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1 | INTRODUCTION

Nonlocal integrable equations have become one of the most popular topics in soliton theory. Three
types of nonlocal nonlinear Schrédinger (NLS) equation arises while taking group reductions.'
The corresponding inverse scattering transforms have been recently established for the scalar
case’® and the multicomponent case,”® and soliton solutions have been constructed from the
Riemann-Hilbert problems whose jump is the identity,®” through Darboux transformations,'*~?
and by the Hirota bilinear method."* Some other multicomponent generalizations"'*!> and nonlo-
cal integrable equations'® were also presented. We would like to present a class of NLS hierarchies
of nonlocal reverse-space integrable equations associated with the multicomponent Ablowitz-
Kaup-Newell-Segur (AKNS) eigenvalue problem, and construct their inverse scattering trans-
forms first and then soliton solutions through formulating and solving the associated Riemann-
Hilbert problems with matrix eigenvalue problems.

Like Darboux transformations, the Riemann-Hilbert problems are successfully used to study
integrable equations and further construct their soliton solutions.!” Many integrable equations,
such as the multiple wave interaction equations,”’ the general coupled NLS equations,'® the
generalized Sasa-Satsuma equation,' the Harry Dym equation,”’ and multicomponent modi-
fied Korteweg-de Vires (mKdV) equations,? have been studied through exploring the Riemann-
Hilbert problems associated with their matrix eigenvalue problems.

A general procedure for formulating Riemann-Hilbert problems on R is stated as follows.
Assume that there is a pair of matrix eigenvalue problems:

{ —ip, =Up, U =U,1) = A1) + P(u,l),) M
—ip, =V, V=V(u,1) = B() + Qu, 1),

in which i is the unit imaginary number, ¢ is a square matrix eigenfunction, 4 is an eigenvalue, u is
a potential, and we usually assume that A and B are commuting constant diagonal square matri-
ces, and P and Q are square matrices being traceless. The above two matrix eigenvalue problems
need to satisfy the compatibility condition, namely, the zero curvature equation,

U -V, +ilUV]=0, (2)
where [-, -] is the matrix commutator, and this generates an integrable equation. To furnish this

integrable equation with a Riemann-Hilbert problem, we utilize the following equivalent pair of
matrix eigenvalue problems:

©)

{sz = i[AQ), $] + P(u, )9,
% = i[BQ), 9] + O, Dy,

where P = iP and Q = iQ, and % is a square matrix eigenfunction. Obviously, the equivalence
between (1) and (3) is guaranteed by the commutativity of A and B. The connection between ¢
and 1 reads

¢ — 'l,bEg, Eg — eiA(l)x+iB(A)t. (4)

The uniqueness of matrix eigenfunctions needs the standard boundary conditions

Pt > 1, asx,t - +oo, (5)
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in which I represents the identity matrix. From those eigenfunctions ¢*, we need to pick the
entries to define two generalized matrix Jost eigenfunctions T*(x,t, 1), being analytical with
respect to A in C* and C~ (the upper and lower half-planes), respectively, and continuous with
respect to 4 in C* and €~ (the closed upper and lower half-planes), respectively. Then, based
on those two generalized matrix Jost eigenfunctions T+, we can formulate a so-called Riemann-
Hilbert problem on R:

Gt(x,t,4) = G~ (x,t,1)Gy(x,t,1), 1 € R, (6)

in which G* are two unimodular generalized matrix Jost eigenfunctions and G, is the
jump matrix.
Note that the two eigenfunctions, ¢~ and ™, are linearly dependent. It therefore follows that

Y7E, = pTES(A), ()

in which S(X) is called the scattering matrix of the associated matrix eigenvalue problems. The
jump matrix G, contains basic scattering data inherited from S(1). Solutions of the Riemann-
Hilbert problems could be presented by using the Sokhotski-Plemelj formula and used to con-
struct the required generalized matrix Jost eigenfunctions for recovering the potentials in the
matrix eigenvalue problems, which solve the corresponding integrable equation. Such a proce-
dure formulates an inverse scattering transform. Soliton solutions are presented from solutions to
special Riemann-Hilbert problems whose jumps G, are the identity matrix (or equivalently, the
reflectionless inverse scattering transforms).

In this paper, first by making a special kind of nonlocal group reductions, we propose a class
of nonlocal reverse-space NLS hierarchies, and then from a perspective of Riemann-Hilbert prob-
lems, we construct their inverse scattering transforms and soliton solutions. We organize the other
sections of the paper as follows. In Section 2, we make a kind of nonlocal group reductions and
construct nonlocal reverse-space NLS hierarchies from the AKNS integrable hierarchy possessing
multiple potentials. In Section 3, we establish the associated Riemann-Hilbert problems, based
on the analytic Fredholm theory on integral equations. In Section 4, we transform, by means of
the Sokhotski-Plemelj formula, the resulting Riemann-Hilbert problems into Gelfand-Levitan-
Marchenko type integral equations, to formulate the inverse scattering transforms. In Section 5,
we first propose a solution formulation to special Riemann-Hilbert problems whose jumps are
G, = I, and then construct soliton solutions of the nonlocal reverse-space NLS hierarchies. In the
final section, we summarize our results and give several concluding remarks.

2 | NONLOCAL REDUCTIONS AND NONLOCAL NLS HIERARCHIES
2.1 | AKNS hierarchy with multiple potentials

We recall the AKNS hierarchy with multiple potentials in this subsection for ease of reference.
Let n be an arbitrarily given natural number, and a; and «,, arbitrary but different constants.
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The AKNS matrix eigenvalue problem with multiple potentials reads

, oA p
—i¢y =U¢, U =Uw, 1) = (UjD)n+1)xn+1) = [ q sz/Un]’ (®)
where A is an eigenvalue, I,, = diag(1,1,...,1), and u is a potential of 2n-dimension:
N—_——
n
u=(p,q")", p=(p1,p2>0n)> 4= (@1 %25 )" 9)

When p; = q; =0, 2 < j <n,(8) becomes the original AKNS eigenvalue problem.?” We call an
associated soliton hierarchy with (8) an AKNS soliton hierarchy with multiple potentials.?* Since
there exists a multiple eigenvalue of 2—;}, the matrix eigenvalue problem (8) is degenerate.

To work out an associated AKNS soliton hierarchy with multiple potentials, as always, we start
to determine a solution of the stationary zero curvature equation

iw, =[W,U], 10)

corresponding to the matrix eigenvalue problem (8). Let us consider a solution W of the following
form:

W= [‘C’ Z], a1)

in which a is a scalar, b and c are a row and a column of dimension n, respectively, and d is
a square matrix of size n. A direct computation shows that the corresponding stationary zero
curvature equation (10) reads

iay = bq — pc, iby = —alAb — pd + ap,ic, = aAc —qa +dgq,id, = cp —gb, 12)

in which a = a; — a,. We make an expansion for W as follows:

W= Z Wm/l_ma W = m(u) =

m=0

[m]  pim
a
[Clm] dlmJ] , m>0, 13)

plml clml ang dlm] being defined by

plml = (plml plml_ plmly) elmIT — (il clml | elmly ) glm] — (d%”])nx,,, m>0. (14)
It then follows that the system (12) precisely yields the following recursion relations:

blol =, ¢l =0, a!” =0, dl” = 0, (152)

plml — é(—ibﬁ{”‘” — pdm=11 4 glm=1p) m > 1, (15b)
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clml = é(ic’;[cm_” +qalm=1 —dlm=lg), m > 1, (15¢)

al™ = i(pelm — plimlg), d™ = i(gb!™) — M p), m > 1. (15d)
To compute the associated soliton hierarchy explicitly, let us now take the initial values:
alol = B, dalol = Bol,, (16)

where 31, B, are arbitrary but different constants as well, and take zero constants of integration in
(15d), which is equivalent to the following conditions:

Wonlueo =0, m > 1. (17)
All this guarantees the uniqueness of the matrices W,,, m > 1. As soon as all and dl°1 are deter-

mined by (16), all those matrices W,,, m > 1, defined recursively, can be worked out. Especially,
we can have

m_B_ m_B_ ni_g 4o
bj —apj, ¢ —aqj,a =0, dﬂ =0; (18a)
2 . 2 . B 2 B
b7 = ipj. ¢ = gy a? =~ pg, df = = p;; (18b)
B B
bl = == 1pjxx +204p)) ol = ~ =190 + 2pqq;) 50
C
al3l = _ﬁi( —p.q), d¥ = _ﬁi( D)
= o3 bqx — bxq), gl - o3 pl,xqj plq],x s
4 B
bﬁ I= gﬁl[p joxxex +3P4Pjx +3Pxqp;ls
4 .
05 I= ——ilgjxxx +3P99;x +3P9xq;],
3 ﬁ“ , (18d)
al*l = —13(P)" + PGx = Pxx + Prxd],
4 B
kdﬁ-l] =~ (3PP9q; + Pixxqj * Pidjux — Pixdjx);

where § = 81 — 3, and 1 < j,I < n. By using (15d), we can work out, from (15b) and (15c), the
following recursion relation for b and cl™!:

C[m] C[m_l]
[b[m]T] = lpl:b[m_l]T:l , m Z 2, (19)
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in which W is the following 2n X 2n matrix operator

n
, <6 + X Qja_lpj> I, +qd7'p —qdq" - (g67'q")"
y = é = i (20)
T
p'o~'p+(p'a~'p) - <6 +Z pjc?‘lqj> I,—p"o7'q"
Jj=

The AKNS soliton hierarchy with multiple potentials is associated with the following temporal
matrix eigenvalue problems:

,
=i, = Vg, VI = VI, 2) = VD psipuniny = 3 Wik, 1 2 0. (21)
m=0

The following zero curvature equations, namely, the compatibility conditions of (8) and (21),
U -v yiu, v =0, r>o, 22)
lead to the so-called AKNS soliton hierarchy with multiple potentials:
u, = (p,q") =K, = i(abl"), —acl+1UNT r > 0. (23)

The first nontrivial integrable system in the soliton hierarchy (23) consists of the standard NLS
equations:

B . . .
pjvtz_;l pj,xx"'2 ZPIQI Dj ,1<j<n,

=1

(24)
‘8 n
qj: = ;i lqj,xx +2<2 PZQ1> qj'] ,1<j<n

=1

In the case of n = 2, under a special kind of local group reductions,?* the NLS equations (24)
reduce to the Manokov system.”” An integrable decomposition into integrable Hamiltonian sys-
tems of ordinary differential equations was made for that reduced system in Ref. 26.

The AKNS soliton hierarchy with multiple potentials (23) possesses a bi-Hamiltonian
formulation.?” This can be achieved by using the trace identity,”® or more generally, the varia-
tional identity.”” The process of determining the bi-Hamiltonian structure is as follows. A direct
computation yields

o0 n
—itr <W2—E{) =ma+atr(d) = 2 (oclalmJ +a, Z d%d> AT,
m=0 j=1

and

: ou c _
—itr <W6_u> = [bT] = Z Gy A ™.

m=>0



MA ET AL. 569

Now applying the trace identity

é ou 0 ou Ad
—_ —_ =1V =7 B —— = —_—_—— 2
5u/tr(alW>dx 1 6/1/1 tr(auW>,y 2d/1ln|‘[r(W)|, (25)

with y = 0, we obtain

S5H 5 i " [m+1] clml
5_um =iG,_,, H, = - aalm+l + q, 2 d].j dx, G,_1 = [b[m]T]’ m>1. (26)
j=1
This generates the following bi-Hamiltonian structure:
§H SH
u, =K, =il,G, =1, 5;” =7, 51;, r>1 27

for the AKNS equations with multiple potentials in (23), where the Hamiltonian pair (J;,J, =
J1¥) is determined by

_ 0 al,
1= [—odn 0 ], (28a)
T n
p'a~'p+(p'a~'p) - (5 + p,-a‘lqj> I, —p'a~'q"
Ty=i ; J=t . (28b)
- (5 + Pja_lqj> I,—qd7'p g67'q" + (g67'q")"
j=1

The integrodifferential operator ® = ¥’ = J,J N ! provides a hereditary recursion operator for the

AKNS soliton hierarchy (23). For each r > 1, adjoint symmetry constraints (or a little bit loosely,
symmetry constraints) can decompose the rth AKNS equations with multiple potentials into two
commuting Hamiltonian systems of ordinary differential equations, which are integrable in the
Liouville sense.?*?’

2.2 | Nonlocal reverse-space NLS hierarchies

Motivated by the classical local reductions,** we introduce a specific kind of nonlocal group reduc-
tions for the eigenvalue matrix U:

U'(=x,t,—2*) = —CU(x,t,A)C71, (29)

where
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This means that
P'(—x,t) = —CP(x,t)C~! (30)

in which the potential matrix P is defined by

_[op
b0 1] o

Here and in what follows, { stands for the Hermitian transpose, * denotes the complex conjugate,
and X is an invertible constant Hermitian matrix. For the sake of convenience, we also denote

M(x,t,2) = M(u(x,1),2),
MT(f(x,t,4)) = M(f(x, 1, ), (32)
MY (f(x, 1, 4)) = (M(f(x, 1, )

for a matrix M and a function f.
Equivalently, (30) leads to

qCx, 1) = ==7'p'(=x,0). (33)
The vector function c in (12) under such a kind of reductions may be taken as
c(x,t,A) = =27 1bT(=x,t,—1"), (34)
and those reduction relations guarantee that
a*(=x,t, =A%) = —a(x,t, 1), d'(=x,t,—A*) = =2d(x, t, )=, (35)

where a and d satisfy (12). Therefore, we have

(al™y (=x, 1) = (1" al"lCx, ),
b (=x, 1) = (=1)™ L selml(x, 1), (36)
@™ (=x,1) = (1) zd(x, )z,

where m > 1. This implies that for all m > 1, we have
(VB (—x,t,-2%) = cvEml(x, 1, 2)C 7, 37
vI[2m] being defined as in (21).
Now, based on (29) and (37), it is direct to see that the reductions in (30) do not present any

additional conditions on the previous spatial and temporal matrix eigenvalue problems, when
r = 2m. Therefore, under the nonlocal group reductions in (29), the half hierarchy of the equations
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in (23) with r = 2m reduces to the following nonlocal reverse-space NLS hierarchies:

Pt =X = Komalg=—s-1pt(—x,0) M 20, (38)
where K, = (K7 ,K7 )T = i(ab"*V), —ac*DT)! | r > 0. Those hierarchies are associated the
matrix eigenvalue problems

—ip, =Up = U(u, o,
>
{ _i§0[ — V[ijgo — Vlsz(u,/l)go, m >0, (39)

in which the Lax pairs read
U=2A+P, V2"l =220+ Q,,, (40)

with A = diag(a;, a,1,,), Q = diag(B;, B>1,,), and

zm [yl

la b

Qum = lz ,Azm l[c[l] d[l]]' (41)
=1

Moreover, they possess an infinite hierarchy of commuting symmetries {X;};? ; and an infinite

hierarchy of commuting conserved functionals {H,;_; lg=—2-1pt (—x.) pco
When m = 1, we obtain the multicomponent nonlocal reverse-space NSL equations:

B e t) = 200, 51 p' (=, D)p(x, D], 42)

ipt(x9 t) = E

where X is an arbitrary invertible constant Hermitian matrix, which can exhibit mixed focusing
and defocusing nonlinearities. When n = 1, we can obtain two well-known examples:2

ipt(x7 t) = pxx(x’ t) + zopz(x:t)P*(_x:t)’ (43)

where o = +1; and when n = 2, we can get

P16, ) = Prcc 6 0) + (1 P1 (6 DDy (=, 1) + 7220 P, (=%, D)py (. 1), @)
ip2,t(x9 t) = p2,x,x(xa t) + (YIpl(x’ t)pi (_x’ t) + YZPZ(-X’ t)pé(_x’ t))Pz(x’ t)a

where y; and y, are arbitrary nonzero real constants.

3 | RIEMANN-HILBERT PROBLEMS

We would now like to construct a class of associated Riemann-Hilbert problems from the matrix
eigenvalue problems with respect to the spatial variable x. The results will lay the basic foundation
for building the inverse scattering transforms and soliton solutions in the following two sections.
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3.1 | Property of eigenfunctions

Let g be determined by (33). Assume that each potential rapidly vanishes as x — +oo ort — +o0.
For the matrix eigenvalue problems in (39), we observe, under the integrable conditions on the
potentials:

o0 o0 n
/ / x[¥1e1" Y Ipjl dxdt < o0, 0 <k, 1 <1, (45)
—00 4 —00 j=1

IAAX+IAZMQt

that one has the asymptotic behavior: ¢ ~ e ,as x,t — +oo. Therefore, if one takes the

transformation
_ — plAAXHIAPMOL
¢ - ¢Eg7 Eg =€ ’

one can obtain the canonical normalization condition ¢ — I,,,1, as x,t — +o0. Upon defining
P =iP and Q,,, = iQ,,, the required equivalent pair of matrix eigenvalue problems to (39) reads

Y = AN D] + P, (46)

Y = iAPM[Q Y] + Oy (47)
Based on a generalized Liouville’s formula,*® one can obtain
dety =1, (48)

since tr(P) = tr(Q,,,) = 0.
The adjoint counterpart of the x-part of (39) and the adjoint counterpart of (46) are given by

i¢ = ¢U, (49)

and
iy = A[P, A] + 9P, (50)

respectively. Each pair of adjoint matrix eigenvalue problems and equivalent adjoint matrix eigen-
value problems does not bring any new conditions, except the nonlocal reverse-space NLS hier-
archies of equations in (38).

Assume that (1) solves the spatial eigenvalue problem (46) with a given eigenvalue A. Then,
obviously, Cy~!(x, t, 1) is a matrix adjoint eigenfunction associated with the same eigenvalue A.
Taking the nonlocal reductions in (30) into consideration, we can compute that

{7 (=x,t, =A*)Cly = i[=(h,) " (=x,t,=2*)C]
= AT (=x,t,=2%), A]C + P (—x,t,—2*)C[-C 7P (—x, £)C]
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= AT (=x,t,=1)C, Al + T (—x,t,—A*)CP(x, 1),
and thus,
Px, t,A) =PpT(=x,t,-1")C, (51)

presents a new matrix adjoint eigenfunction associated with the same original eigenvalue A, which
means that 3 (—x, t, —1*)C solves the adjoint eigenvalue problem (50).

Now, using the asymptotic properties for 1, we see that the uniqueness of solutions guarantees
that

Yi(=x,t,—1%) = Cy~Y(x,£,1)C7, (52)

if) > I,,,1, xort — ooor — oo. It therefore follows that when 4 is an eigenvalue of (46) (or (50)),
—A* will be another eigenvalue of (46) (or (50)), and the property (52) holds.

3.2 | Riemann-Hilbert problems

We point out that the procedure to establish Riemann-Hilbert problems is actually the same as
the one in the local case for the mKdV equations,?"** but we present it below for subsequent dis-
cussions.

To express Riemann-Hilbert problems concretely, we assume that

O(=051—O(2<0,ﬁ=ﬁ1—ﬁ2<0, (53)
so that we will know what entries of matrix eigenfunctions to pick. In the direct scattering prob-

lem, we first consider the two matrix eigenfunctions ¢*(x, 1) of (46) possessing the boundary
conditions

P = I, a8 X — +00, (54)
respectively. From (48), we can readily find that det* = 1 for all x € R. Because
¢i — l,l)iE, E = ei/le’ (55)

are both matrix eigenfunctions of (39), they must be linearly dependent, and as a consequence,
we have

¥E = p*ES(), 1 € R, (56)

in which S(1) = (sj))(n+1)x(n+1) is traditionally called the scattering matrix. We point out that
owing to dety* = 1, we have det S(1) = 1.
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We can transform the x-part of (39) into the following Volterra integral equations of the second
kind for ¢*:17:3!

X
$Ced) = Iy + / e HAO=DB(y g (, e HAE) 7)

PH(x,A) =Ing — / e ANI=IP(y ) (y, De M) dy, (58)
X

where we have used the boundary conditions (54). Under the conditions (45), the analytic Fred-
holm theory (or more precisely, the Volterra theory on integral equations) guarantees that the
two eigenfunctions ¥* exist, and allow analytical continuations off the real line 1 € R as soon
as the both integrals on their right-hand sides converge. Noting the diagonal form of A and the
first assumption in (53), one can observe that the integral equation for the last n columns of
contains only the exponential factor e */=%)_which also decays due to y > x in the integral,
when A takes values in C*, and the integral equation for the first column of )~ contains only the
exponential factor e/~ which decays due to y < x in the integral, if A takes values in C*.
Thus, these n + 1 columns are analytical with respect to A in C* and they are continuous with
respect to A in C*. By similar arguments, we can find that the first column of ) *and the last n
columns of ¢~ are analytical with respect to 4 in C™ and they are continuous with respect to 4 in
C.
On one hand, to determine the generalized matrix Jost eigenfunctions, we will denote

¥ = PEPE, . P, (59)

thatis,foreachl1 < j<n+1, zp;—L represents the jth column of ¢*. This way, we can set the gen-
eralized matrix Jost eigenfunction T to be

T+(X,/1) = (1lb1_7 ¢;—, ’¢;+1) = ¢_Hl + ¢+H2’ (60)

which is continuous with respect to A in C* and analytic with respect to A in C*. The other gen-
eralized matrix Jost eigenfunction

(¢T’ lnbz_’ e ¢;+1) = ¢+H1 +9%~H, (61)

is continuous with respect to 1 in C~ and analytic with respect to A in C~. Here the two matrices
H, and H, are defined by

H, = diag(1,0,0,...,0), H, = diag(0,1,1,...,1). (62)
N———r N————
n n
On the other hand, to build the partner generalized Jost eigenfunction T—, we consider the

analytic counterpart of T* in the lower half-plane C~, based on the adjoint matrix eigenvalue
problems. Notice that the two inverse matrices $* = (¢*)~! and )* = (p*)~! can solve those two
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adjoint eigenvalue problems, respectively. Once denoting * by

@i = (@i,l’zﬁi,z’ ’¢i,n+1)T’ (63)

namely, for each 1 < j < n + 1, )=/ represents the jth row of b+, we can show by a quite similar
argument that the generalized matrix Jost eigenfunction T~ can be taken as the adjoint matrix
solution of (50), ie,

T~(x,A) = @192, ot = Hig™ + Hyp " = Hi(p ) ' + H,H) ™, (64)

which is continuous with respect to A in C~ and analytic with respect to A in C~, and the other
generalized matrix Jost solution of (50),

@TL P2 PO = it + Hy™ = Hi(®H) ™ + Hy(p7) 7l (65)
is continuous for € C* and analytic for 1 € C*.
Based on det1* = 1, the definitions of T+, and the scattering relation (56) between ¢ and 3,
we can obtain
detT*(x,4) = 51:(1), detT~(x,2) = 8, (1), (66)

where S7H(4) = (S(A)™! = (8j1)(n+1)x(n+1)- This implies that

511(4) 0
0o I,

$1(1) 0

0 In,/leC. (67)

lim T*(x,A) = [
X— 00

,AeCt; lim T (x,1) = [
X—00

Therefore, we can now introduce the following two unimodular generalized matrix Jost solutions:

GH(x, A) = T+(x, A) [51_110(’1) IO 1eCH
-1 571 0 f _ (68)
G7) (x, A= [110 I]T (x,1), LeC.

Those two generalized matrix Jost solutions generate the required matrix Riemann-Hilbert prob-
lems on the real line for the nonlocal reverse-space NLS hierarchies (38):

Gt(x,4) = G~ (x,1)Gy(x, 1), 1 € R, (69)

where upon following (56), the jump matrix G, is given by

Go(x, 1) = E [33_110(’1) IO ]S(/l) [81_110(’1) IO ]E—l. (70)

The matrix S(1) in the jump matrix G, has the factorization:
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S() = (Hy + H,S())(H; + S~ (M)H,), (71)
which can be expressed as
1 S12 813 $1n41
$721 1 0 0
S =Gdnsxmsy =] sn 0 1 - oL (72)
: o 0
Sn+1,1 0 0 1

For the above Riemann-Hilbert problems, the standard canonical normalization conditions
G*(x,A) = I,41, asA € C* - oo, (73)

are a consequence of the Volterra integral equations (57) and (58). Moreover, the basic property of
eigenfunctions in (52) tells that

(GH)'(=x,t,—2*) = C(G™) N(x,t,)C7, (74)

and thus, we find that the jump matrix G, possesses the following characteristic property:
Gy (=x,t,—2*) = CGy(x, £, A)C . (75)
We point out that the jump matrix G, contains basic scattering data inherited from the scattering

matrix S(1).

4 | INVERSE SCATTERING TRANSFORMS

In this section, we analyze the direct and inverse scattering for the nonlocal reverse-space NLS
hierarchies (38) through the Riemann-Hilbert technique'’ (see also Refs. 32, 33). We build the
inverse scattering theory by transforming the associated Riemann-Hilbert problems with the
Sokhotski-Plemelj formula.

4.1 | Evolution of the scattering data

We first develop the evolution laws for the scattering data to formulate the inverse scattering trans-
forms. Take the derivative of (56) with respect to the temporal variable ¢ and utilize the temporal
matrix spectral problems for ¢*.

This way, one can readily show that the scattering matrix S obeys an evolution law:

S, = i1?™M[Q, S]. (76)
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This leads to the following time evolution formulas for the time-dependent scattering coefficients:

iR12m iR12m iR)2m
s12 = 51200, Ve 515 = 51300, )P L, 8y g = 8141 (0,)ePATE
_iR12m _iR12m _ip)12m
$o1 = 521(0, e PA g5y = 531(0, ) PAT L 1 = 841,10, )T FATE

and shows that any other scattering coefficient does not depend on the time variable ¢.

4.2 | Gelfand-Levitan-Marchenko type equations

To determine the generalized matrix Jost eigenfunctions, we make the transformation for the

Riemann-Hilbert problems in (69) as follows:

Gt—G =G v,v=Gy—1I,4;, onR, 77
G* > 1I,.,as1€C* > oo,

where G, is the jump matrix defined by (70) and (71).
Let G(1) = G*(4) if A € C*. Suppose that G has simple poles off R: {y; le, where the integer
R is arbitrary. Define

G; o 3
’}AeQGuﬁuﬁuxleC% (78)

R
GE() 1= G=(A) —
Li-p

where G; denotes the residue of G at 1 = u;, ie, G; = res(G(4), ;) = limﬂ_,#j A= uj)GA), 1<
Jj < R. Then, we find

~+—N_= +t _G =G
{G G Gt -G G~ v, on IR,> 79)

G* > I,,;as1 € C* > co.

By applying the Sokhotski-Plemelj formula,** we determine the solutions of the transformed
Riemann-Hilbert problems in (79) as follows:

R AR

GA) =1, +— £ (80)
tomi ) E—-2
Furthermore, computing the limit as 4 — y; yields
R
. G,
lhs = lim G =F - ) ——,
A=u il Hp— Hj

[Se] G_

rhs:In+1 + L wdg,

27i —o0 g — M
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where F; =1lim;_,, [(1 — u)G(1) — G{]/(A4 — w;), 1 < | < R, and consequently, we obtain the fol-
lowing Gelfand-Levitan-Marchenko type integral equations:

R
Gj 1 [ (GGy)&) 1[G
J 0 _
In+1_F”+Z,ul—,uj+ﬁ —mﬁd o _mmdf—0,1$lSR. (81)

J#l
Once the jump matrix G is given, by analyzing and solving these equations, one determines solu-
tions of the associated Riemann-Hilbert problems, and hence, the generalized matrix Jost eigen-
functions.
4.3 | Recovery of the potentials
To recover all potentials from the generalized matrix Jost eigenfunctions, we consider an asymp-

totic expansion

1 1
G+(x,t,/1)=1n+1+/—1Gf(x,t)+0 </§> , a8 A = 0. (82)

Plugging this asymptotic expansion into the matrix eigenvalue problem (46) and comparing con-
stant (1°) terms engenders

P= /11im A[G*(A),A] = —[A,G]]. (83)

This equivalently leads to the potential matrix:

0 -a(G iy —a(G s . —a(G)ipn
a(G n 0 0 0
P=| a(G)y 0 0 0 , (84)
a(G 411 0 0 0

where Gf = ((GIr )iD(n+1)x(n+1)- Namely, the 2n potentials p; and q;, 1 < j < n, determined by

pj=—a(G 1 js1, 4 =a(G))jr11, 1< j<n, (85)

solve the AKNS equations with r = 2m in (23). When the nonlocal reduction requirement (30),
equivalently

(G (=x,0))" = CGf (x,0)C! (86)

is satisfied, the reduced potentials p;, 1 < j < n, solve the nonlocal reverse-space NLS hierarchies
(38).

The above whole procedure presents the inverse scattering transforms from the scattering
matrix S(1), through the jump matrix Gy(1) and the solution {G*(1), G~ (1)} of the Riemann-
Hilbert problems, to the potentials that solve the nonlocal reverse-space NLS hierarchies (38).
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5 | SOLITON SOLUTIONS
5.1 | Nonreduced case

On account of detS = 1, one has

$22 523 $2,n+1
N S e S
o _(o—-1y  _ | 832 33 3,n+1
Su=0E"n=| . . . .
Sn+12  Sn+13 - Sntln+l

Let N be another arbitrarily given natural number. We take N zeros {1, € C, 1 < k < N}, for sq;
and N zeros {1, € C, 1 < k < N}, for §;,. To construct soliton solutions, it is also assumed that all
these zeros, A, and A, 1 < k < N, are geometrically simple. Then, every ker T+(1;) (1 < k < N)
contains a single basis column vector, which is denoted by v; and every ker T~(4;) (1 < k < N),
only a single basis row vector, which is denoted by U, (1 < k < N). This can be presented as

T*(A)v, =0, 0, T-(A,) =0,1 <k <N. (87)

To work out soliton solutions, we need to take G, = I,,,; in each of the Riemann-Hilbert prob-
lems in (69). This condition can be achieved if we assume that 5;; =38;; =0, 2<i<n+1. 1t
means that only zero reflection coefficients are taken in the direct scattering problem.

It is known that special Riemann-Hilbert problems with the identity jump matrix, with the
canonical normalization conditions in (73) and the zero structures indicated in (87), could be
solved explicitly, when 4; # i, 1 < k,1 < N (see, eg, Refs. 17, 35). Consequently, we can directly
determine the potential matrix P. If this condition on pole locations of generalized Jost eigen-
functions is not satisfied, which happens in the case of nonlocal integrable equations, solutions
to specical Riemann-Hilbert problems with the identity jump matrix can be presented as follows:

N

N
uM Dl U (M0
GHA) = Ly — 3, == (G W) = Lo+, (88)
K=l A=A o A
where M = (my)nxy iS @ matrix whose entries are defined by
OO it # 2, 1<k I<N,
My = A — A R (89)
0, ifA; =4, 1<k, I<N,
for which an additional orthogonal condition
O, =0, if4, =4, 1<k, I<N (90)

is required. Note that within this solution formulation, we do not need the condition of 4; #
Ak, 1 <k,1 <N, indeed.
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Note that the zeros 4 and A, do not depend on x and ¢, ie, space and time independent, and
thus, one can determine the spatial and temporal evolution laws for the vectors, vy (x,t) and
U(x,t), 1 £k <N, in the kernels. For instance, let us calculate the x-derivative of both sides
of the first set of equations in (87). Using (46) first and then again the first set of equations in (87),
one can find

d
T+(x,/lk)<% _ i/lkAvk) —0,1<k<N. 1)

This means that for every 1 <k <N, Zﬂ — iA; Avy will be in the kernel of T*(x, 1), and thus a
X
constant multiple of v,. We, without loss of generality, can assume that

dv ,
d—; =il Av;, 1 <k <N. (92)

Analogously, the time dependence of vy, is determined by

dUk .
W = l/llzchUk, 1< k < N, (93)

which can be obtained by applying the matrix eigenvalue problem (47). Similarly from the second
equations in (87), we can obtain space and time dependence of U, 1 < k < N. It then follows that
we can have

. - 22m
Uk(x, t) — ellkAX+llk Q[wk, 1 S k S N, (94)

-4 -42m
O (x, 1) = e AR 1 < < N, (95)

where wy and Wy, 1 < k < N, are arbitrary column and row constant vectors, respectively, but
need to satisfy

ww; =0, if4;, = /ik, 1<k,/I<N, (96)

which follows from (90).
Finally, let usset M = M~! = (im jl)nxn»> and then from the solutions in (88), we can obtain

N
Gl =~ Z UMy O, 97)
k=1

and furthermore, the presentations in (85) lead to the following N-soliton solution of the AKNS
equations with multiple potentials with r = 2m in (23):

N
bj=«a Z Uk, 1M1V, j+15
= 1<j<n (98)
qgj = —« Z Uk, j+1Mk10115

k=1
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5.2 | Nonlocal case

In order for us to work out N-soliton solutions of the nonlocal reverse-space NLS hierarchies (38),
we have to satisfy an involution property (86) for GI’ defined by (97), which equivalently requires
that the potential matrix P determined by (84) satisfies the reduction requirement (30). Then, the
above N-soliton solution of the standard AKNS equations with multiple potentials (23) is reduced
to the N-soliton solution:

N

pj=a ) iyl 1<j<n (99)
k=1

for the nonlocal reverse-space NLS hierarchies (38).

Let us now analyze how to realize the involution property (86). As usual, we first take N zeros
of det T*(4) (or eigenvalues of the eigenvalue problems under the zero potential): 1, € C for 1 <
k < N, and then take

~ —A*if A iR, 1<k<N
— k’ k ) = = 3 1
A { anyvalue €iR, if 1; € iR, 1 <k < N,) (100)
which are zeros of det T~(1). Now, we see that ker T*(4;), 1 < k < N, are spanned by
(3, ) = v (x, £, ) = eMARFIRTQ Y ) < e < N, (101)

respectively, in which wy, 1 < k < N, are arbitrary column vectors. These column vectors in (101)
are eigenfunctions of the eigenvalue problems under the zero potential associated with 4;, 1 <
k < N. Moreover, according to the previous analysis in Subsection 3.1, ker T~(1;),1 < k < N, are
determined by

a ey -42m
O(x, £) = (. £, Ay) = v] (—x, £, 4)C = wle WM"Y C 1 <k <N, (102)

respectively. These row vectors are eigenfunctions of the adjoint eigenvalue problems under the
zero potential associated with A, 1 < k < N. To satisfy the orthogonal property (96), we require
the following condition on wy, 1 < k < N:

w/Cwy =0, if A4 = 4, 1<k <N. (103)

Note that for each 1 < k < N, the situation of 1, = A, occurs only when 4, € iR and 4, = =

At this moment, if the solutions of the special Riemann-Hilbert problems, defined by (88) and
(89), satisfy the property (74), ie, G; satisfies the requirement (86) for our nonlocal group reduc-
tions in (29), then the formula (99), together with (88), (89), (101), and (102), provides the N-soliton
solutions of the nonlocal reverse-space NLS hierarchies of equations in (38), provided that the
orthogonal condition (103) holds.

When N = m =1, let us fix ¥ = diag(y1,¥2,---» ¥n), Where y1,¥,, ..., ¥, are arbitrary nonzero
real numbers. We choose 4, = in;, 4; = —in;, 7; € R, and denote w; = (w1, W12, 5 wl’nﬂ)T.
Then, we can derive the one-soliton solution to the multicomponent nonlocal reverse-space NLS
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equations in (42):

: Ed
Zanllwl,lwl,j_'_lyj

pj(x’t) = —an x+if 2t anyx+if 2y’
glwy 1|2 eI 4 (Jwy 52y + -+ 4 (W g [2y,) €T

wheree = +1,7; isan arbitrary real number, and w; ;, w 5, ..., Wy , are arbitrary complex numbers
but satisfy wICwl = |wy1]? + y1lwi]* + -+ + ¥ulwy uy1]1? = 0. This condition comes from the
involution property (86). Such one-soliton solutions can develop a singularity at a finite time, and
the case of e = 1 and n = 1 can be reduced to the breather one-soliton solution in Ref. 3.

6 | CONCLUDING REMARKS

The paper aims to propose nonlocal reverse-space NLS hierarchies and present their inverse scat-
tering transforms first and then soliton solutions. The primary step is to establish Riemann-Hilbert
problems from matrix eigenvalue problems. Solutions of the associated Riemann-Hilbert prob-
lems were generated from the Sokhotski-Plemelj formula, and the inverse scattering transforms
were formulated, based on the associated Riemann-Hilbert problems. A solution formulation was
further presented for special Riemann-Hilbert problems whose jumps are the identity matrix,
and thus, from such special Riemann-Hilbert problems (or equivalently, the reflectionless inverse
scattering transforms), the N-soliton solutions were worked out for the nonlocal reverse-space
NLS hierarchies.

The Riemann-Hilbert technique is a powerful approach for formulating the inverse scattering
transforms and constructing soliton solutions (see also, eg, Refs. 18-20, 36). The technique has
been recently extended to deal with initial and boundary value problems for integrable equations
over both a finite interval and a half-line.””*® One can also develop the Riemann-Hilbert tech-
nique for general multicomponent NLS equations associated with simple Lie algebras® and their
nonlocal counterparts.7 Solution formulations, however, vary from case to case for nonlocal inte-
grable equations, including reverse-space, reverse-time, and reverse-space-time equations (see,
eg, Refs. 3, 8, 40). There are also other effective and powerful methods to construct soliton solu-
tions within the theory of integrable equations, which contain the Darboux transformation,**?
the Hirota bilinear technique,** the Wronskian determinant technique,*** and the generalized
bilinear method.*® It would be significantly important that one could understand the relation-
ships among those interesting distinct methods.

We also point out that it would be particularly interesting to generate different kinds of explicit
and exact solutions of integrable equations, such as positon solutions and complexiton ones,*”*3
lump and lump-type solutions,**~! solitonless solutions,’*>* algebrogeometric solutions,’*> and
dromions®®*’ from a perspective of Riemann-Hilbert problems. Moreover, it is worthy for further
investigation is how to establish Riemann-Hilbert problems for dealing with extended integrable
counterparts including super or supersymmetric equations, integrable couplings, and fractional
analogous equations.
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