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1. Introduction

The invariant subspace method, recently proposed in [1,2] and refined in [3], is one of powerful methods to construct
exact solutions to nonlinear evolution equations. Various invariant subspaces defined as subspaces of solutions to linear
ordinary differential equations have been used to solve special nonlinear evolution equations (see, e.g. [4–6]), particu-
larly nonlinear evolution equations in mechanics and physics (see, e.g. Galaktionov and Svirshchevskii’s book [4]). Evo-
lution equations that admit invariant subspaces define symmetries of given linear ordinary differential equations [5,7].

There are two important aspects on the invariant subspace method. One is that the linear superposition principle has
a good effect on the formulation of exact solutions to nonlinear evolution equations. It is known that N-soliton solutions
to soliton equations such as the KdV equation, the mKdV equation, the nonlinear Schrödinger equation and the sine–
Gordon equation, derived by Hirota’s bilinear method [8], are all in a linear space of exponential functions under change
of variables, and the linear superposition principle plays an important role in presenting soliton, negaton and complex-
iton solutions [4], [8–14]. The other is the generalized separation of variables of either dependent variables [15,16] or
independent variables [17]. Particularly, nonlinear differential equations in higher dimensions often possess variable sep-
aration solutions [17,18].

The basic solution procedure of the refined invariant subspace method [3] is as follows. Let us focus on a scalar evolution
equation
ut ¼ F½u� ¼ Fðx; t;u;ux;uxx; . . .Þ; ð1:1Þ
where u ¼ uðx; tÞ is a function of x; t 2 R and ux ¼ @u
@x ; uxx ¼ @2u

@x2 ; . . .. Introduce a k-dimensional linear space
. All rights reserved.
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Wk ¼ Lff1ðxÞ; f2ðxÞ; . . . ; fkðxÞg ¼
Pk
i¼1

CifiðxÞjCi ¼ const:;1 6 i 6 k
� �

; ð1:2Þ
by a subspace of solutions to an nth-order linear ordinary differential equation:
L½y� ¼ yðnÞ þ an�1ðxÞyðn�1Þ þ � � � þ a0ðxÞy ¼ 0; yðiÞ ¼ Diy; D ¼ d
dx
; i P 0; ð1:3Þ
where a0; a1; . . . ; an�1 are given continuous functions. We assume that Wk is an invariant space of the evolution Eq. (1.1):
F½Wk�# Wk; i:e:; F½u� 2Wk; 8u 2Wk:
This invariance condition implies that there exist k functions �F1; �F2; . . . ; �Fk such that
F
Pk
i¼1

CifiðxÞ
� �

¼
Pk
i¼1

�FiðC1;C2; . . . ;CkÞfiðxÞ ð1:4Þ
for whatever constants C1;C2; . . . ;Ck. Then, a system of ordinary differential equations
dwi

dt
¼ �Fiðw1;w2; . . . ;wkÞ; 1 6 i 6 k; ð1:5Þ
yields a set of exact solutions to the evolution Eq. (1.1):
u ¼
Pk
i¼1

wiðtÞfiðxÞ ð1:6Þ
with generalized separated variables. This refined approach was proposed and analyzed in [3]. We remark that one may not
able to define a subspace Wk by a kth-order linear ordinary differential equation [3], and that when k < n, the invariance
conditions F½Wk�# Wk and F½Wn�# Wn require different sets of conditions on the evolution Eq. (1.1) and its associated invari-
ant subspaces.

The invariant subspace method can be used to present exact solutions to systems of nonlinear evolution equations. On the
basis of the existence of invariant subspaces that systems of linear ordinary differential equations define, Qu and Zhu [6]
classified a particular class of systems of nonlinear parabolic equations. Zhu and Qu [19] presented an estimation of maximal
dimensions of invariant subspaces for two-component systems of nonlinear evolution equations, and Shen et al. [20] gen-
eralized this estimation to multi-component systems of nonlinear evolution equations and presented certain classifications
of systems of nonlinear parabolic equations and exact solutions, by observing invariant subspaces.

In this paper, we would like to apply the invariant subspace method to solve systems of dispersive evolution equations. A
class of two-component nonlinear systems of dispersive equations is classified and a set of sufficient conditions is presented
for the existence of invariant subspaces that the considered systems admit. A few concrete examples of the discussed sys-
tems illustrate the effectiveness of the invariant subspace theory in presenting exact and explicit solutions with generalized
separated variables.

2. The refined invariant subspace method

We use the following notations
ui
0 ¼ uiðx; tÞ; ui

j ¼
@juiðx; tÞ
@xj

; 1 6 i 6 q; j P 1; ð2:1Þ
which can be easily extended to cases of multiple spatial variables. Take a system of evolution equations of the form
ut ¼ F½u� ¼ ðF1½u�; F2½u�; . . . ; Fq½u�ÞT ; u ¼ ðu1;u2; . . . ;uqÞT ; ð2:2Þ
where all components of F½u�:
Fi½u� ¼ Fiðx; t;u1; . . . ;uq; . . . ; u1
mi
; . . . ;uq

mi
Þ; 1 6 i 6 q; ð2:3Þ
are given sufficient smooth functions in the indicated variables and can be considered as generalized differential operators.
Step 1: Determining invariant subspaces.
Let Wk1 ;...;kq denote a linear space W1

k1
� . . .�Wq

kq
, with Wi

ki
being defined by
Wi
ki
¼ Lff i

1ðxÞ; . . . ; f i
ki
ðxÞg ¼

Pki

j¼1
Ci

jf
i
j ðxÞjC

i
j ¼ const:;1 6 j 6 ki

( )
; 1 6 i 6 q; ð2:4Þ
where for each 1 6 i 6 q; f i
1ðxÞ; . . . ; f i

ki
ðxÞ are linearly independent solutions to an ni th-order linear ordinary differential equa-

tion with continuous function coefficients:
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Li½yi� ¼ yðniÞ
i þ ai

ni�1ðxÞy
ðni�1Þ
i þ . . .þ ai

1ðxÞy0i þ ai
0ðxÞyi ¼ 0; ð2:5Þ
where ni P ki. The invariance condition F½Wk1 ;...;kq �# Wk1 ;...;kq for the subspace Wk1 ;...;kq ¼W1
k1
� . . .�Wq

kq
with respect to

F ¼ ðF1; . . . ; FqÞT reads
Fi½u� 2Wi
ki
; 8u 2Wk1 ;...;kq ; 1 6 i 6 q; ð2:6Þ
namely,
Dni Fi½u� þ ai
ni�1ðxÞD

ni�1Fi½u� þ . . .þ ai
0ðxÞF

i½u� ¼ 0; u 2Wk1 ;...;kq ; 1 6 i 6 q: ð2:7Þ
This set of equations provides a criterion for determining invariant subspaces that the system of evolution Eqs. (2.2) admits.
Step 2: Solving ODEs.
The invariance conditions in (2.7) mean that there exist functions �Fi

j; 1 6 j 6 ki; 1 6 i 6 q, such that
Fi Pk1

j¼1
C1

j f 1
j ðxÞ; . . . ;

Pkq

j¼1
Cq

j f q
j ðxÞ

" #
¼
Pki

j¼1

�Fi
jðC

1
1; . . . ;C1

k1
; . . . ;Cq

1; . . . ;Cq
kq
Þf i

j ðxÞ; ð2:8Þ
where 1 6 i 6 q. Now if a space Wk1 ;...;kq is invariant under the system of evolution Eqs. (2.2), then the system (2.2) possesses
an exact solution of the form
ui ¼
Pki

j¼1
Ci

jðtÞf i
j ðxÞ; 1 6 i 6 q; ð2:9Þ
if and only if the Ci
jðtÞ’s satisfy a system of ordinary differential equations:
dCi
j

dt
¼ �Fi

jðC
1
1; . . . ;C1

k1
; . . . Cq

1; . . . ;Cq
kq
Þ; 1 6 j 6 ki; 1 6 i 6 q; ð2:10Þ
which is often much simpler than the system of evolution Eqs. (2.2). It then yields an exact solution (2.9) to the system (2.2)
to solve this system of ordinary differential equations (2.10).

In concrete situations, we normally take linear ordinary differential equations with constant coefficients in (2.5) to begin
with. The whole job of applying the refined invariant subspace method is to check the invariance conditions (2.7) and solve
the resulting system of ordinary differential equations (2.10).

We point out that the orders of linear ordinary differential equations defining invariant subspaces are not arbitrary, and
they are subject to the differential orders of the nonlinear operators Fi; 1 6 i 6 q (see, e.g. [4,19]). As soon as the maximal
orders of the desired linear ordinary differential equations are determined, we can classify systems of evolution equations
under consideration, and compute exact solutions from the corresponding invariant subspaces.

3. Applications

In this section, we analyze a (1 + 1)-dimensional nonlinear system of dispersive evolution equations to illustrate how to
generate invariant subspaces and the corresponding exact solutions. We consider the following nonlinear system of disper-
sive evolution equations:
ut ¼ F ¼ ðuxxx þ a1vvxÞx þ a2v2; ð3:1Þ
v t ¼ G ¼ uxxx þ b1uþ b2v; ð3:2Þ
where a1;a2; b1; b2 are constants, a1;a2 are not simultaneously equal to zero to keep the nonlinearity, and we denote
ux ¼ @u

@x ; vx ¼ @v
@x ; uxx ¼ @2u

@x2 ; vxx ¼ @2v
@x2 ; . . ., as in soliton theory.

3.1. Classification

Let us take an invariant subspace W2;2 ¼W1
2 �W2

2 defined by two second-order linear ordinary differential equations:
W1
2 ¼ fyjL1½y� ¼ y00 þ a1y0 þ a0y ¼ 0g; W2

2 ¼ fzjL2½z� ¼ z00 þ b1z0 þ b0z ¼ 0g; ð3:3Þ
where a0; a1; b0; b1 are constants to be determined. The corresponding invariance conditions read
ðD2F þ a1DF þ a0FÞju2W1
2 ;v2W2

2
¼ 0; ð3:4Þ

ðD2Gþ b1DGþ b0GÞju2W1
2 ;v2W2

2
¼ 0 ð3:5Þ
Substitute the expressions for F and G into the above equations, and replace uxx by �a1ux � a0u and vxx by �b1vx � b0v a few
times to remove all higher-order partial derivatives of u and v with respect to x. Then, we collect the coefficients of the three
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terms ðvxÞ2;vvx and v2 in the first simplified equation and the coefficients of the two terms ux and u in the second simplified
equation, and set all the resulting coefficients to be zero, to obtain the sufficient conditions:
ðvxÞ2 : 7a1b2
1 þ a1a0 þ 2a2 � 4a1b0 � 3a1a1b1 ¼ 0; ð3:6Þ

vvx : 12a1b0b1 � a1a0b1 � 4a1a1b0 þ 2a2a1 � a1b3
1 � 2a2b1 þ a1a1b2

1 ¼ 0; ð3:7Þ
v2 : 4a1b2

0 þ a2a0 � a1b0b2
1 þ a1a1b0b1 � a1a0b0 � 2a2b0 ¼ 0; ð3:8Þ

ux : a4
1 � 3a0a2

1 þ a2
0 � b1a1 � a3

1b1 þ 2a0a1b1 þ b1b1 þ a2
1b0 � a0b0 ¼ 0; ð3:9Þ

u : a0a3
1 � 2a2

0a1 � b1a0 � a0a2
1b1 þ a2

0b1 þ a0a1b0 þ b1b0 ¼ 0: ð3:10Þ
This guarantees the invariance conditions (3.4) and (3.5). We began with two second-order ordinary differential equations
with constant coefficients, and so there exist linearly dependent terms in ðvxÞ2; vvx and v2 for whatever solution v, but u and
ux could be linearly independent (see a theorem in [3]). Therefore, the conditions ((3.6)–(3.8)) are sufficient but not neces-
sary to guarantee the first invariance condition (3.4), but the conditions (3.9) and (3.10) are both sufficient and necessary to
guarantee the second invariance condition (3.5).

Solving the above system of algebraic equations by Maple, we obtain the following list of 11 examples, each of which con-
sists of a system of evolution equations and a system of linear ordinary differential equations defining an invariant subspace:
ut ¼ ðuxxx þ a1vvxÞx � 1
8 a1a2

1v2;

v t ¼ uxxx þ 8
27 a3

1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 þ 2

9 a2
1y ¼ 0;

L2ðzÞ ¼ z00 þ 1
2 a1z0 þ 1

18 a2
1z ¼ 0;

(
ð3:11Þ

ut ¼ ðuxxx þ a1vvxÞx � 2
25 a1a2

1v2;

v t ¼ uxxx þ 216
125 a3

1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 � 6

25 a2
1y ¼ 0;

L2ðzÞ ¼ z00 þ 2
5 a1z0 � 3

25 a2
1z ¼ 0;

(
ð3:12Þ

ut ¼ ðuxxx þ a1vvxÞx � 2
81 a1a2

1v2;

v t ¼ uxxx þ 8
27 a3

1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 þ 2

9 a2
1y ¼ 0;

L2ðzÞ ¼ z00 þ 2
9 a1z0 � 1

27 a2
1z ¼ 0;

(
ð3:13Þ

ut ¼ ðuxxx þ a1vvxÞx � 8
25 a1a2

1v2;

v t ¼ uxxx þ 27
125 a3

1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 þ 6

25 a2
1y ¼ 0;

L2ðzÞ ¼ z00 þ 3
5 a1z0 þ 2

25 a2
1z ¼ 0;

(
ð3:14Þ

ut ¼ ðuxxx þ a1vvxÞx � 1
8 a1a2

1v2;

v t ¼ uxxx � a3
1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 þ a2

1y ¼ 0;
L2ðzÞ ¼ z00 þ 1

2 a1z0 þ 1
4 a2

1z ¼ 0;

(
ð3:15Þ

ut ¼ ðuxxx þ a1vvxÞx � 2a1a2
1v2;

v t ¼ uxxx þ b1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 ¼ 0;
L2ðzÞ ¼ z00 þ a1z0 ¼ 0;

�
ð3:16Þ

ut ¼ ðuxxx þ a1vvxÞx � 1
8 a1a2

1v2;

v t ¼ uxxx þ a3
1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 ¼ 0;
L2ðzÞ ¼ z00 þ 1

2 a1z0 ¼ 0;

(
ð3:17Þ

ut ¼ ðuxxx þ a1vvxÞx � 2a1a2
1v2;

v t ¼ uxxx þ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 ¼ 0;
L2ðzÞ ¼ z00 � a2

1z ¼ 0;

�
ð3:18Þ

ut ¼ ðuxxx þ a1vvxÞx;
v t ¼ uxxx þ 8

27 a3
1uþ b2v ;

(
L1ðyÞ ¼ y00 þ a1y0 þ 2

9 a2
1y ¼ 0;

L2ðzÞ ¼ z00 þ 1
3 a1z0 ¼ 0;

(
ð3:19Þ

ut ¼ ðuxxx þ a1vvxÞx;
v t ¼ uxxx þ a3

1uþ b2v;

�
L1ðyÞ ¼ y00 þ a1y0 ¼ 0;
L2ðzÞ ¼ z00 ¼ 0;

�
ð3:20Þ

ut ¼ ðuxxx þ a1vvxÞx þ 2a1b0v2;

v t ¼ uxxx þ b2v ;

(
L1ðyÞ ¼ y00 ¼ 0;
L2ðzÞ ¼ z00 þ b0z ¼ 0:

�
ð3:21Þ
3.2. Illustrative examples

In what follows, we discuss three examples of getting exact solutions with generalized separated variables.

Example 3.1. Let us first consider the system in (3.11):
ut ¼ ðuxxx þ a1vvxÞx �
1
8
a1a2

1v2; ð3:22Þ

v t ¼ uxxx þ
8

27
a3

1uþ b2v ; ð3:23Þ
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which admits an invariant subspace W2;2 defined through
L1½y� ¼ y00 þ a1y0 þ 2
9

a2
1y ¼ 0; ð3:24Þ

L2½z� ¼ z00 þ 1
2

a1z0 þ 1
18

a2
1z ¼ 0; ð3:25Þ
where a1;a1; b2 are given constants.
From the two equations L1½y� ¼ 0 and L2½z� ¼ 0, we obtain an invariant subspace
W1
2 �W2

2 ¼ L e�
1
3a1x; e�

2
3a1x

n o
� L e�

1
3a1x; e�

1
6a1x

n o
ð3:26Þ
that the system of (3.22) and (3.23) admits. It then follows that an exact solution can take the form
u ¼ C1ðtÞe�
1
3a1x þ C2ðtÞe�

2
3a1x; v ¼ D1ðtÞe�

1
3a1x þ D2ðtÞe�

1
6a1x; ð3:27Þ
where the coefficients are functions of t to be determined. Substituting this solution into the system of (3.22) and (3.23), we
find the following system of ordinary differential equations for computing the coefficients:
C 01 ¼
16
81

a4
1C1 þ

7
72

a1a2
1D2

2; C02 ¼
1

81
a4

1C2 þ
5

72
a1a2

1D2
1; ð3:28Þ

D01 ¼ b2D1; D02 ¼
7

27
a3

1C2 þ b2D2: ð3:29Þ
This system can be solved one by one, and its solution reads
D1ðtÞ ¼ d1eb2t ; ð3:30Þ

C2ðtÞ ¼ � 5
72

a1a2
1

Z t

0
D2

1ðsÞe�
1

81a4
1s dsþ c2

� �
e

1
81a4

1t; ð3:31Þ

D2ðtÞ ¼
7

27
a3

1

Z t

0
C2ðsÞe�b2s dsþ d2

� �
eb2t; ð3:32Þ

C1ðtÞ ¼
7

27
a1a2

1

Z t

0
D2

2ðsÞe�
16
81a4

1s dsþ c1

� �
e

16
81a4

1t; ð3:33Þ
where ci; di; 1 6 i 6 2, are arbitrary constants. Now, (3.27) presents an exact solution to the system of (3.22) and (3.23).

Example 3.2. Let us second consider the system in (3.16):
ut ¼ ðuxxx þ a1vvxÞx � 2a1a2
1v

2; ð3:34Þ

v t ¼ uxxx þ b1uþ b2v ; ð3:35Þ
which admits an invariant subspace W2;2 defined by
L1½y� ¼ y00 þ a1y0 ¼ 0; ð3:36Þ
L2½z� ¼ z00 þ a1z0 ¼ 0; ð3:37Þ
where a1;a1; b1; b2 are given constants.
Similarly, from the two equations L1½y� ¼ 0 and L2½z� ¼ 0, we get an invariant subspace
W1
2 �W2

2 ¼ L 1; e�a1xf g � L 1; e�a1xf g ð3:38Þ
that the system of (3.34) and (3.35) admits. It then follows that an exact solution can take the form with generalized sep-
arated variables:
u ¼ C1ðtÞ þ C2ðtÞe�a1x; v ¼ D1ðtÞ þ D2ðtÞe�a1x: ð3:39Þ
Substituting this solution into the system of (3.34) and (3.35), we find the following system of ordinary differential
equations:
C 01 ¼ �2a1a2
1D2

1; C 02 ¼ a4
1C2 � 3a1a2

1D1D2; ð3:40Þ

D01 ¼ b1C1 þ b2D1; D02 ¼ �a3
1C2 þ b1C2 þ b2D2: ð3:41Þ
This is a really nonlinear system, and it is difficult to solve explicitly. To present exact solutions, let us only focus on a
smaller invariant subspace
W1;1 ¼W1
1 �W2

1 ¼ Lfe�a1xg � Lfe�a1xg: ð3:42Þ
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Solving the system of (3.40) and (3.41) with C1 ¼ D1 ¼ 0, we arrive at
C2 ¼ cea4
1t; D2 ¼ deb2t � cða3

1 � b1Þ
a4

1 � b2
ea4

1t; ð3:43Þ
and according to (3.39), we eventually obtain an exact solution to the system of (3.34) and (3.35):
u ¼ ce�a1xþa4
1t ; v ¼ de�a1xþb2t � cða3

1 � b1Þ
a4

1 � b2
e�a1xþa4

1t; ð3:44Þ
where c and d are arbitrary constants. This gives an application of the refined invariant subspace method to exact solutions to
nonlinear systems of evolutions equations.

Example 3.3. Let us third consider the system in (3.19):
ut ¼ ðuxxx þ a1vvxÞx; ð3:45Þ

v t ¼ uxxx þ
8

27
a3

1uþ b2v ; ð3:46Þ
which admits an invariant subspace W2;2 defined by
L1½y� ¼ y00 þ a1y0 þ 2
9

a2
1y ¼ 0; ð3:47Þ

L2½z� ¼ z00 þ 1
3

a1z0 ¼ 0; ð3:48Þ
where a1;a1; b2 are given constants.
Starting from the two equations L1½y� ¼ 0 and L2½z� ¼ 0, we get an invariant subspace
W1
2 �W2

2 ¼ L e�
1
3a1x; e�

2
3a1x

n o
� L 1; e�

1
3a1x

n o
ð3:49Þ
that the system of (3.34) and (3.35) admits. Then, we can form an exact solution with generalized separated variables:
u ¼ C1ðtÞe�
1
3a1x þ C2ðtÞe�

2
3a1x; v ¼ D1ðtÞ þ D2ðtÞe�

1
3a1x; ð3:50Þ
where the coefficients are functions of t to be determined. Substituting this solution into the system of (3.45) and (3.46), we
find the following system of ordinary differential equations for computing the coefficients:
C01 ¼
1

81
a4

1C1 þ
1
9
a1a2

1D1D2; C 02 ¼
16
81

a4
1C2 þ

2
9
a1a2

1D2
2; ð3:51Þ

D01 ¼ b2D1; D02 ¼
7

27
a3

1C1 þ b2D2: ð3:52Þ
This is a nonlinear system, too. To present exact solutions, let us only focus on two smaller invariant subspaces
W1;1 ¼W1
1 �W2

1 ¼ Lfe�
2
3a1xg � Lf1g; ð3:53Þ
and
W2;1 ¼W1
2 �W2

1 ¼ Lfe�
1
3a1x; e�

2
3a1xg � Lfe�1

3a1xg: ð3:54Þ
Solving the system of (3.51) and (3.52) with C1 ¼ D2 ¼ 0 tells
C2 ¼ ce
16
81a4

1t ; D1 ¼ deb2t; ð3:55Þ
and according to (3.50), leads eventually to an exact solution to the system of (3.45) and (3.46):
u ¼ ce�
2
3a1xþ16

81a4
1t; v ¼ deb2t; ð3:56Þ
where c and d are arbitrary constants.
The system of (3.51) and (3.52) with D1 ¼ 0 can be solved one by one from C1;D2 to C2, and it solution formula is given by
C1ðtÞ ¼ c1e
1

81a4
1t ; D2ðtÞ ¼ 7

27 a3
1

R t
0 C1ðsÞe�b2s dsþ d1

h i
eb2t;

C2ðtÞ ¼ 2
9 a1a2

1

R t
0 D2

2ðsÞe�
16
81a4

1s dsþ c2

h i
e

16
81a4

1t ;

8><
>: ð3:57Þ
where c1; c2 and d1 are arbitrary constants. Further, the formula (3.50), together with (3.57), presents an exact solution to the
system of (3.45) and (3.46).

These are two application examples of the refined invariant subspace method to construct exact solutions to nonlinear
systems of evolutions equations.



W.X. Ma, Y.P. Liu / Commun Nonlinear Sci Numer Simulat 17 (2012) 3795–3801 3801
4. Concluding remarks

The invariant subspace method was used to classify a class of nonlinear systems of dispersive evolution equations and
determine their invariant subspaces and exact solutions. A few examples illustrated the effectiveness of the invariant sub-
space theory for exploring solution structures of systems of nonlinear evolution equations.

The invariant subspace method can be considered as a generalized separation of variables for nonlinear differential equa-
tions. It generates a kind of complexiton-like solutions [17,10,21,22] and exhibits an integrability characteristic [23] that
integrable differential equations possess, complementing existing approaches such as the transformed rational function
method [24] and the multiple exp-function method [25].

It is also interesting to see that the linear superposition principle takes on key role in computing exact solutions to both
evolution equations [4] and Hirota bilinear equations [26]. All related theories furnish linear combination solutions of trig-
onometric and exponential functions with generalized separated variables.
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