407 V2, {Ll W) =y"+ay =0, (3.18)
Up = Uypx + ﬂz v, L, (Z) =7' - CI%Z =0; .
Uy = (Unex + 0 V), Liy)=y' +ay +%aly =0, (3.19)
Ve =lUpe + 5 GU+ v, | L(2)=2"+1a:7 =0 '

{ Up = (Upe + 01 VTx);, { Liy)=y"+ay =0, (3.20)
U = Uy + G3U + By 0, Ly(z)=2"=0; ’
U = (Uyge + 01 D), + 2001 Do 12, {L1 ) =y"=0, 321)
Ut = Uy + o 0, Ly(z) =2"+boz=0 '

3.2. lllustrative examples
In what follows, we discuss three examples of getting exact solutions with generalized separated variables.
Example 3.1. Let us first consider the system in (3.11):
1
Ur = (Uye + 01 DV, — goc]a% V2, (3.22)
vt :um+ia§u+ﬁ2v, (3.23)

27
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which admits an invariant subspace W5, defined through

2
Liyl=y"+ay + gafy =0, (3.24)
Ly[Z] fz”+1a z’+la2270 (3.25)
S A '

where ay, o1, f, are given constants.
From the two equations L;[y] = 0 and L,[z] = 0, we obtain an invariant subspace

W x W3 = c{edor edox]  pfedx et (3.26)
that the system of (3.22) and (3.23) admits. It then follows that an exact solution can take the form
U= Cy(t)e 3 4+ Cy(t)e 3 p =Dy (t)e 3% + Dy(t)e sM%, (3.27)

where the coefficients are functions of t to be determined. Substituting this solution into the system of (3.22) and (3.23), we
find the following system of ordinary differential equations for computing the coefficients:

, 16 7 , 1 5
C, = 8*1“‘1‘& + 5 0 aDi C, = 8—1a‘1‘C2 o O aD?, (3.28)
/ i
Dy =Dy, Dj = 57iCo + Dz (3.29)
This system can be solved one by one, and its solution reads
Dy(t) = die", (3.30)
t
Co(t) = {—%ala% / D?(s)e #i91° ds + cz} esiait, (3.31)
0
t
Dy(t) = {%a?/ Cz(s)e*/’2sds+d2}e/f2‘, (3.32)
0
t
Ci(t) = {217 oy a? /0 D2 (s)e %" ds + cl] estei (3.33)

where c¢;,d;, 1 <i< 2, are arbitrary constants. Now, (3.27) presents an exact solution to the system of (3.22) and (3.23).

Example 3.2. Let us second consider the system in (3.16):

Ue = (U + 01 VO )y — 2040727, (3.34)

Ur = Ugex + prU+ o0, (3.35)
which admits an invariant subspace W;, defined by

Liyl=y"+ay =0, (3.36)

Lzl =7Z"+,Z =0, (3.37)

where ay, o4, 1, f, are given constants.
Similarly, from the two equations L[y] = 0 and L,[z] = 0, we get an invariant subspace

Wy x W2 = £{1,e%} x £{1,e"*} (3.38)

that the system of (3.34) and (3.35) admits. It then follows that an exact solution can take the form with generalized sep-
arated variables:

U= Cy(t) + Co(t)e ™, v =Di(t) +Dy(t)e . (3.39)

Substituting this solution into the system of (3.34) and (3.35), we find the following system of ordinary differential
equations:

C, = —2ma?D?, C,=atC, — 301a2DiDy, (3.40)

D/l = ﬁ]C1 + ﬁle, D/z = —G?CQ + ﬁ1C2 + ﬁzDz. (34])

This is a really nonlinear system, and it is difficult to solve explicitly. To present exact solutions, let us only focus on a
smaller invariant subspace

Wii = W] x W3 = £{e %"} x £{e 9}, (3.42)
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Solving the system of (3.40) and (3.41) with C; = D; = 0, we arrive at

C, = ce®i!, D, =def! — ( —h) edit, (3.43)
- B2
and according to (3.39), we eventually obtain an exact solution to the system of (3.34) and (3.35):
U= Ce—a1x+a;‘t — de—@xtht _ ( ﬂl) a1x+a‘1‘t (3 44)
’ = b ’ '

where c and d are arbitrary constants. This gives an application of the refined invariant subspace method to exact solutions to
nonlinear systems of evolutions equations.

Example 3.3. Let us third consider the system in (3.19):

U = (Uex + 04 VVx),, (3.45)
8
Ut = Uyex + 57 —=au+ v, (3.46)

which admits an invariant subspace W5, defined by
2
Ly =y +ay + §afy =0, (3.47)
Lzl =2" + %alz’ =0, (3.48)

where a;, 04, 8, are given constants.
Starting from the two equations L,[y] = 0 and L,[z] = 0, we get an invariant subspace

W x W2 = z{ef%m",ef%ﬂﬂ} x £{17e*%““‘} (3.49)
that the system of (3.34) and (3.35) admits. Then, we can form an exact solution with generalized separated variables:
U= Cy(t)e 3 4+ Cy(t)e 3%, v = Dy(t) + Dy(t)e 3%, (3.50)

where the coefficients are functions of t to be determined. Substituting this solution into the system of (3.45) and (3.46), we
find the following system of ordinary differential equations for computing the coefficients:

1 2

Ci=g7 a]Cl—s-;alaD Dy, Cy= ;? 4C2+9oc1a2D2 (3.51)

Dy = f,D1. Dy=.-alCi + ;D (3.52)
This is a nonlinear system, too. To present exact solutions, let us only focus on two smaller invariant subspaces

Wip = W! x W2 = £{e 39} x £{1}, (3.53)
and

Wai = W) x Wi = £{e 5% e 51X} x £{e 30"}, (3.54)

Solving the system of (3.51) and (3.52) with C; = D, = 0 tells

Cy = cest@', D, = del!, (3.55)
and according to (3.50), leads eventually to an exact solution to the system of (3.45) and (3.46):

u=ce 3Gy = del, (3.56)

where c and d are arbitrary constants.
The system of (3.51) and (3.52) with D; = 0 can be solved one by one from C;, D, to C,, and it solution formula is given by

Ci(t) = cedit,  Dy(t) = [%a? 3 Ci(s)e P23 ds + dy | et
(3.57)
Cy(t) = [g 0@ [y D5(s)e s ds + CZ} esteit,

where cq, ¢; and d; are arbitrary constants. Further, the formula (3.50), together with (3.57), presents an exact solution to the
system of (3.45) and (3.46).

These are two application examples of the refined invariant subspace method to construct exact solutions to nonlinear
systems of evolutions equations.
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4. Concluding remarks

The invariant subspace method was used to classify a class of nonlinear systems of dispersive evolution equations and
determine their invariant subspaces and exact solutions. A few examples illustrated the effectiveness of the invariant sub-
space theory for exploring solution structures of systems of nonlinear evolution equations.

The invariant subspace method can be considered as a generalized separation of variables for nonlinear differential equa-
tions. It generates a kind of complexiton-like solutions [17,10,21,22] and exhibits an integrability characteristic [23] that
integrable differential equations possess, complementing existing approaches such as the transformed rational function
method [24] and the multiple exp-function method [25].

It is also interesting to see that the linear superposition principle takes on key role in computing exact solutions to both
evolution equations [4] and Hirota bilinear equations [26]. All related theories furnish linear combination solutions of trig-
onometric and exponential functions with generalized separated variables.
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