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1. Introduction

The zero-curvature formulation provides a systematic framework for generating integrable models [1]. The key is to select
a matrix spectral problem, from which an associated hierarchy of integrable models can be derived using zero-curvature
equations. The inverse scattering transform leverages the matrix spectral problem to solve the Cauchy problems of integrable
models, with the evolution of scattering data determined by the corresponding temporal matrix spectral problems [2].

Matrix spectral problems with free potentials are standard and natural, whereas reduced matrix spectral problems are
more restrictive and challenging to apply. To address this, similarity transformations are used to formulate reduced matrix
spectral problems, leading to integrable hierarchies (see, e.g., [3]). The goal of using similarity transformations is to maintain
the invariance of the corresponding zero-curvature equations, thereby generating integrable models. Two typical examples
of such integrable models are the nonlinear Schrédinger (NLS) equations and the modified Korteweg-de Vries (mKdV)
equation. Both arise from Ablowitz-Kaup-Newell-Segur (AKNS) matrix spectral problems via a single similarity transfor-
mation. Moreover, applying a pair of similarity transformations can yield a broader class of integrable models. However,
this approach introduces additional challenges, as the two reductions on potentials, corresponding to the pair of similarity
transformations, impose new constraints on balancing the associated zero-curvature equations [4].
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Recently, the use of group reductions or similarity transformations has also been applied to the construction of nonlocal
integrable models [5]. Three types of reduced integrable nonlinear Schrédinger equations and two types of reduced inte-
grable modified Korteweg-de Vries equations have been proposed and classified [6]. The inverse scattering transform has
also been developed to solve nonlocal integrable models (see, e.g., [7-10]). Other efficient approaches have been explored
for constructing nonlocal integrable models, particularly for deriving soliton solutions. The Hirota bilinear method, Darboux
transformation, Bdcklund transformations, and the Riemann-Hilbert technique have proven to be powerful, leading to the
development of numerous theoretical frameworks for various reduced integrable models, both local and nonlocal (see, e.g.,
[3,4], [11-15]).

In this paper, we propose a pair of local group reductions via similarity transformations for the AKNS matrix spectral
problems to generate reduced integrable models. The rest of the paper is organized as follows. In Section 2, we review the
AKNS matrix spectral problems and their associated hierarchies of matrix integrable models as a foundation for subsequent
analyses. In Section 3, we introduce two local group reductions via similarity transformations for the AKNS matrix spectral
problems and derive reduced local hierarchies of real matrix mKdV integrable models. In Section 4, we present illustrative
examples that demonstrate the proposed formulation, showcasing a variety of reduced AKNS matrix spectral problems
and corresponding matrix integrable models, including novel NLS-type and mKdV-type integrable models. Finally, in the
conclusion, we summarize our findings and provide closing remarks.

2. The standard AKNS matrix integrable hierarchies

Let m,n > 1 be two arbitrarily given natural numbers. For each pair of m,n > 1, we state the AKNS matrix spectral
problems and the associated AKNS hierarchies of matrix integrable models, to facilitate the subsequent analyses.
First, we denote the spectral parameter by A, and assume that p and q are two submatrix potentials:

p=pX t) = (Pj)mxn, §=qX, ) = (qrj)nxm- (2.1)
The standard AKNS matrix spectral problems read

—ipx=U¢, U=U@u,r)=1A+P, (2.2)
and

—ige =V, vl =vl@. =12+ Q" r>0, (2.3)

where u = u(p,q) is the potential consisting of the two submatrix potentials p and q. In the above Lax pair of matrix
spectral problems, the (m + n)-th order square matrices, A and €, are defined by

A =diag(orIm, a21n), Q2 =diag(B1lm, B21n), (2.4)

where [ is the identity matrix of size k, and a1, a2 and B1, B2 are two pairs of arbitrarily given distinct real constants,
which will show the diversity of matrix spectral problems but do not have a serious effect on associated integrable models.
The other two (m + n)-th order square matrices, P and QUl, are given by

0 p
P=P@u)= .ol (2.5)
which is called the potential matrix, and
r—1 [r—s] [r—s]
Qo= |0 Ol quoyu| C P (26)
00 P clr=sl  glr—sl

with alsl, bls] cls] and d'*! being determined recursively via
b9 =0, % =0, a® = g1, d% = By, (2.7)
and

bIs =~ (ibl — pa® +d"p)

1
[s+11 — ~ ¢jls] [s] _ qls]
c = a(zcx +qa” —d*g), s>0, (2.8)

a; " = i(pelsttl — pls+ilg),

d)[(S-H] — i(qb[s—H] _ C[S'H]p),
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where o = o1 — oy and zero constants of integration are taken in computing a'*! and d'*). Obviously, we can work out

Q=Lp qu_Fyp_ ﬂzlm,nuﬂ +iPy),
o o o
and
QB = Brap_ ﬂzum,nuﬂ +iPy) — %(i[P, Pyl + Py +2P%),
o o o

where g = g1 — f2 and I, = diag(Im, —In). We can easily see from the recursive relations in (2.8) with the initial data in
(2.7) that

alsl  plsl
w=) ASwhl=) ") 2.9
Z Z C[s] d[s] ( )
s>0 s>0
provides a unique Laurent series solution to the stationary zero-curvature equation
Wy =ilU, W], (2.10)

where U is the spectral matrix in (2.2). Such a formal series solution is a pivotal element for generating integrable hierar-
chies (see, e.g., [16-19] for examples).

Now, it directly follows that for each pair of m,n > 1, the compatibility conditions of the two matrix spectral problems
in (2.2) and (2.3), which are the zero-curvature equations:

U — vl +iu, vil=o, r>o, (2.11)
determine an AKNS matrix integrable hierarchy:
pe = iab™ 1 g, = —ic™ 1 r> 0. (212)

The case of m =n =1 gives rise to the typical AKNS integrable hierarchy with two scalar potentials [20]. By applying
the trace identity [21] as in [22], each system in this AKNS matrix integrable hierarchy can be showed to possess a bi-
Hamiltonian structure and infinitely many symmetries and conserved quantities (see, e.g., [23-25] for more examples).

It is direct to see that the first and second nonlinear (when r = 2, 3) integrable models in (2.12) are the AKNS matrix
NLS equations:

pr = —%i(pxx +2pgp), gt = %i(qxx +2qpq), (213)

and the AKNS matrix mKdV equations:

pe=-— :%(pxxx +3pqpx +3pxap). 4 = —%(qm +3qxPq + 34pqx), (2.14)

where p and q are the two matrix potentials given by (2.1). Other examples of higher-order AKNS matrix integrable models
could be found in [26].

3. Reduced AKNS matrix integrable hierarchies

In what follows, let us consider that

ar=—ax=1, p1=—po=2, m=n. (3.1)

Therefore, we will only consider integrable reductions of AKNS matrix hierarchies associated with a specific type of AKNS
spectral problem involving two square matrix potentials. The condition m =n is necessary when we impose group reduc-
tions or similarity transformations involving off-diagonal block square matrices, but it is not required when using diagonal
block square matrices.

3.1. Reductions of the AKNS matrix spectral problems

We take four constant invertible square matrices of order n: X1, X, A1 and Ay, and formulate the two off-diagonal
block square matrices of order 2n:

0 = 0 A
22[22 01],A=[A2 01]. (3.2)
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Obviously, we have the crucial properties for A and A:

TAS T =AAATT=—A, QY T=AQA T =@, (3.3)

which allows us to introduce two group reductions or similarity transformations that preserve the invariance of the original
zero-curvature equations.
For a given AKNS spectral matrix U in (2.2), we now consider a pair of group reductions or similarity transformations:

SUMBT = -U* ) = —UGR*, (3.4)
and
AUMAT =-UT ) =-Uon". (3.5)

In (3.4), A* stands for the complex of a matrix A, and in (3.5), AT denotes the matrix transpose of a matrix A. These two
reductions exhibit both invariance properties (see also [27]). Noting the specific form of the spectral matrix U, we can see
that these two group reductions equivalently generate

Py~ =_p* (3.6)
and

APA™! = —pT, (3.7)
respectively. Evidently, these require the following corresponding constraints for the two submatrix potentials p and q:

pr=-%19%;", ¢* =—%op%7", (3.8)
and

p"=—apATh T =—Agay (3.9)

respectively.
To ensure the two reductions in (3.8) are compatible, we impose the following condition:

oSy =y, (3.10)

where Yy € R and y # 0. Under this condition (3.10), to ensure the compatibility of the two constraints in (3.9), a sufficient
condition could be

2T A S, =na,, (311)

where 1 € C and |17|2 = yz. It is direct to see that (3.10) and (3.11) guarantee that the two constraints in (3.8) or (3.9) are
equivalent to each other.

To summarize, under the conditions (3.10) and (3.11) on the two matrices ¥ and A, the two group reductions in (3.4)
and (3.5) generate a class of reduced AKNS matrix spectral problems:

i Alp p
—igx=Ugp. U=| __ , (312)
| —X] p*¥y —Aly
where the matrix potential p needs to satisfy the first constraint in (3.9), or equivalently,
(A, —25'g*,
—igy=Up, U=| " 2 , (3.13)
L d —Aly

where the matrix potential g needs to satisfy the second constraint in (3.9).
3.2. Reduced AKNS matrix integrable hierarchies

Let us consider the solution W determined by (2.9), with the initial data in (2.7). Under the two group reductions in
(3.4) and (3.5), we can obtain the equalities at the initial value, A = oco:

W) E  imoe = —WH* (M) r=cc,

(3.14)
AWM A icoo = —WT (W) hcc.
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By the uniqueness of solutions to the stationary zero-curvature equations, these guarantee that

SWR)E T = —WHOH) = —(W L),
(3.15)
AWMAT =—WT ) =-wn)T,

respectively. It follows from these relations that for each r > 0, we have the following two pairs of invariance properties:

vz = v Gor) = —(vIoey)®,

(3.16)
AVII)A™ = —vITT oy = —(vI oy T,
which are equivalent to
Mz = - o) = @My,
(317)

AQT AT =T () = - T,

where r >0 and VIl and Q7 are defined in (2.3) and (2.6), respectively. It then follows that under the potential constraints
(3.8) and (3.9), we have

(U — VI (U, VITDO)Z T = (U*)e — (= VI, 4 i[—U*, —VITF]) (%)
=—(U; — VI —i[u*, vt )
=—(Ue— VI 4i[u, v,
(3.18)
AU = VI iU, vITY A= = (=UT)e — (= VI, 4 i[—UT, —vITT )5

=—] = v —iu”, v

=—(U; — VI iU, vimpT o,

where r > 0, and thus, the AKNS matrix integrable models in (2.12) with r > 0 become a hierarchy of reduced AKNS matrix
integrable models:

pe= zib[f+”|q=,23p*(27)4, r>0, (3.19)
where the matrix potential p is a reduced n x n matrix potential being subject to the first constraint in (3.9), or equivalently,
qe = —2ic"™ ) _segez1, 120, (3.20)

where the matrix potential q is a reduced n x n matrix potential being subject to the second constraint in (3.9).

Moreover, every member in the reduced hierarchy (3.19) or (3.20) possesses a Lax pair consisting of the reduced matrix
spectral problems in (2.2) and (2.3) with r > 0, and has a hierarchy of commuting symmetries and conserved densities,
reduced from those for the matrix integrable AKNS equations in (2.12) with r > 0. The matrix spectral problems (3.12) and

—igr = Vlr]lq:—Z;p*(ZT)*lqsv r>0, (3.21)

constitute a Lax pair for every member in the reduced hierarchy (3.19), or equivalently, the matrix spectral problems (3.13)
and

—ie = V[r]|p:_z;‘q*(z;)—1¢, r>0, (3.22)
constitute a Lax pair for each member in the reduced hierarchy (3.20).

Noting that the pairs of X1, X3 and A1, A, are generally arbitrary invertible square matrices of order n, subject to minor
conditions, we can present various reduced hierarchies of AKNS matrix integrable models.

4. Applications

In this section, we aim to apply the general theory to several specific cases and present illustrative examples of reduced
AKNS matrix spectral problems and reduced AKNS matrix integrable NLS and mKdV equations.

5
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4.1. Symmetric and skew-symmetric cases

If we take
Ez[—gl,, 1(,)1] (1)
where o = %1, then the group reduction (3.4), i.e.,
TUz~!'=-U* (4.2)
yields
p*=0q or g =o0p. (4.3)
This gives rise to a relation between the two potentials p and q.
If we take
A= [ —(SOIn 1(31 } ’ 44
where § = +1, then the group reduction (3.5), i.e.,
AUAT =—UT (4.5)
engenders
pT =6p, q' =4q. (4.6)

This requires that p and q are either symmetric or skew-symmetric.
These two group reductions are in agreement, since both the conditions in (3.10) and (3.11) are satisfied, where y = —o
and n = oé. Together, the two reductions lead to

q=op*, p' =ép, (47)
and thus, the reduced spectral matrix reads
| Ay D
U= [op* —Aly } ’ (4.8)

where pT =8p. The case with 0 = +1, §=1 and n =2 was analyzed via the inverse scattering transform [28,29], and a
Darboux transformation was also provided for the subcase of o =1 in [30].

Examples in symmetric cases:

First, let us fix n = 2. Then, we have

_| 1 P3
p_[m pz]' (4.9)

Consequently, the corresponding reduced AKNS matrix integrable NLS and mKdV equations are expressed as
ip1,e = P1w+ 20 [(Ip11* + 2Ip3 ) p1 + P3P31,
ip2,e = P2, +20[(Ip21* + 2Ip3|*)p2 + P} P3), (410)
ip3,c = P3.xx + 20 [(P11* + p2* + 1p31*)p3 + p1p2p}l,
and
Pre=—3P1aw = 30[(P11> +P3P)P1x + (P1P5 + P3P3)P3.4l.
P2t = —3P2.xx — 30 [(Ip21? + P31 p2.x + (P2P% + P3P} P34, i
P3.t = —3P3.xxx — 30 [(P2D% + PiP3)P1.x + (P1P5 + P3D3)Pax

+(p11* + Ip2l* +2Ip31*) P34,

respectively, where o = +1. For the integrable NLS equations in (4.10), dark solitons and the inverse scattering transforma-
tion were presented in [28,29], respectively. The case o = —1 of (4.10) gives an example formulated through using Hermitian
symmetric spaces in [32].
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Second, let us fix n = 3. Then, we have

D1 P4 Pse
p=|DpP4 p2 PpPs5 |- (412)
bs D5 D3
Accordingly, the corresponding reduced AKNS matrix integrable NLS and mKdV equations are novel integrable models and
given by
ip1,e = P1we+ 20 [(1p11* + 2p2[* + 2Ipal®) p1 + P33 + PEPE + 2P2papi),
ip2,e = P2.we+ 20 [(Ip11* + Ip2I* + Ip3 1> + Ipal® + Ips|*)p2
+p1(p3p3 + Pepy) + Pa(Peps + P3PP1,
ip3,e = P30 +20[2Ip2]” + 1p3I* + 2ps|*)p3 + P3P} + PEPs + 2p2pep].
ipa = Paxx+20[(p11* + Ip2|* + |pal* + |ps|* + ps|*) pa (413)
+p1(pep3 + Psby) + p2(PePi + PsPYH)].
ips,c = Ps.x +20[(2pal® + |ps|* + 2ps|*)ps + PEP3 + P3P} +2papep3].
ip6.c = Pox + 20 [(Ip2|* + Ip31* + |pal* + |ps|® + |ps|®) pe
+p2(pap} + pspi) + P3(Pap3 + PspY1,

and

P1t=—3P1xx — 30 [(Ip11% + |pal® + |p6l®)P1.x + (D1} + P4} + P6PE)Pax
+(p1pg + p4aPs + PeP3)P6.x],

2. = —3P2.xx — 30 [(IP2[? + |pal® + |Ps|))p2.x + (D2D} + PaD} + P5PY) Pax
+(p2p5 + P4Pg + P5P3) D541,

P3¢ =—3DP3.xx — 30 (P32 + 1ps|? + |P6|)P3.x + (P3D% + PsD} + PP} Ps.x
+(p3pg + psp; + PePT)P6.xls

Pat = —3Paxxx — 30 [(p2D} + Pab} + PsPE)P1.x + (D1D} + Pab’s + P6PE)P2.x
+(p11% + Ip2|* +2[pal® + 1ps1* + |ps|*) Pax + (P1D§ + PaDi + PeP3) D5 x (414)
+(p2p5 + P4Pg + P5P3) D6 xl,

Ps.t = —3Ps.xxx — 30 [(D3pE + Psps + PeP})P2.x + (D2DE + Pab§ + PsP3)P3x
+(P3p§ + Psph + Pep)Pax + (121> + 1p31? + [pal® +2|ps|* + [pel*) Ps.x
+(p2p} + p4aP] + P5Pg)Pe.xl,

P6.t = —3P6xx — 30[(P3PE + PsPj + PePP1.x + (P1PE + Pabk + PeD3)P3x
+(p3ps + Psp5 + PePy)Pax + (P1P) + PaP5 + P6P2) D5
+(Ip2l? + Ip3l* + [pal® + Ips|? + 2Ips|*) pe.x].

respectively, where o = +1.
Examples in skew-symmetric cases:

In this case, let us first consider n = 3, and thus, we have

0 p1 p3
p=| —p1 0 p2f. (4.15)
—p3 —p2 O
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Now, the corresponding reduced coupled integrable NLS and mKdV equations give rise to the standard AKNS system of
three-component integrable NLS and mKdV equations:

ip1,¢ = P1aw + 20 (Ip112 + 1p2I? + Ip31?)p1,

ip2.c = p2.xx +20(Ip11* + [p2/* + Ip31P)p2, (4.16)
ip3.c = p3xx +20(Ip11° + |p21* + [p31H)p3.

and
P1e=—3P1ax + 30[Q2Ip117 + Ip2? + 1p312)p1.x + P1P5D2.x + P1P3D3.4],

P2t = —3P2xxx + 30[p2pip1x+ (P12 + 2p21? + IP31)p2.x + P23 P34, (417)
3.t =—3D3.x+ 30 (P3P} P1x + P3P3P2x + (ID11% + [P2l? +31p31)p3.xl,

where o = +1. For the integrable NLS equations in (4.16), the long-time asymptotics of solutions was analyzed in [31]. The
integrable mKdV equations in (4.17) are different from those reduced via diagonal block matrix group reductions (see, e.g.,
3D

The second case is n = 4. At this point, we have

0 p1 ps Ds
-p1 0  p2 ps
p = . (4.18)
—pa —p2 0 p3
—-ps —ps —p3 O
Accordingly, the corresponding reduced AKNS matrix integrable NLS and mKdV equations provide novel integrable models,
which are given as follows:

ip1,e = p1w +20[(1p11% + 1p21? + [pal® + 1ps|? + Ip6l®) P1 — (P2P6 — Paps) P31,
ip2,c = p2x +20[(1p11% + 1p21* + P32 + |pal® + Ips|?)p2 — (P1P3 — PapPs) Pl
i3t = P3xx +20[(Ip21? + 1p31? + |pal® + Ips|? + |psI®)p3 — (P2P6 — P4P5)P3L.

. (4.19)
ipa¢ = paxx+20[(1p11% + 1p21? + [p312 + |pal® + Ip6|®) P4 + (P1P3 + P2P6) Pl
ips.c = ps.x +20[(1p11% + 1p21? + [p31® + 1ps|® + [p6|®)Ps + (P1P3 + P2P6) Pl
iD6.c = Po.xx +20[(Ip11% + 1p31? + [pal® + |ps|* + |p6|®) Pe — (P1P3 — Paps)1p5.
and
__1 3 2 2 2 2 2 * *
P1t=—3P1xx t 50[2|p1|” + |p2l” + |pal® + |ps5|“ + |Ps|“)P1.x + (P1P5 — PeP3)P2.x
+(p1p} + P5P3)Pax + (P1P5 + PabP3)Ps.x + (P1PE — P2P3) D6 x]s
__1 3 * * 2 2 2 2 2
P2t =—3P2.xx + 50 [(p2p] — P3Dg)P1.x + (IP11° + 2|p2|” + |p3]° + [pal” + |Ps|®)p2x
—(P1P§ — P2P3)P3.x + (D2D} + P5PE) Pax + (D2DE + PaPE) Ps.xl,
p __1 + 3 * * 2 2 2 2 2 2
3t = —3DP3.xx + 50[(P3p5; — PePP2.x + (IP21” + 2Ip3l” + [pal” + P51~ + [Pel“)P3.x
+(p3p} + P5P7)Pax + (P3P5 + papi)Ps.x — (P2P] — P3DE) P6.xls
(4.20)

Par = —3Paxxx + 30 [(p3pE + papD)P1x + (P4} + PePE)P2.x + (P1PE + Pap3)P3x
(Ip112 + 1p21? + 1p31? + 2|pal? + |p6|®)pax + (P2PE + PapE) 6 x],

Ps.t = —3DP5.xx + 30 [(p3p} + Psp)P1x + (PP + PPy P2.x + (P1P} + PsP3)P3.x
(Ip112 + 1p21? + 1p3I? + 2Ips|?® + |p6l®) ps.x + (P2} + P5PE) P6.x],

P6.t = —3D6xxx + 30 [— (P3P — PeD})P1.x — (P1P5 — P6P3)P3.x + (P53 + PeD}) Pax
+(pap} + pepE)ps.x + (Ip112 + [p31® + 1pal® + |ps|® + 2Ipel®) pe.x].

8
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respectively, where o = £1. The case 0 =1 of (4.19) gives an example presented through Hermitian symmetric spaces in

[32]. There are some other interesting examples in the skew-symmetric case (see, e.g., [33,34]).
4.2. Non-symmetric and skew-symmetric cases

Let us first consider n =2 and choose

Y1=1I3, ¥y =—0ly, A1=[g (1)] Ay =—38Aq,

where o0 = +1 and § = £1, indicating four possible combinations. Then, the first group reduction (3.4) yields
q=op*,

and the second group reduction (3.5) determines
P= [gi 51;912 } '

Consequently, the associated reduced AKNS integrable NLS and mKdV equations are given by

ip1,e = P1.xx + 20 [(P1P% + 2|p21*)p1 + 8p3p7],

ip2,c = P2.xx + 20 [(p1P% + P3P} + Ip21*)p2 + 8p1p3p3]

ip3.c = P3.xx + 20 [(P3p} + 2(p21*)p3 + 8p3p3),

and
P1t=—2P1x — 30[(P1P5 + P22 P1.x + (P1P + 8D2P}) P24,
P2t = —3P2xxx — 30 [(P2D% + 8p3p3)p1.x + (P15 + 21p21? + P3P D2.x + (8D1P5 + P27 P34l

P3.t = —3P3.xxx — 30 [(8p2p% + p3p3)p2.x + (Ip21? + P3P P34l

respectively, where 0 =+1 and § = 1.
Next, let us consider n =3 and take

0 0 1
Yi=1I3, Ypo=—0l3, A1=A=| 0 -1 0|,
1 0 O

where o = £1. Then, by the two group reductions in (3.4) and (3.5), we obtain

p2 p1 O
gq=op*, p=|p3 0 pi
0 p3 —p2

Accordingly, the associated reduced AKNS integrable NLS and mKdV equations are given as follows:
ip1,c = P1.xx + 20 (p1D% + 121> + p3p})p1.
ip2.c = P2.xx + 20 (p1D% + P21 + P3p})p2.
ip3.c = P3.xx + 20 (p1D% + |21 + P3p})p3.

and
PLe=—2P1ax — 30[(2P1P} + P22 + P3pPP1.x + P1P3P2.x + D112 P34,
P2t = —3P2xxx — 30[P2Dip1.x + (P1D% +2Ip2|? + P3P} P2x + P2Pi D3]

P3.c = —3P3xx — 301312 P1x + P3P3P2x + (105 + |P21? + 2p3pY)p3x].

respectively, where o = +1.
Now, let us take up the third case:

1
Y1=13 Yy=—0l3, Ay=A=| 0
1

o = O
o O =

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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where o = £1. Then, the corresponding two group reductions yield

p1 D2 0
q=op*, p=| b3 0 -p2 |- (431)

—P1 —P3—DP2 —P1

Therefore, the associated reduced AKNS integrable NLS and mKdV equations become

ip1.c = P1xx + 20 (Ip11? + |p2* + p2p% + P3p3)P1,

ip2.c = P2.xx +20(Ip11? + Ip21* + p2p% + P3D3) P2, (432)

ip3.t = P3xx +20(Ip11? + |p2I? + p2p% + P3p3)Dp3,

and

P1e=—3P1xx — 30[Q2Ip112 + Ip2I? + p2p% + P3p3)P1.x + P1(P + P3)P2.x + P1P5P3],

P2t = —3P2.xx — 30 [p2pip1x + (P17 + 21p2? + 2p2p% + P3p3)P2.x + 1212 P, (4.33)

P3.t=—1P3x — 30[P3PiP1.x + P3(P3 + PP2x+ (P12 + [p21? + p2p% + 2p3p3) P34,

respectively, where o = +1.

The three examples in these specific cases represent novel models of integrable NLS and mKdV equations. We note that
more specific integrable reductions can be achieved by choosing different group reductions or similarity transformations for
the zero-curvature equations (see, e.g., [35-39]).

5. Concluding remarks

A pair of local group reductions, or similarity transformations, has been proposed and analyzed for a specific type of
AKNS spectral problem. The reductions yield reduced AKNS matrix integrable hierarchies, whose members commute with
each other. A few concrete examples of reduced AKNS matrix spectral problems and reduced AKNS matrix integrable NLS
and mKdV models have been presented. One of the two group reductions imposes a constraint on the two square matrix
potentials in the AKNS matrix potential, while the other imposes a constraint on the square matrix potentials. The novelty
of this work lies in introducing group reductions involving off-diagonal block matrices. Traditionally, group reductions are
formulated using diagonal block matrices, but not off-diagonal ones (see, e.g., [4,40]).

It is known that soliton solutions can be constructed using analytical techniques, including the Darboux transformation,
the Hirota bilinear method, Bdcklund transforms, and the Wronskian determinant technique. Rational solutions (see, e.g.,
[41]), lump wave solutions (see, e.g., [42-44]), breather wave and rogue wave solutions (see, e.g., [45-49]), and their in-
teraction solutions (see, e.g., [50,51]) are among the most significantly interesting solutions. Moreover, the Riemann-Hilbert
technique provides a powerful way to construct soliton solutions for integrable models with multiple poles in the scatter-
ing coefficients [52,53]. We note that reduced integrable models balance different potentials in the original equations and,
therefore, must satisfy certain constraints (see, e.g., [54-56]). These models and their solutions are generally more difficult
to solve and obtain.

It is expected that the analysis presented here will contribute to the refinement and classification of integrable models,
further enriching the field based on specific matrix spectral problems.
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