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Abstract
The aim of the paper is to construct nonlocal reverse-
space nonlinear Schrödinger (NLS) hierarchies through
nonlocal group reductions of eigenvalue problems and
generate their inverse scattering transforms and soliton
solutions. The inverse scattering problems are formu-
lated by Riemann-Hilbert problems which determine
generalized matrix Jost eigenfunctions. The Sokhotski-
Plemelj formula is used to transform the Riemann-
Hilbert problems into Gelfand-Levitan-Marchenko type
integral equations. A solution formulation to spe-
cial Riemann-Hilbert problems with the identity jump
matrix, corresponding to the reflectionless transforms, is
presented and applied to𝑁-soliton solutions of the non-
local NLS hierarchies.
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1 INTRODUCTION

Nonlocal integrable equations have become one of themost popular topics in soliton theory. Three
types of nonlocal nonlinear Schrödinger (NLS) equation arises while taking group reductions.1
The corresponding inverse scattering transforms have been recently established for the scalar
case2–6 and the multicomponent case,7,8 and soliton solutions have been constructed from the
Riemann-Hilbert problems whose jump is the identity,8,9 through Darboux transformations,10–12
and by theHirota bilinearmethod.13 Some othermulticomponent generalizations1,14,15 and nonlo-
cal integrable equations16 were also presented.Wewould like to present a class of NLS hierarchies
of nonlocal reverse-space integrable equations associated with the multicomponent Ablowitz-
Kaup-Newell-Segur (AKNS) eigenvalue problem, and construct their inverse scattering trans-
forms first and then soliton solutions through formulating and solving the associated Riemann-
Hilbert problems with matrix eigenvalue problems.
Like Darboux transformations, the Riemann-Hilbert problems are successfully used to study

integrable equations and further construct their soliton solutions.17 Many integrable equations,
such as the multiple wave interaction equations,17 the general coupled NLS equations,18 the
generalized Sasa-Satsuma equation,19 the Harry Dym equation,20 and multicomponent modi-
fied Korteweg-de Vires (mKdV) equations,21 have been studied through exploring the Riemann-
Hilbert problems associated with their matrix eigenvalue problems.
A general procedure for formulating Riemann-Hilbert problems on ℝ is stated as follows.

Assume that there is a pair of matrix eigenvalue problems:{
−𝑖𝜑𝑥 = 𝑈𝜑, 𝑈 = 𝑈(𝑢, 𝜆) = 𝐴(𝜆) + 𝑃(𝑢, 𝜆),

−𝑖𝜑𝑡 = 𝑉𝜑, 𝑉 = 𝑉(𝑢, 𝜆) = 𝐵(𝜆) + 𝑄(𝑢, 𝜆),

)
(1)

inwhich 𝑖 is the unit imaginary number,𝜙 is a squarematrix eigenfunction, 𝜆 is an eigenvalue, 𝑢 is
a potential, and we usually assume that 𝐴 and 𝐵 are commuting constant diagonal square matri-
ces, and 𝑃 and 𝑄 are square matrices being traceless. The above two matrix eigenvalue problems
need to satisfy the compatibility condition, namely, the zero curvature equation,

𝑈𝑡 − 𝑉𝑥 + 𝑖[𝑈,𝑉] = 0, (2)

where [⋅, ⋅] is the matrix commutator, and this generates an integrable equation. To furnish this
integrable equation with a Riemann-Hilbert problem, we utilize the following equivalent pair of
matrix eigenvalue problems: {

𝜓𝑥 = 𝑖[𝐴(𝜆), 𝜓] + 𝑃̌(𝑢, 𝜆)𝜓,

𝜓𝑡 = 𝑖[𝐵(𝜆), 𝜓] + 𝑄̌(𝑢, 𝜆)𝜓,
(3)

where 𝑃̌ = 𝑖𝑃 and 𝑄̌ = 𝑖𝑄, and 𝜓 is a square matrix eigenfunction. Obviously, the equivalence
between (1) and (3) is guaranteed by the commutativity of 𝐴 and 𝐵. The connection between 𝜙

and 𝜓 reads

𝜙 = 𝜓𝐸𝑔, 𝐸𝑔 = e𝑖𝐴(𝜆)𝑥+𝑖𝐵(𝜆)𝑡. (4)

The uniqueness of matrix eigenfunctions needs the standard boundary conditions

𝜓± → 𝐼, as 𝑥, 𝑡 → ±∞, (5)
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in which 𝐼 represents the identity matrix. From those eigenfunctions 𝜓±, we need to pick the
entries to define two generalized matrix Jost eigenfunctions 𝑇±(𝑥, 𝑡, 𝜆), being analytical with
respect to 𝜆 in ℂ+ and ℂ− (the upper and lower half-planes), respectively, and continuous with
respect to 𝜆 in ℂ̄+ and ℂ̄− (the closed upper and lower half-planes), respectively. Then, based
on those two generalized matrix Jost eigenfunctions 𝑇±, we can formulate a so-called Riemann-
Hilbert problem on ℝ:

𝐺+(𝑥, 𝑡, 𝜆) = 𝐺−(𝑥, 𝑡, 𝜆)𝐺0(𝑥, 𝑡, 𝜆), 𝜆 ∈ ℝ, (6)

in which 𝐺± are two unimodular generalized matrix Jost eigenfunctions and 𝐺0 is the
jump matrix.
Note that the two eigenfunctions, 𝜓− and 𝜓+, are linearly dependent. It therefore follows that

𝜓−𝐸𝑔 = 𝜓+𝐸𝑔𝑆(𝜆), (7)

in which 𝑆(𝜆) is called the scattering matrix of the associated matrix eigenvalue problems. The
jump matrix 𝐺0 contains basic scattering data inherited from 𝑆(𝜆). Solutions of the Riemann-
Hilbert problems could be presented by using the Sokhotski-Plemelj formula and used to con-
struct the required generalized matrix Jost eigenfunctions for recovering the potentials in the
matrix eigenvalue problems, which solve the corresponding integrable equation. Such a proce-
dure formulates an inverse scattering transform. Soliton solutions are presented from solutions to
special Riemann-Hilbert problems whose jumps 𝐺0 are the identity matrix (or equivalently, the
reflectionless inverse scattering transforms).
In this paper, first by making a special kind of nonlocal group reductions, we propose a class

of nonlocal reverse-space NLS hierarchies, and then from a perspective of Riemann-Hilbert prob-
lems, we construct their inverse scattering transforms and soliton solutions.We organize the other
sections of the paper as follows. In Section 2, we make a kind of nonlocal group reductions and
construct nonlocal reverse-space NLS hierarchies from the AKNS integrable hierarchy possessing
multiple potentials. In Section 3, we establish the associated Riemann-Hilbert problems, based
on the analytic Fredholm theory on integral equations. In Section 4, we transform, by means of
the Sokhotski-Plemelj formula, the resulting Riemann-Hilbert problems into Gelfand-Levitan-
Marchenko type integral equations, to formulate the inverse scattering transforms. In Section 5,
we first propose a solution formulation to special Riemann-Hilbert problems whose jumps are
𝐺0 = 𝐼, and then construct soliton solutions of the nonlocal reverse-space NLS hierarchies. In the
final section, we summarize our results and give several concluding remarks.

2 NONLOCAL REDUCTIONS AND NONLOCAL NLS HIERARCHIES

2.1 AKNS hierarchy with multiple potentials

We recall the AKNS hierarchy with multiple potentials in this subsection for ease of reference.
Let 𝑛 be an arbitrarily given natural number, and 𝛼1 and 𝛼2, arbitrary but different constants.
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The AKNS matrix eigenvalue problem with multiple potentials reads

−𝑖𝜙𝑥 = 𝑈𝜙, 𝑈 = 𝑈(𝑢, 𝜆) = (𝑈𝑗𝑙)(𝑛+1)×(𝑛+1) =

[
𝛼1𝜆 𝑝

𝑞 𝛼2𝜆𝐼𝑛

]
, (8)

where 𝜆 is an eigenvalue, 𝐼𝑛 = diag( 1, 1, … , 1
⏟⎴⏟⎴⏟

𝑛

), and 𝑢 is a potential of 2𝑛-dimension:

𝑢 = (𝑝, 𝑞𝑇)𝑇, 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛), 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛)
𝑇. (9)

When 𝑝𝑗 = 𝑞𝑗 = 0, 2 ≤ 𝑗 ≤ 𝑛, (8) becomes the original AKNS eigenvalue problem.22 We call an
associated soliton hierarchy with (8) an AKNS soliton hierarchy with multiple potentials.23 Since
there exists a multiple eigenvalue of 𝜕𝑈

𝜕𝜆
, the matrix eigenvalue problem (8) is degenerate.

To work out an associated AKNS soliton hierarchy with multiple potentials, as always, we start
to determine a solution of the stationary zero curvature equation

𝑖𝑊𝑥 = [𝑊,𝑈], (10)

corresponding to thematrix eigenvalue problem (8). Let us consider a solution𝑊 of the following
form:

𝑊 =

[
𝑎 𝑏

𝑐 𝑑

]
, (11)

in which 𝑎 is a scalar, 𝑏 and 𝑐 are a row and a column of dimension 𝑛, respectively, and 𝑑 is
a square matrix of size 𝑛. A direct computation shows that the corresponding stationary zero
curvature equation (10) reads

𝑖𝑎𝑥 = 𝑏𝑞 − 𝑝𝑐, 𝑖𝑏𝑥 = −𝛼𝜆𝑏 − 𝑝𝑑 + 𝑎𝑝, 𝑖𝑐𝑥 = 𝛼𝜆𝑐 − 𝑞𝑎 + 𝑑𝑞, 𝑖𝑑𝑥 = 𝑐𝑝 − 𝑞𝑏, (12)

in which 𝛼 = 𝛼1 − 𝛼2. We make an expansion for𝑊 as follows:

𝑊 =

∞∑
𝑚=0

𝑊𝑚𝜆
−𝑚, 𝑊𝑚 = 𝑊𝑚(𝑢) =

[
𝑎[𝑚] 𝑏[𝑚]

𝑐[𝑚] 𝑑[𝑚]

]
, 𝑚 ≥ 0, (13)

𝑏[𝑚], 𝑐[𝑚], and 𝑑[𝑚] being defined by

𝑏[𝑚] = (𝑏
[𝑚]
1 , 𝑏

[𝑚]
2 , … , 𝑏

[𝑚]
𝑛 ), 𝑐[𝑚]𝑇 = (𝑐

[𝑚]
1 , 𝑐

[𝑚]
2 , … , 𝑐

[𝑚]
𝑛 ), 𝑑[𝑚] = (𝑑

[𝑚]
𝑗𝑙

)𝑛×𝑛, 𝑚 ≥ 0. (14)

It then follows that the system (12) precisely yields the following recursion relations:

𝑏[0] = 0, 𝑐[0] = 0, 𝑎
[0]
𝑥 = 0, 𝑑

[0]
𝑥 = 0, (15a)

𝑏[𝑚] =
1

𝛼
(−𝑖𝑏

[𝑚−1]
𝑥 − 𝑝𝑑[𝑚−1] + 𝑎[𝑚−1]𝑝), 𝑚 ≥ 1, (15b)
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𝑐[𝑚] =
1

𝛼
(𝑖𝑐

[𝑚−1]
𝑥 + 𝑞𝑎[𝑚−1] − 𝑑[𝑚−1]𝑞), 𝑚 ≥ 1, (15c)

𝑎
[𝑚]
𝑥 = 𝑖(𝑝𝑐[𝑚] − 𝑏[𝑚]𝑞), 𝑑

[𝑚]
𝑥 = 𝑖(𝑞𝑏[𝑚] − 𝑐[𝑚]𝑝), 𝑚 ≥ 1. (15d)

To compute the associated soliton hierarchy explicitly, let us now take the initial values:

𝑎[0] = 𝛽1, 𝑑
[0] = 𝛽2𝐼𝑛, (16)

where 𝛽1, 𝛽2 are arbitrary but different constants as well, and take zero constants of integration in
(15d), which is equivalent to the following conditions:

𝑊𝑚|𝑢=0 = 0, 𝑚 ≥ 1. (17)

All this guarantees the uniqueness of the matrices𝑊𝑚, 𝑚 ≥ 1. As soon as 𝑎[0] and 𝑑[0] are deter-
mined by (16), all those matrices𝑊𝑚, 𝑚 ≥ 1, defined recursively, can be worked out. Especially,
we can have

𝑏
[1]
𝑗

=
𝛽

𝛼
𝑝𝑗, 𝑐

[1]
𝑗

=
𝛽

𝛼
𝑞𝑗, 𝑎

[1] = 0, 𝑑
[1]
𝑗𝑙

= 0; (18a)

𝑏
[2]
𝑗

= −
𝛽

𝛼2
𝑖𝑝𝑗,𝑥, 𝑐

[2]
𝑗

=
𝛽

𝛼2
𝑖𝑞𝑗,𝑥, 𝑎

[2] = −
𝛽

𝛼2
𝑝𝑞, 𝑑

[2]
𝑗𝑙

=
𝛽

𝛼2
𝑝𝑙𝑞𝑗; (18b)

⎧⎪⎨⎪⎩
𝑏
[3]
𝑗

= −
𝛽

𝛼3
[𝑝𝑗,𝑥𝑥 + 2𝑝𝑞𝑝𝑗], 𝑐

[3]
𝑗

= −
𝛽

𝛼3
[𝑞𝑗,𝑥𝑥 + 2𝑝𝑞𝑞𝑗],

𝑎[3] = −
𝛽

𝛼3
𝑖(𝑝𝑞𝑥 − 𝑝𝑥𝑞), 𝑑

[3]
𝑗𝑙

= −
𝛽

𝛼3
𝑖(𝑝𝑙,𝑥𝑞𝑗 − 𝑝𝑙𝑞𝑗,𝑥);

⎞⎟⎟⎟⎠ (18c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑏
[4]
𝑗

=
𝛽

𝛼4
𝑖[𝑝𝑗,𝑥𝑥𝑥 + 3𝑝𝑞𝑝𝑗,𝑥 + 3𝑝𝑥𝑞𝑝𝑗],

𝑐
[4]
𝑗

= −
𝛽

𝛼4
𝑖[𝑞𝑗,𝑥𝑥𝑥 + 3𝑝𝑞𝑞𝑗,𝑥 + 3𝑝𝑞𝑥𝑞𝑗],

𝑎[4] =
𝛽

𝛼4
[3(𝑝𝑞)

2
+ 𝑝𝑞𝑥𝑥 − 𝑝𝑥𝑞𝑥 + 𝑝𝑥𝑥𝑞],

𝑑
[4]
𝑗𝑙

= −
𝛽

𝛼4
(3𝑝𝑙𝑝𝑞𝑞𝑗 + 𝑝𝑙,𝑥𝑥𝑞𝑗 + 𝑝𝑙𝑞𝑗,𝑥𝑥 − 𝑝𝑙,𝑥𝑞𝑗,𝑥);

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(18d)

where 𝛽 = 𝛽1 − 𝛽2 and 1 ≤ 𝑗, 𝑙 ≤ 𝑛. By using (15d), we can work out, from (15b) and (15c), the
following recursion relation for 𝑏[𝑚] and 𝑐[𝑚]:[

𝑐[𝑚]

𝑏[𝑚]𝑇

]
= Ψ

[
𝑐[𝑚−1]

𝑏[𝑚−1]𝑇

]
, 𝑚 ≥ 2, (19)
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in which Ψ is the following 2𝑛 × 2𝑛matrix operator

Ψ =
𝑖

𝛼

⎡⎢⎢⎢⎢⎢⎣

(
𝜕 +

𝑛∑
𝑗=1

𝑞𝑗𝜕
−1𝑝𝑗

)
𝐼𝑛 + 𝑞𝜕−1𝑝 −𝑞𝜕−1𝑞𝑇 −

(
𝑞𝜕−1𝑞𝑇

)𝑇
𝑝𝑇𝜕−1𝑝 +

(
𝑝𝑇𝜕−1𝑝

)𝑇
−

(
𝜕 +

𝑛∑
𝑗=1

𝑝𝑗𝜕
−1𝑞𝑗

)
𝐼𝑛 − 𝑝𝑇𝜕−1𝑞𝑇

⎤⎥⎥⎥⎥⎥⎦
. (20)

The AKNS soliton hierarchy with multiple potentials is associated with the following temporal
matrix eigenvalue problems:

−𝑖𝜙𝑡 = 𝑉[𝑟]𝜙, 𝑉[𝑟] = 𝑉[𝑟](𝑢, 𝜆) = (𝑉
[𝑟]
𝑗𝑙
)(𝑛+1)×(𝑛+1) =

𝑟∑
𝑚=0

𝑊𝑚𝜆
𝑟−𝑚, 𝑟 ≥ 0. (21)

The following zero curvature equations, namely, the compatibility conditions of (8) and (21),

𝑈𝑡 − 𝑉
[𝑟]
𝑥 + 𝑖[𝑈, 𝑉[𝑟]] = 0, 𝑟 ≥ 0, (22)

lead to the so-called AKNS soliton hierarchy with multiple potentials:

𝑢𝑡 = (𝑝, 𝑞𝑇)𝑇𝑡 = 𝐾𝑟 = 𝑖(𝛼𝑏[𝑟+1], −𝛼𝑐[𝑟+1]𝑇)𝑇, 𝑟 ≥ 0. (23)

The first nontrivial integrable system in the soliton hierarchy (23) consists of the standard NLS
equations:

⎧⎪⎪⎨⎪⎪⎩
𝑝𝑗,𝑡 = −

𝛽

𝛼2
𝑖

[
𝑝𝑗,𝑥𝑥 + 2

(
𝑛∑
𝑙=1

𝑝𝑙𝑞𝑙

)
𝑝𝑗

]
, 1 ≤ 𝑗 ≤ 𝑛,

𝑞𝑗,𝑡 =
𝛽

𝛼2
𝑖

[
𝑞𝑗,𝑥𝑥 + 2

(
𝑛∑
𝑙=1

𝑝𝑙𝑞𝑙

)
𝑞𝑗

]
, 1 ≤ 𝑗 ≤ 𝑛.

⎞⎟⎟⎟⎟⎟⎠
(24)

In the case of 𝑛 = 2, under a special kind of local group reductions,24 the NLS equations (24)
reduce to the Manokov system.25 An integrable decomposition into integrable Hamiltonian sys-
tems of ordinary differential equations was made for that reduced system in Ref. 26.
The AKNS soliton hierarchy with multiple potentials (23) possesses a bi-Hamiltonian

formulation.27 This can be achieved by using the trace identity,28 or more generally, the varia-
tional identity.29 The process of determining the bi-Hamiltonian structure is as follows. A direct
computation yields

−𝑖 tr
(
𝑊

𝜕𝑈

𝜕𝜆

)
= 𝛼1𝑎 + 𝛼2tr (𝑑) =

∞∑
𝑚=0

(
𝛼1𝑎

[𝑚] + 𝛼2

𝑛∑
𝑗=1

𝑑
[𝑚]
𝑗𝑗

)
𝜆−𝑚,

and

−𝑖 tr
(
𝑊

𝜕𝑈

𝜕𝑢

)
=

[
𝑐

𝑏𝑇

]
=
∑
𝑚≥0

𝐺𝑚−1𝜆
−𝑚.
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Now applying the trace identity

𝛿

𝛿𝑢 ∫ tr
(
𝜕𝑈

𝜕𝜆
𝑊

)
𝑑𝑥 = 𝜆−𝛾

𝜕

𝜕𝜆
𝜆𝛾tr

(
𝜕𝑈

𝜕𝑢
𝑊

)
, 𝛾 = −

𝜆

2

𝑑

𝑑𝜆
ln |tr (𝑊2

) |, (25)

with 𝛾 = 0, we obtain

𝛿𝐻̃𝑚

𝛿𝑢
= 𝑖𝐺𝑚−1, 𝐻̃𝑚 = −

𝑖

𝑚 ∫
(
𝛼1𝑎

[𝑚+1] + 𝛼2

𝑛∑
𝑗=1

𝑑
[𝑚+1]
𝑗𝑗

)
𝑑𝑥, 𝐺𝑚−1 =

[
𝑐[𝑚]

𝑏[𝑚]𝑇

]
, 𝑚 ≥ 1. (26)

This generates the following bi-Hamiltonian structure:

𝑢𝑡 = 𝐾𝑟 = 𝑖𝐽1𝐺𝑟 = 𝐽1
𝛿𝐻̃𝑟+1

𝛿𝑢
= 𝐽2

𝛿𝐻̃𝑟

𝛿𝑢
, 𝑟 ≥ 1 (27)

for the AKNS equations with multiple potentials in (23), where the Hamiltonian pair (𝐽1, 𝐽2 =
𝐽1Ψ) is determined by

𝐽1 =

[
0 𝛼𝐼𝑛

−𝛼𝐼𝑛 0

]
, (28a)

𝐽2 = 𝑖

⎡⎢⎢⎢⎢⎢⎣
𝑝𝑇𝜕−1𝑝 +

(
𝑝𝑇𝜕−1𝑝

)𝑇
−

(
𝜕 +

𝑛∑
𝑗=1

𝑝𝑗𝜕
−1𝑞𝑗

)
𝐼𝑛 − 𝑝𝑇𝜕−1𝑞𝑇

−

(
𝜕 +

𝑛∑
𝑗=1

𝑝𝑗𝜕
−1𝑞𝑗

)
𝐼𝑛 − 𝑞𝜕−1𝑝 𝑞𝜕−1𝑞𝑇 +

(
𝑞𝜕−1𝑞𝑇

)𝑇
⎤⎥⎥⎥⎥⎥⎦
. (28b)

The integrodifferential operator Φ = Ψ† = 𝐽2𝐽
−1
1 provides a hereditary recursion operator for the

AKNS soliton hierarchy (23). For each 𝑟 ≥ 1, adjoint symmetry constraints (or a little bit loosely,
symmetry constraints) can decompose the 𝑟th AKNS equations with multiple potentials into two
commuting Hamiltonian systems of ordinary differential equations, which are integrable in the
Liouville sense.23,27

2.2 Nonlocal reverse-space NLS hierarchies

Motivated by the classical local reductions,24 we introduce a specific kind of nonlocal group reduc-
tions for the eigenvalue matrix 𝑈:

𝑈†(−𝑥, 𝑡, −𝜆∗) = −𝐶𝑈(𝑥, 𝑡, 𝜆)𝐶−1, (29)

where

𝐶 =

[
1 0

0 Σ

]
, Σ† = Σ.
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This means that

𝑃†(−𝑥, 𝑡) = −𝐶𝑃(𝑥, 𝑡)𝐶−1 (30)

in which the potential matrix 𝑃 is defined by

𝑃 =

[
0 𝑝

𝑞 0

]
. (31)

Here and in what follows, † stands for the Hermitian transpose, ∗ denotes the complex conjugate,
and Σ is an invertible constant Hermitian matrix. For the sake of convenience, we also denote

⎧⎪⎨⎪⎩
𝑀(𝑥, 𝑡, 𝜆) = 𝑀(𝑢(𝑥, 𝑡), 𝜆),

𝑀†(𝑓(𝑥, 𝑡, 𝜆)) = (𝑀(𝑓(𝑥, 𝑡, 𝜆)))
†
,

𝑀−1(𝑓(𝑥, 𝑡, 𝜆)) = (𝑀(𝑓(𝑥, 𝑡, 𝜆)))
−1

⎞⎟⎟⎟⎠ (32)

for a matrix𝑀 and a function 𝑓.
Equivalently, (30) leads to

𝑞(𝑥, 𝑡) = −Σ−1𝑝†(−𝑥, 𝑡). (33)

The vector function 𝑐 in (12) under such a kind of reductions may be taken as

𝑐(𝑥, 𝑡, 𝜆) = −Σ−1𝑏†(−𝑥, 𝑡, −𝜆∗), (34)

and those reduction relations guarantee that

𝑎∗(−𝑥, 𝑡, −𝜆∗) = −𝑎(𝑥, 𝑡, 𝜆), 𝑑†(−𝑥, 𝑡, −𝜆∗) = −Σ𝑑(𝑥, 𝑡, 𝜆)Σ−1, (35)

where 𝑎 and 𝑑 satisfy (12). Therefore, we have

⎧⎪⎨⎪⎩
(𝑎[𝑚])

∗
(−𝑥, 𝑡) = (−1)

𝑚+1
𝑎[𝑚](𝑥, 𝑡),

(𝑏[𝑚])
†
(−𝑥, 𝑡) = (−1)

𝑚+1
Σ𝑐[𝑚](𝑥, 𝑡),

(𝑑[𝑚])
†
(−𝑥, 𝑡) = (−1)

𝑚+1
Σ𝑑[𝑚](𝑥, 𝑡)Σ−1,

⎞⎟⎟⎟⎠ (36)

where𝑚 ≥ 1. This implies that for all𝑚 ≥ 1, we have

(𝑉[2𝑚])†(−𝑥, 𝑡, −𝜆∗) = 𝐶𝑉[2𝑚](𝑥, 𝑡, 𝜆)𝐶−1, (37)

𝑉[2𝑚] being defined as in (21).
Now, based on (29) and (37), it is direct to see that the reductions in (30) do not present any

additional conditions on the previous spatial and temporal matrix eigenvalue problems, when
𝑟 = 2𝑚. Therefore, under the nonlocal group reductions in (29), the half hierarchy of the equations
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in (23) with 𝑟 = 2𝑚 reduces to the following nonlocal reverse-space NLS hierarchies:

𝑝𝑡 = 𝑋𝑚 = 𝐾2𝑚,1|𝑞=−Σ−1𝑝†(−𝑥,𝑡), 𝑚 ≥ 0, (38)

where 𝐾𝑟 = (𝐾𝑇
𝑟,1, 𝐾

𝑇
𝑟,2)

𝑇 = 𝑖(𝛼𝑏(𝑟+1), −𝛼𝑐(𝑟+1)𝑇)𝑇, 𝑟 ≥ 0. Those hierarchies are associated the
matrix eigenvalue problems{

−𝑖𝜑𝑥 = 𝑈𝜑 = 𝑈(𝑢, 𝜆)𝜑,

−𝑖𝜑𝑡 = 𝑉[2𝑚]𝜑 = 𝑉[2𝑚](𝑢, 𝜆)𝜑,

)
𝑚 ≥ 0, (39)

in which the Lax pairs read

𝑈 = 𝜆Λ + 𝑃, 𝑉[2𝑚] = 𝜆2𝑚Ω + 𝑄2𝑚, (40)

with Λ = diag(𝛼1, 𝛼2𝐼𝑛), Ω = diag(𝛽1, 𝛽2𝐼𝑛), and

𝑄2𝑚 =

2𝑚∑
𝑙=1

𝜆2𝑚−𝑙

[
𝑎[𝑙] 𝑏[𝑙]

𝑐[𝑙] 𝑑[𝑙]

]
. (41)

Moreover, they possess an infinite hierarchy of commuting symmetries {𝑋𝑘}
∞
𝑘=0

and an infinite
hierarchy of commuting conserved functionals {𝐻̃2𝑘+1|𝑞=−Σ−1𝑝†(−𝑥,𝑡)}∞𝑘=0.
When𝑚 = 1, we obtain the multicomponent nonlocal reverse-space NSL equations:

𝑖𝑝𝑡(𝑥, 𝑡) =
𝛽

𝛼2
[𝑝𝑥𝑥(𝑥, 𝑡) − 2𝑝(𝑥, 𝑡)Σ−1𝑝†(−𝑥, 𝑡)𝑝(𝑥, 𝑡)], (42)

where Σ is an arbitrary invertible constant Hermitian matrix, which can exhibit mixed focusing
and defocusing nonlinearities. When 𝑛 = 1, we can obtain two well-known examples:2

𝑖𝑝𝑡(𝑥, 𝑡) = 𝑝𝑥𝑥(𝑥, 𝑡) + 2𝜎𝑝2(𝑥, 𝑡)𝑝∗(−𝑥, 𝑡), (43)

where 𝜎 = ±1; and when 𝑛 = 2, we can get{
𝑖𝑝1,𝑡(𝑥, 𝑡) = 𝑝1,𝑥,𝑥(𝑥, 𝑡) + (𝛾1𝑝1(𝑥, 𝑡)𝑝

†
1(−𝑥, 𝑡) + 𝛾2𝑝2(𝑥, 𝑡)𝑝

†
2(−𝑥, 𝑡))𝑝1(𝑥, 𝑡),

𝑖𝑝2,𝑡(𝑥, 𝑡) = 𝑝2,𝑥,𝑥(𝑥, 𝑡) + (𝛾1𝑝1(𝑥, 𝑡)𝑝
†
1(−𝑥, 𝑡) + 𝛾2𝑝2(𝑥, 𝑡)𝑝

†
2(−𝑥, 𝑡))𝑝2(𝑥, 𝑡),

)
(44)

where 𝛾1 and 𝛾2 are arbitrary nonzero real constants.

3 RIEMANN-HILBERT PROBLEMS

We would now like to construct a class of associated Riemann-Hilbert problems from the matrix
eigenvalue problemswith respect to the spatial variable 𝑥. The results will lay the basic foundation
for building the inverse scattering transforms and soliton solutions in the following two sections.
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3.1 Property of eigenfunctions

Let 𝑞 be determined by (33). Assume that each potential rapidly vanishes as 𝑥 → ±∞ or 𝑡 → ±∞.
For the matrix eigenvalue problems in (39), we observe, under the integrable conditions on the
potentials:

∫
∞

−∞
∫

∞

−∞

|𝑥|𝑘|𝑡|𝑙 𝑛∑
𝑗=1

|𝑝𝑗|𝑑𝑥𝑑𝑡 < ∞, 0 ≤ 𝑘, 𝑙 ≤ 1, (45)

that one has the asymptotic behavior: 𝜙 ∼ e𝑖𝜆Λ𝑥+𝑖𝜆2𝑚Ω𝑡, as 𝑥, 𝑡 → ±∞. Therefore, if one takes the
transformation

𝜙 = 𝜓𝐸𝑔, 𝐸𝑔 = e𝑖𝜆Λ𝑥+𝑖𝜆2𝑚Ω𝑡,

one can obtain the canonical normalization condition 𝜓 → 𝐼𝑛+1, as 𝑥, 𝑡 → ±∞. Upon defining
𝑃̌ = 𝑖𝑃 and 𝑄̌2𝑚 = 𝑖𝑄2𝑚, the required equivalent pair of matrix eigenvalue problems to (39) reads

𝜓𝑥 = 𝑖𝜆[Λ, 𝜓] + 𝑃̌𝜓, (46)

𝜓𝑡 = 𝑖𝜆2𝑚[Ω, 𝜓] + 𝑄̌2𝑚𝜓. (47)

Based on a generalized Liouville’s formula,30 one can obtain

det 𝜓 = 1, (48)

since tr(𝑃̌) = tr(𝑄̌2𝑚) = 0.
The adjoint counterpart of the 𝑥-part of (39) and the adjoint counterpart of (46) are given by

𝑖𝜙̃𝑥 = 𝜙̃𝑈, (49)

and

𝑖𝜓̃𝑥 = 𝜆[𝜓̃, Λ] + 𝜓̃𝑃, (50)

respectively. Each pair of adjointmatrix eigenvalue problems and equivalent adjointmatrix eigen-
value problems does not bring any new conditions, except the nonlocal reverse-space NLS hier-
archies of equations in (38).
Assume that 𝜓(𝜆) solves the spatial eigenvalue problem (46) with a given eigenvalue 𝜆. Then,

obviously, 𝐶𝜓−1(𝑥, 𝑡, 𝜆) is a matrix adjoint eigenfunction associated with the same eigenvalue 𝜆.
Taking the nonlocal reductions in (30) into consideration, we can compute that

𝑖[𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶]𝑥 = 𝑖[−(𝜓𝑥)
†(−𝑥, 𝑡, −𝜆∗)𝐶]

= −𝑖{(−𝑖)(−𝜆)[𝜓†(−𝑥, 𝑡, −𝜆∗), Λ] + (−𝑖)𝜓†(−𝑥, 𝑡, −𝜆∗)𝑃†(−𝑥, 𝑡)}𝐶

= 𝜆[𝜓†(−𝑥, 𝑡, −𝜆∗), Λ]𝐶 + 𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶[−𝐶−1𝑃†(−𝑥, 𝑡)𝐶]
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= 𝜆[𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶, Λ] + 𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶𝑃(𝑥, 𝑡),

and thus,

𝜓̃(𝑥, 𝑡, 𝜆) = 𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶, (51)

presents a newmatrix adjoint eigenfunction associatedwith the same original eigenvalue 𝜆, which
means that 𝜓†(−𝑥, 𝑡, −𝜆∗)𝐶 solves the adjoint eigenvalue problem (50).
Now, using the asymptotic properties for 𝜓, we see that the uniqueness of solutions guarantees

that

𝜓†(−𝑥, 𝑡, −𝜆∗) = 𝐶𝜓−1(𝑥, 𝑡, 𝜆)𝐶−1, (52)

if 𝜓 → 𝐼𝑛+1, 𝑥 or 𝑡 → ∞ or −∞. It therefore follows that when 𝜆 is an eigenvalue of (46) (or (50)),
−𝜆∗ will be another eigenvalue of (46) (or (50)), and the property (52) holds.

3.2 Riemann-Hilbert problems

We point out that the procedure to establish Riemann-Hilbert problems is actually the same as
the one in the local case for the mKdV equations,21,24 but we present it below for subsequent dis-
cussions.
To express Riemann-Hilbert problems concretely, we assume that

𝛼 = 𝛼1 − 𝛼2 < 0, 𝛽 = 𝛽1 − 𝛽2 < 0, (53)

so that we will know what entries of matrix eigenfunctions to pick. In the direct scattering prob-
lem, we first consider the two matrix eigenfunctions 𝜓±(𝑥, 𝜆) of (46) possessing the boundary
conditions

𝜓± → 𝐼𝑛+1, as 𝑥 → ±∞, (54)

respectively. From (48), we can readily find that det 𝜓± = 1 for all 𝑥 ∈ ℝ. Because

𝜙± = 𝜓±𝐸, 𝐸 = e𝑖𝜆Λ𝑥, (55)

are both matrix eigenfunctions of (39), they must be linearly dependent, and as a consequence,
we have

𝜓−𝐸 = 𝜓+𝐸𝑆(𝜆), 𝜆 ∈ ℝ, (56)

in which 𝑆(𝜆) = (𝑠𝑗𝑙)(𝑛+1)×(𝑛+1) is traditionally called the scattering matrix. We point out that
owing to det 𝜓± = 1, we have det 𝑆(𝜆) = 1.
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We can transform the 𝑥-part of (39) into the following Volterra integral equations of the second
kind for 𝜓±:17,31

𝜓−(𝑥, 𝜆) = 𝐼𝑛+1 + ∫
𝑥

−∞

e−𝑖𝜆Λ(𝑦−𝑥)𝑃̌(𝑦)𝜓−(𝑦, 𝜆)e−𝑖𝜆Λ(𝑥−𝑦) 𝑑𝑦, (57)

𝜓+(𝑥, 𝜆) = 𝐼𝑛+1 − ∫
∞

𝑥

e−𝑖𝜆Λ(𝑦−𝑥)𝑃̌(𝑦)𝜓+(𝑦, 𝜆)e−𝑖𝜆Λ(𝑥−𝑦) 𝑑𝑦, (58)

where we have used the boundary conditions (54). Under the conditions (45), the analytic Fred-
holm theory (or more precisely, the Volterra theory on integral equations) guarantees that the
two eigenfunctions 𝜓± exist, and allow analytical continuations off the real line 𝜆 ∈ ℝ as soon
as the both integrals on their right-hand sides converge. Noting the diagonal form of Λ and the
first assumption in (53), one can observe that the integral equation for the last 𝑛 columns of 𝜓+
contains only the exponential factor e−𝑖𝛼𝜆(𝑦−𝑥), which also decays due to 𝑦 > 𝑥 in the integral,
when 𝜆 takes values in ℂ+, and the integral equation for the first column of 𝜓− contains only the
exponential factor e𝑖𝛼𝜆(𝑦−𝑥), which decays due to 𝑦 < 𝑥 in the integral, if 𝜆 takes values in ℂ+.
Thus, these 𝑛 + 1 columns are analytical with respect to 𝜆 in ℂ+ and they are continuous with
respect to 𝜆 in ℂ̄+. By similar arguments, we can find that the first column of 𝜓+and the last 𝑛
columns of 𝜓− are analytical with respect to 𝜆 in ℂ− and they are continuous with respect to 𝜆 in
ℂ̄−.
On one hand, to determine the generalized matrix Jost eigenfunctions, we will denote

𝜓± = (𝜓±1 , 𝜓
±
2 , … , 𝜓±𝑛+1), (59)

that is, for each 1 ≤ 𝑗 ≤ 𝑛 + 1, 𝜓±
𝑗
represents the 𝑗th column of 𝜙±. This way, we can set the gen-

eralized matrix Jost eigenfunction 𝑇+ to be

𝑇+(𝑥, 𝜆) = (𝜓−1 , 𝜓
+
2 , … , 𝜓+𝑛+1) = 𝜓−𝐻1 + 𝜓+𝐻2, (60)

which is continuous with respect to 𝜆 in ℂ̄+ and analytic with respect to 𝜆 in ℂ+. The other gen-
eralized matrix Jost eigenfunction

(𝜓+1 , 𝜓
−
2 , … , 𝜓−𝑛+1) = 𝜓+𝐻1 + 𝜓−𝐻2 (61)

is continuous with respect to 𝜆 in ℂ̄− and analytic with respect to 𝜆 in ℂ−. Here the two matrices
𝐻1 and𝐻2 are defined by

𝐻1 = diag(1, 0, 0, … , 0
⏟⎴⏟⎴⏟

𝑛

), 𝐻2 = diag(0, 1, 1, … , 1
⏟⎴⏟⎴⏟

𝑛

). (62)

On the other hand, to build the partner generalized Jost eigenfunction 𝑇−, we consider the
analytic counterpart of 𝑇+ in the lower half-plane ℂ−, based on the adjoint matrix eigenvalue
problems. Notice that the two inverse matrices 𝜙̃± = (𝜙±)−1 and 𝜓̃± = (𝜓±)−1 can solve those two
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adjoint eigenvalue problems, respectively. Once denoting 𝜓̃± by

𝜓̃± = (𝜓̃±,1, 𝜓̃±,2, … , 𝜓̃±,𝑛+1)𝑇, (63)

namely, for each 1 ≤ 𝑗 ≤ 𝑛 + 1, 𝜓̃±,𝑗 represents the 𝑗th row of 𝜓̃±, we can show by a quite similar
argument that the generalized matrix Jost eigenfunction 𝑇− can be taken as the adjoint matrix
solution of (50), ie,

𝑇−(𝑥, 𝜆) = (𝜓̃−,1, 𝜓̃+,2, … , 𝜓̃+,𝑛+1)𝑇 = 𝐻1𝜓̃
− + 𝐻2𝜓̃

+ = 𝐻1(𝜓
−)−1 + 𝐻2(𝜓

+)−1, (64)

which is continuous with respect to 𝜆 in ℂ̄− and analytic with respect to 𝜆 in ℂ−, and the other
generalized matrix Jost solution of (50),

(𝜓̃+,1, 𝜓̃−,2, … , 𝜓̃−,𝑛+1)𝑇 = 𝐻1𝜓̃
+ + 𝐻2𝜓̃

− = 𝐻1(𝜓
+)−1 + 𝐻2(𝜓

−)−1, (65)

is continuous for 𝜆 ∈ ℂ̄+ and analytic for 𝜆 ∈ ℂ+.
Based on det 𝜓± = 1, the definitions of 𝑇±, and the scattering relation (56) between 𝜓+ and 𝜓−,

we can obtain

det 𝑇+(𝑥, 𝜆) = 𝑠11(𝜆), det 𝑇
−(𝑥, 𝜆) = 𝑠11(𝜆), (66)

where 𝑆−1(𝜆) = (𝑆(𝜆))−1 = (𝑠𝑗𝑙)(𝑛+1)×(𝑛+1). This implies that

lim
𝑥→∞

𝑇+(𝑥, 𝜆) =

[
𝑠11(𝜆) 0

0 𝐼𝑛

]
, 𝜆 ∈ ℂ̄+; lim

𝑥→∞
𝑇−(𝑥, 𝜆) =

[
𝑠11(𝜆) 0

0 𝐼𝑛

]
, 𝜆 ∈ ℂ̄−. (67)

Therefore, we can now introduce the following two unimodular generalizedmatrix Jost solutions:

⎧⎪⎪⎨⎪⎪⎩
𝐺+(𝑥, 𝜆) = 𝑇+(𝑥, 𝜆)

[
𝑠−111 (𝜆) 0

0 𝐼𝑛

]
, 𝜆 ∈ ℂ̄+;

(𝐺−)
−1
(𝑥, 𝜆) =

[
𝑠̂−111 (𝜆) 0

0 𝐼𝑛

]
𝑇−(𝑥, 𝜆), 𝜆 ∈ ℂ̄−.

⎞⎟⎟⎟⎟⎠
(68)

Those two generalized matrix Jost solutions generate the required matrix Riemann-Hilbert prob-
lems on the real line for the nonlocal reverse-space NLS hierarchies (38):

𝐺+(𝑥, 𝜆) = 𝐺−(𝑥, 𝜆)𝐺0(𝑥, 𝜆), 𝜆 ∈ ℝ, (69)

where upon following (56), the jump matrix 𝐺0 is given by

𝐺0(𝑥, 𝜆) = 𝐸

[
𝑠−111 (𝜆) 0

0 𝐼𝑛

]
𝑆(𝜆)

[
𝑠−111 (𝜆) 0

0 𝐼𝑛

]
𝐸−1. (70)

The matrix 𝑆(𝜆) in the jump matrix 𝐺0 has the factorization:
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𝑆(𝜆) = (𝐻1 + 𝐻2𝑆(𝜆))(𝐻1 + 𝑆−1(𝜆)𝐻2), (71)

which can be expressed as

𝑆(𝜆) = (𝑠𝑗𝑙)(𝑛+1)×(𝑛+1) =

⎡⎢⎢⎢⎢⎢⎣

1 𝑠12 𝑠13 … 𝑠1,𝑛+1
𝑠21 1 0 … 0

𝑠31 0 1 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0

𝑠𝑛+1,1 0 … 0 1

⎤⎥⎥⎥⎥⎥⎦
. (72)

For the above Riemann-Hilbert problems, the standard canonical normalization conditions

𝐺±(𝑥, 𝜆) → 𝐼𝑛+1, as 𝜆 ∈ ℂ̄± → ∞, (73)

are a consequence of the Volterra integral equations (57) and (58). Moreover, the basic property of
eigenfunctions in (52) tells that

(𝐺+)†(−𝑥, 𝑡, −𝜆∗) = 𝐶(𝐺−)−1(𝑥, 𝑡, 𝜆)𝐶−1, (74)

and thus, we find that the jump matrix 𝐺0 possesses the following characteristic property:

𝐺†
0(−𝑥, 𝑡, −𝜆

∗) = 𝐶𝐺0(𝑥, 𝑡, 𝜆)𝐶
−1. (75)

We point out that the jump matrix 𝐺0 contains basic scattering data inherited from the scattering
matrix 𝑆(𝜆).

4 INVERSE SCATTERING TRANSFORMS

In this section, we analyze the direct and inverse scattering for the nonlocal reverse-space NLS
hierarchies (38) through the Riemann-Hilbert technique17 (see also Refs. 32, 33). We build the
inverse scattering theory by transforming the associated Riemann-Hilbert problems with the
Sokhotski-Plemelj formula.

4.1 Evolution of the scattering data

We first develop the evolution laws for the scattering data to formulate the inverse scattering trans-
forms. Take the derivative of (56) with respect to the temporal variable 𝑡 and utilize the temporal
matrix spectral problems for 𝜓±.
This way, one can readily show that the scattering matrix 𝑆 obeys an evolution law:

𝑆𝑡 = 𝑖𝜆2𝑚[Ω, 𝑆]. (76)
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This leads to the following time evolution formulas for the time-dependent scattering coefficients:{
𝑠12 = 𝑠12(0, 𝜆)e

𝑖𝛽𝜆2𝑚𝑡, 𝑠13 = 𝑠13(0, 𝜆)e
𝑖𝛽𝜆2𝑚𝑡, … , 𝑠1,𝑛+1 = 𝑠1,𝑛+1(0, 𝜆)e

𝑖𝛽𝜆2𝑚𝑡,

𝑠21 = 𝑠21(0, 𝜆)e
−𝑖𝛽𝜆2𝑚𝑡, 𝑠31 = 𝑠31(0, 𝜆)e

−𝑖𝛽𝜆2𝑚𝑡, … , 𝑠𝑛+1,1 = 𝑠𝑛+1,1(0, 𝜆)e
−𝑖𝛽𝜆2𝑚𝑡,

)

and shows that any other scattering coefficient does not depend on the time variable 𝑡.

4.2 Gelfand-Levitan-Marchenko type equations

To determine the generalized matrix Jost eigenfunctions, we make the transformation for the
Riemann-Hilbert problems in (69) as follows:{

𝐺+ − 𝐺− = 𝐺−𝑣, 𝑣 = 𝐺0 − 𝐼𝑛+1, on ℝ,

𝐺± → 𝐼𝑛+1 as 𝜆 ∈ ℂ̄± → ∞,

)
(77)

where 𝐺0 is the jump matrix defined by (70) and (71).
Let 𝐺(𝜆) = 𝐺±(𝜆) if 𝜆 ∈ ℂ±. Suppose that 𝐺 has simple poles off ℝ: {𝜇𝑗}𝑅𝑗=1, where the integer

𝑅 is arbitrary. Define

𝐺̃±(𝜆) ∶= 𝐺±(𝜆) −

𝑅∑
𝑗=1

𝐺𝑗

𝜆 − 𝜇𝑗
, 𝜆 ∈ ℂ̄; 𝐺̃(𝜆) = 𝐺̃±(𝜆), 𝜆 ∈ ℂ±, (78)

where 𝐺𝑗 denotes the residue of 𝐺 at 𝜆 = 𝜇𝑗 , ie, 𝐺𝑗 = res(𝐺(𝜆), 𝜇𝑗) = lim𝜆→𝜇𝑗 (𝜆 − 𝜇𝑗)𝐺(𝜆), 1 ≤
𝑗 ≤ 𝑅. Then, we find {

𝐺̃+ − 𝐺̃− = 𝐺+ − 𝐺− = 𝐺−𝑣, on ℝ,

𝐺̃± → 𝐼𝑛+1 as 𝜆 ∈ ℂ± → ∞.

)
(79)

By applying the Sokhotski-Plemelj formula,34 we determine the solutions of the transformed
Riemann-Hilbert problems in (79) as follows:

𝐺̃(𝜆) = 𝐼𝑛+1 +
1

2𝜋𝑖 ∫
∞

−∞

(𝐺−𝑣)(𝜉)

𝜉 − 𝜆
𝑑𝜉. (80)

Furthermore, computing the limit as 𝜆 → 𝜇𝑙 yields

lhs = lim
𝜆→𝜇𝑙

𝐺̃ = 𝐹𝑙 −

𝑅∑
𝑗≠𝑙

𝐺𝑗

𝜇𝑙 − 𝜇𝑗
,

rhs = 𝐼𝑛+1 +
1

2𝜋𝑖 ∫
∞

−∞

(𝐺−𝑣)(𝜉)

𝜉 − 𝜇𝑙
𝑑𝜉,
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where 𝐹𝑙 = lim𝜆→𝜇𝑙 [(𝜆 − 𝜇𝑙)𝐺(𝜆) − 𝐺𝑙]∕(𝜆 − 𝜇𝑙), 1 ≤ 𝑙 ≤ 𝑅, and consequently, we obtain the fol-
lowing Gelfand-Levitan-Marchenko type integral equations:

𝐼𝑛+1 − 𝐹𝑛 +

𝑅∑
𝑗≠𝑙

𝐺𝑗

𝜇𝑙 − 𝜇𝑗
+

1

2𝜋𝑖 ∫
∞

−∞

(𝐺−𝐺0)(𝜉)

𝜉 − 𝜇𝑙
𝑑𝜉 −

1

2𝜋𝑖 ∫
∞

−∞

𝐺−(𝜉)

𝜉 − 𝜇𝑙
𝑑𝜉 = 0, 1 ≤ 𝑙 ≤ 𝑅. (81)

Once the jumpmatrix𝐺0 is given, by analyzing and solving these equations, one determines solu-
tions of the associated Riemann-Hilbert problems, and hence, the generalized matrix Jost eigen-
functions.

4.3 Recovery of the potentials

To recover all potentials from the generalized matrix Jost eigenfunctions, we consider an asymp-
totic expansion

𝐺+(𝑥, 𝑡, 𝜆) = 𝐼𝑛+1 +
1

𝜆
𝐺+
1 (𝑥, 𝑡) + O

(
1

𝜆2

)
, as 𝜆 → ∞. (82)

Plugging this asymptotic expansion into the matrix eigenvalue problem (46) and comparing con-
stant (𝜆0) terms engenders

𝑃 = lim
𝜆→∞

𝜆[𝐺+(𝜆), Λ] = −[Λ, 𝐺+
1 ]. (83)

This equivalently leads to the potential matrix:

𝑃 =

⎡⎢⎢⎢⎢⎢⎣

0 −𝛼(𝐺+
1 )12 −𝛼(𝐺+

1 )13 … −𝛼(𝐺+
1 )1,𝑛+1

𝛼(𝐺+
1 )21 0 0 … 0

𝛼(𝐺+
1 )31 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮

𝛼(𝐺+
1 )𝑛+1,1 0 0 … 0

⎤⎥⎥⎥⎥⎥⎦
, (84)

where 𝐺+
1 = ((𝐺+

1 )𝑗𝑙)(𝑛+1)×(𝑛+1). Namely, the 2𝑛 potentials 𝑝𝑗 and 𝑞𝑗 , 1 ≤ 𝑗 ≤ 𝑛, determined by

𝑝𝑗 = −𝛼(𝐺+
1 )1,𝑗+1, 𝑞𝑗 = 𝛼(𝐺+

1 )𝑗+1,1, 1 ≤ 𝑗 ≤ 𝑛, (85)

solve the AKNS equations with 𝑟 = 2𝑚 in (23). When the nonlocal reduction requirement (30),
equivalently

(𝐺+
1 (−𝑥, 𝑡))

† = 𝐶𝐺+
1 (𝑥, 𝑡)𝐶

−1 (86)

is satisfied, the reduced potentials 𝑝𝑗 , 1 ≤ 𝑗 ≤ 𝑛, solve the nonlocal reverse-space NLS hierarchies
(38).
The above whole procedure presents the inverse scattering transforms from the scattering

matrix 𝑆(𝜆), through the jump matrix 𝐺0(𝜆) and the solution {𝐺+(𝜆), 𝐺−(𝜆)} of the Riemann-
Hilbert problems, to the potentials that solve the nonlocal reverse-space NLS hierarchies (38).
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5 SOLITON SOLUTIONS

5.1 Nonreduced case

On account of det 𝑆 = 1, one has

𝑠11 = (𝑆−1)11 =

|||||||||
𝑠22 𝑠23 … 𝑠2,𝑛+1
𝑠32 𝑠33 … 𝑠3,𝑛+1
⋮ ⋮ ⋱ ⋮

𝑠𝑛+1,2 𝑠𝑛+1,3 … 𝑠𝑛+1,𝑛+1

|||||||||
.

Let 𝑁 be another arbitrarily given natural number. We take 𝑁 zeros {𝜆𝑘 ∈ ℂ, 1 ≤ 𝑘 ≤ 𝑁}, for 𝑠11
and𝑁 zeros {𝜆̂𝑘 ∈ ℂ, 1 ≤ 𝑘 ≤ 𝑁}, for 𝑠11. To construct soliton solutions, it is also assumed that all
these zeros, 𝜆𝑘 and 𝜆̂𝑘, 1 ≤ 𝑘 ≤ 𝑁, are geometrically simple. Then, every ker𝑇+(𝜆𝑘) (1 ≤ 𝑘 ≤ 𝑁)
contains a single basis column vector, which is denoted by 𝑣𝑘; and every ker𝑇−(𝜆̂𝑘) (1 ≤ 𝑘 ≤ 𝑁),
only a single basis row vector, which is denoted by 𝑣𝑘 (1 ≤ 𝑘 ≤ 𝑁). This can be presented as

𝑇+(𝜆𝑘)𝑣𝑘 = 0, 𝑣𝑘𝑇
−(𝜆̂𝑘) = 0, 1 ≤ 𝑘 ≤ 𝑁. (87)

To work out soliton solutions, we need to take 𝐺0 = 𝐼𝑛+1 in each of the Riemann-Hilbert prob-
lems in (69). This condition can be achieved if we assume that 𝑠𝑖1 = 𝑠1𝑖 = 0, 2 ≤ 𝑖 ≤ 𝑛 + 1. It
means that only zero reflection coefficients are taken in the direct scattering problem.
It is known that special Riemann-Hilbert problems with the identity jump matrix, with the

canonical normalization conditions in (73) and the zero structures indicated in (87), could be
solved explicitly, when 𝜆𝑙 ≠ 𝜆̂𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁 (see, eg, Refs. 17, 35). Consequently, we can directly
determine the potential matrix 𝑃. If this condition on pole locations of generalized Jost eigen-
functions is not satisfied, which happens in the case of nonlocal integrable equations, solutions
to specical Riemann-Hilbert problems with the identity jump matrix can be presented as follows:

𝐺+(𝜆) = 𝐼𝑛+1 −

𝑁∑
𝑘,𝑙=1

𝑣𝑘(𝑀
−1)𝑘𝑙𝑣𝑙

𝜆 − 𝜆̂𝑙
, (𝐺−)−1(𝜆) = 𝐼𝑛+1 +

𝑁∑
𝑘,𝑙=1

𝑣𝑘(𝑀
−1)𝑘𝑙𝑣𝑙

𝜆 − 𝜆𝑘
, (88)

where𝑀 = (𝑚𝑘𝑙)𝑁×𝑁 is a matrix whose entries are defined by

𝑚kl =

⎧⎪⎨⎪⎩
𝑣𝑘𝑣𝑙

𝜆𝑙 − 𝜆𝑘
, if 𝜆𝑙 ≠ 𝜆𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁,

0, if 𝜆𝑙 = 𝜆𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁,

⎞⎟⎟⎠ (89)

for which an additional orthogonal condition

𝑣𝑘𝑣𝑙 = 0, if 𝜆𝑙 = 𝜆̂𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁 (90)

is required. Note that within this solution formulation, we do not need the condition of 𝜆𝑙 ≠
𝜆̂𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁, indeed.
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Note that the zeros 𝜆𝑘 and 𝜆̂𝑘 do not depend on 𝑥 and 𝑡, ie, space and time independent, and
thus, one can determine the spatial and temporal evolution laws for the vectors, 𝑣𝑘(𝑥, 𝑡) and
𝑣𝑘(𝑥, 𝑡), 1 ≤ 𝑘 ≤ 𝑁, in the kernels. For instance, let us calculate the 𝑥-derivative of both sides
of the first set of equations in (87). Using (46) first and then again the first set of equations in (87),
one can find

𝑇+(𝑥, 𝜆𝑘)
(𝑑𝑣𝑘
𝑑𝑥

− 𝑖𝜆𝑘Λ𝑣𝑘

)
= 0, 1 ≤ 𝑘 ≤ 𝑁. (91)

This means that for every 1 ≤ 𝑘 ≤ 𝑁, 𝑑𝑣𝑘
𝑑𝑥

− 𝑖𝜆𝑘Λ𝑣𝑘 will be in the kernel of 𝑇+(𝑥, 𝜆𝑘), and thus a
constant multiple of 𝑣𝑘. We, without loss of generality, can assume that

𝑑𝑣𝑘
𝑑𝑥

= 𝑖𝜆𝑘Λ𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁. (92)

Analogously, the time dependence of 𝑣𝑘 is determined by

𝑑𝑣𝑘
𝑑𝑡

= 𝑖𝜆2𝑚
𝑘
Ω𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁, (93)

which can be obtained by applying thematrix eigenvalue problem (47). Similarly from the second
equations in (87), we can obtain space and time dependence of 𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑁. It then follows that
we can have

𝑣𝑘(𝑥, 𝑡) = e𝑖𝜆𝑘Λ𝑥+𝑖𝜆
2𝑚
𝑘

Ω𝑡𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, (94)

𝑣𝑘(𝑥, 𝑡) = 𝑤̂𝑘e−𝑖𝜆̂𝑘Λ𝑥−𝑖𝜆̂
2𝑚
𝑘

Ω𝑡, 1 ≤ 𝑘 ≤ 𝑁, (95)

where 𝑤𝑘 and 𝑤̂𝑘, 1 ≤ 𝑘 ≤ 𝑁, are arbitrary column and row constant vectors, respectively, but
need to satisfy

𝑤̂𝑘𝑤𝑙 = 0, if 𝜆𝑙 = 𝜆̂𝑘, 1 ≤ 𝑘, 𝑙 ≤ 𝑁, (96)

which follows from (90).
Finally, let us set 𝑀̂ = 𝑀−1 = (𝑚̂𝑗𝑙)𝑁×𝑁 , and then from the solutions in (88), we can obtain

𝐺+
1 = −

𝑁∑
𝑘,𝑙=1

𝑣𝑘𝑚̂𝑘𝑙𝑣𝑙, (97)

and furthermore, the presentations in (85) lead to the following 𝑁-soliton solution of the AKNS
equations with multiple potentials with 𝑟 = 2𝑚 in (23):

⎧⎪⎪⎨⎪⎪⎩
𝑝𝑗 = 𝛼

𝑁∑
𝑘,𝑙=1

𝑣𝑘,1𝑚̂𝑘𝑙𝑣𝑙,𝑗+1,

𝑞𝑗 = −𝛼

𝑁∑
𝑘,𝑙=1

𝑣𝑘,𝑗+1𝑚̂𝑘𝑙𝑣𝑙,1,

⎞⎟⎟⎟⎟⎟⎠
1 ≤ 𝑗 ≤ 𝑛. (98)
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5.2 Nonlocal case

In order for us to work out𝑁-soliton solutions of the nonlocal reverse-space NLS hierarchies (38),
we have to satisfy an involution property (86) for 𝐺+

1 defined by (97), which equivalently requires
that the potential matrix 𝑃 determined by (84) satisfies the reduction requirement (30). Then, the
above𝑁-soliton solution of the standard AKNS equations withmultiple potentials (23) is reduced
to the 𝑁-soliton solution:

𝑝𝑗 = 𝛼

𝑁∑
𝑘,𝑙=1

𝑣𝑘,1𝑚̂𝑘𝑙𝑣𝑙,𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 (99)

for the nonlocal reverse-space NLS hierarchies (38).
Let us now analyze how to realize the involution property (86). As usual, we first take 𝑁 zeros

of det 𝑇+(𝜆) (or eigenvalues of the eigenvalue problems under the zero potential): 𝜆𝑘 ∈ ℂ for 1 ≤
𝑘 ≤ 𝑁, and then take

𝜆𝑘 =

{
−𝜆∗

𝑘
, if 𝜆𝑘 ∉ 𝑖ℝ, 1 ≤ 𝑘 ≤ 𝑁,

anyvalue ∈ 𝑖ℝ, if 𝜆𝑘 ∈ 𝑖ℝ, 1 ≤ 𝑘 ≤ 𝑁,

)
(100)

which are zeros of det 𝑇−(𝜆). Now, we see that ker𝑇+(𝜆𝑘), 1 ≤ 𝑘 ≤ 𝑁, are spanned by

𝑣𝑘(𝑥, 𝑡) = 𝑣𝑘(𝑥, 𝑡, 𝜆𝑘) = e𝑖𝜆𝑘Λ𝑥+𝑖𝜆
2𝑚
𝑘

Ω𝑡𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, (101)

respectively, in which𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁, are arbitrary column vectors. These column vectors in (101)
are eigenfunctions of the eigenvalue problems under the zero potential associated with 𝜆𝑘, 1 ≤
𝑘 ≤ 𝑁. Moreover, according to the previous analysis in Subsection 3.1, ker𝑇−(𝜆𝑘), 1 ≤ 𝑘 ≤ 𝑁, are
determined by

𝑣𝑘(𝑥, 𝑡) = 𝑣𝑘(𝑥, 𝑡, 𝜆̂𝑘) = 𝑣†
𝑘
(−𝑥, 𝑡, 𝜆𝑘)𝐶 = 𝑤†

𝑘
e−𝑖𝜆̂𝑘Λ𝑥−𝑖𝜆̂

2𝑚
𝑘

Ω𝑡𝐶, 1 ≤ 𝑘 ≤ 𝑁, (102)

respectively. These row vectors are eigenfunctions of the adjoint eigenvalue problems under the
zero potential associated with 𝜆̂𝑘, 1 ≤ 𝑘 ≤ 𝑁. To satisfy the orthogonal property (96), we require
the following condition on 𝑤𝑘, 1 ≤ 𝑘 ≤ 𝑁:

𝑤†
𝑘
𝐶𝑤𝑘 = 0, if 𝜆𝑘 = 𝜆̂𝑘, 1 ≤ 𝑘 ≤ 𝑁. (103)

Note that for each 1 ≤ 𝑘 ≤ 𝑁, the situation of 𝜆𝑘 = 𝜆̂𝑘 occurs only when 𝜆𝑘 ∈ 𝑖ℝ and 𝜆̂𝑘 = −𝜆∗
𝑘
.

At this moment, if the solutions of the special Riemann-Hilbert problems, defined by (88) and
(89), satisfy the property (74), ie, 𝐺+

1 satisfies the requirement (86) for our nonlocal group reduc-
tions in (29), then the formula (99), together with (88), (89), (101), and (102), provides the𝑁-soliton
solutions of the nonlocal reverse-space NLS hierarchies of equations in (38), provided that the
orthogonal condition (103) holds.
When 𝑁 = 𝑚 = 1, let us fix Σ = diag(𝛾1, 𝛾2, … , 𝛾𝑛), where 𝛾1, 𝛾2, … , 𝛾𝑛 are arbitrary nonzero

real numbers. We choose 𝜆1 = 𝑖𝜂1, 𝜆̂1 = −𝑖𝜂1, 𝜂1 ∈ ℝ, and denote 𝑤1 = (𝑤1,1, 𝑤1,2, … , 𝑤1,𝑛+1)
𝑇 .

Then, we can derive the one-soliton solution to the multicomponent nonlocal reverse-space NLS
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equations in (42):

𝑝𝑗(𝑥, 𝑡) =
2𝛼𝜂1𝑖𝑤1,1𝑤

∗
1,𝑗+1

𝛾𝑗

𝜀|𝑤1,1|2 e−𝛼𝜂1𝑥+𝑖𝛽𝜂21𝑡 + (|𝑤1,2|2𝛾1 +⋯+ |𝑤1,𝑛+1|2𝛾𝑛) e𝛼𝜂1𝑥+𝑖𝛽𝜂21𝑡 , 1 ≤ 𝑗 ≤ 𝑛, (104)

where 𝜀 = ±1, 𝜂1 is an arbitrary real number, and𝑤1,1, 𝑤1,2, … , 𝑤1,2 are arbitrary complex numbers
but satisfy 𝑤†

1𝐶𝑤1 = |𝑤1,1|2 + 𝛾1|𝑤1,2|2 +⋯+ 𝛾𝑛|𝑤1,𝑛+1|2 = 0. This condition comes from the
involution property (86). Such one-soliton solutions can develop a singularity at a finite time, and
the case of 𝜀 = 1 and 𝑛 = 1 can be reduced to the breather one-soliton solution in Ref. 3.

6 CONCLUDING REMARKS

The paper aims to propose nonlocal reverse-space NLS hierarchies and present their inverse scat-
tering transforms first and then soliton solutions. The primary step is to establishRiemann-Hilbert
problems from matrix eigenvalue problems. Solutions of the associated Riemann-Hilbert prob-
lems were generated from the Sokhotski-Plemelj formula, and the inverse scattering transforms
were formulated, based on the associated Riemann-Hilbert problems. A solution formulation was
further presented for special Riemann-Hilbert problems whose jumps are the identity matrix,
and thus, from such special Riemann-Hilbert problems (or equivalently, the reflectionless inverse
scattering transforms), the 𝑁-soliton solutions were worked out for the nonlocal reverse-space
NLS hierarchies.
The Riemann-Hilbert technique is a powerful approach for formulating the inverse scattering

transforms and constructing soliton solutions (see also, eg, Refs. 18–20, 36). The technique has
been recently extended to deal with initial and boundary value problems for integrable equations
over both a finite interval and a half-line.37,38 One can also develop the Riemann-Hilbert tech-
nique for general multicomponent NLS equations associated with simple Lie algebras39 and their
nonlocal counterparts.7 Solution formulations, however, vary from case to case for nonlocal inte-
grable equations, including reverse-space, reverse-time, and reverse-space-time equations (see,
eg, Refs. 3, 8, 40). There are also other effective and powerful methods to construct soliton solu-
tions within the theory of integrable equations, which contain the Darboux transformation,41,42
the Hirota bilinear technique,43 the Wronskian determinant technique,44,45 and the generalized
bilinear method.46 It would be significantly important that one could understand the relation-
ships among those interesting distinct methods.
We also point out that it would be particularly interesting to generate different kinds of explicit

and exact solutions of integrable equations, such as positon solutions and complexiton ones,47,48
lump and lump-type solutions,49–51 solitonless solutions,52,53 algebrogeometric solutions,54,55 and
dromions56,57 from a perspective of Riemann-Hilbert problems. Moreover, it is worthy for further
investigation is how to establish Riemann-Hilbert problems for dealing with extended integrable
counterparts including super or supersymmetric equations, integrable couplings, and fractional
analogous equations.
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