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The paper aims to discuss nonlocal reverse-space multicomponent nonlinear Schrodinger
equations and their inverse scattering transforms. The inverse scattering problems are
analyzed by means of Riemann—Hilbert problems, and Gelfand—Levitan—Marchenko-type
integral equations for generalized matrix Jost solutions are determined by the Sokhotski—-
Plemelj formula. Soliton solutions are generated from the reflectionless transforms asso-
ciated with zeros of the Riemann—Hilbert problems.
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1. Introduction

Nonlocal integrable nonlinear Schrédinger (NLS) equations arise while taking
specific reductions.X The corresponding inverse scattering transforms have been
recently established under zero or nonzero boundary conditions?# and N-soliton so-
lutions have been constructed from the Riemann—Hilbert problems with the identity
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jump matrix® and by the Hirota bilinear method.® Some multicomponent general-
79 and other nonlocal integrable equations!'® were also presented. We would
like to present a class of general nonlocal reverse-space multicomponent NLS equa-
tions and analyze their inverse scattering transforms and soliton solutions through
formulating and solving Riemann-Hilbert problems.

The Riemann—Hilbert approach is one of the most powerful techniques to study
integrable equations and particularly generate soliton solutions.'* Many integrable
equations, including the multiple wave interaction equations,'* the general coupled
NLS equations,'? the Harry Dym equation,'3 the generalized Sasa-Satsuma equa-
tion'* and the Ablowitz—Kaup—Newell-Segur (AKNS) soliton hierarchies,'® have
been studied by analyzing the associated Riemann-Hilbert problems.

The standard procedure for establishing Riemann—Hilbert problems is to start
from a pair of matrix spectral problems, let us say,

77’¢m = U¢, 7i¢t = V¢a
U=AN\)+P(u,)), V=BQ)+Q(u,N),

where ¢ is the unit imaginary number, A is a spectral parameter, u is a potential

izations

(1.1)

and ¢ is an m X m matrix eigenfunction. The zero-curvature equation, i.e., the
compatibility condition of the above two matrix spectral problems,

U -V, +i[U, V] =0, (1.2)

where [-, ] is the matrix commutator, presents an integrable equation. To establish
an associated Riemann-Hilbert problem for this integrable equation, we use the
following equivalent pair of matrix spectral problems:

Ve = A[AQN), Y]+ Plu, Ny, ¢ = i[BOA), 9] + Qu, )y, (1.3)

where 9 is an m x m matrix eigenfunction, P = iP and Q = iQ. We often assume
that A, B are constant commuting m X m matrices, and P, Q) are trace-less m x m
matrices. The equivalence between (1.1) and (1.3) comes from the commutativity
of A and B, and (det ), = (det); = 0 are two consequences of trP = tr@Q = 0.
There exists a direct relation between (1.1) and (1.3):

(b — wEga Eg _ eiA(/\)w-i-iB()\)t. (14)

For the pair of matrix spectral problems in (1.3), we can impose the asymptotic
conditions:

Y* = 1I,,, when z or t — 400, (1.5)

where I, stands for the identity matrix of size m. From these two matrix eigen-
functions 1*, we need to pick the entries and build two generalized matrix Jost
solutions T (z,t, \), which are analytical in the upper and lower half-planes C*
and C~ and continuous in the closed upper and lower half-planes C* and C~,
respectively, to formulate a Riemann—Hilbert problem on the real line:

Gt (a,t,\) = G~ (2,1, )Go(z,t,\), N€ER, (1.6)
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where two unimodular generalized matrix Jost solutions, G and G~, and the jump
matrix, Gy, are determined from 7% and T~.

Recall that the scattering matrix Sq(\) of the matrix spectral problems is defined
through

VB, = 1/’+EgSg(>‘)- (1.7)

Normally, the jump matrix Gy carries basic scattering data from S, (). Solutions to
the associated Riemann—Hilbert problems provide the required generalized matrix
Jost solutions in recovering the potential of the matrix spectral problems, which
solves the corresponding integrable equation. Such solutions could be presented by
using the Sokhotski-Plemelj formula, upon computing their difference. Then, a re-
covery of the potential finishes the inverse scattering transforms, through observing
asymptotic behaviors of the generalized matrix Jost solutions G* at infinity of \.
Soliton solutions are presented from solutions to the Riemann—Hilbert problems
with the identity jump matrix Gy, or equivalently, the zero reflection coefficients.

In this paper, we first present a class of nonlocal reverse-space multicomponent
NLS equations by making a specific group of nonlocal reductions, and analyze their
inverse scattering transforms and soliton solutions, based on associated Riemann—
Hilbert problems. One example with two components is

Z'th(CE, t) = pl,zaj(x; t) - 2[Clp1 (377 t)pi(_% t) + 02]92(337 t)p;(_‘r> t)]pl ('T7 t)>
ip2,t(z7 t) = pQ,xaf(xa t) - Q[Clpl (1', t)pglﬁ(_a% t) + 02p2(1'7 t)p;(_$7 t)}pQ(:Ca t)7

where ¢; and ¢y are arbitrary nonzero real constants. The rest of the paper is struc-

(1.8)

tured as follows. In Sec. 2, within the zero-curvature formulation, we recall the
AKNS integrable hierarchy with multiple potentials, and make a group of nonlo-
cal reductions to construct nonlocal reverse-space multicomponent NLS equations.
In Sec. 3, we analyze the inverse scattering transforms through Riemann-Hilbert
problems associated with higher-order matrix spectral problems. In Sec. 4, we con-
struct soliton solutions to the presented nonlocal reverse-space multicomponent
NLS equations from special associated Riemann—Hilbert problems on the real axis
where an identity jump matrix is taken. In Sec. 5, we give a conclusion, together
with some concluding remarks.

2. Nonlocal Reverse-space NLS Equations
2.1. Multicomponent AKNS hierarchy

Let n € N be arbitrary, and a; and «q, different real constants. We consider the
following matrix spectral problem®¢:

Oq/\ p

*id)r = U¢ = U(U, >‘)¢7 U= (Ujl)(n+1)x(n+1) = l ] ) (21)

q a2)\-[n

where A is a spectral parameter and u is a 2n-dimensional potential
u = (paqT)T7 p:(p17p27"'7pn)7 CI:((IhCI?w-'»(In)T‘ (22)
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When p; = ¢; = 0,2 < j < n, (2.1) becomes the standard AKNS spectral prob-
lem.1” Thus, we call it a multicomponent AKNS matrix spectral problem, and its
associated hierarchy, a multicomponent AKNS integrable hierarchy. On account of
the existence of a multiple eigenvalue of g—[/{, the matrix spectral problem (2.1) is
degenerate.

To derive an associated multicomponent AKNS integrable hierarchy, we first

solve the stationary zero-curvature equation
W, = iU, W], (2.3)

corresponding to (2.1). We look for a solution W of the form

-
W= : (2.4)

where a is a scalar, b’ and c are n-dimensional columns, and d is an n x n matrix.
It is direct to show that the stationary zero-curvature equation (2.3) reads

az = i(pc—bq), by =i(aXb+ pd — ap),

(2.5)
¢z = i(—aie+qa—dq), dp=1i(gb— cp),
where o = a1 — ao. We take W as a formal series:
a b >
W = = W A™™,
L d] n;]
(2.6)
alml  plml
= = >
Wm Wm (u) C[m] d[m] y m = O,
where bl ¢l™] and dl™) are expressed as
b[m] = (b:[lm]vb[;n]a ERE b'[r:n])7 c[m] = (Cj[lm]>c[2m]a R CLLM])T7
(2.7)
d™ = (@), m >0,
Then, the system (2.5) exactly presents the following recursion relations:
b =0, =0, =0, d=o, (2.82)
1
1) = = (—iplr) — ™)+ al™p), >0, (2.8b)
1
At = Z(elml 4 gal™ — dtmlg), m >0, (2.8¢)
e
al™ = i(pct™ —plmlg), alml = i(gptm — ) om > 1. (2.8d)
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Next, we fix the initial values:
a® =8y, d¥ = By1,, (2.9)

where (1, B2 are arbitrary but different constants, and take zero constants of inte-
gration in (2.8d), which means that we require

Winlueo =0, m > 1. (2.10)

Then, with a[% and d% given by (2.9), all matrices W,,,,m > 1, defined recursively,
are uniquely determined. For instance, a direct calculation, based on (2.8), yields
that

m_B  m_B  n_ 1 _ .
bj - ap_]v Cj - aq]7 a - 07 dJl - 07 (2113‘)
P __ B R _ B, gq_ B e_B
bj = *?ij,ra Ci = ?Z%’,xa al?l = 7§pqa djl = ?plqj’ (2.11Db)
B -
by =~ ~5Pjee + 2Pap;]; & = —Lilgj0 + 2p9;);
5 (2.11c)
ol = = i(pgy — paq), A = — Bi(prog; — migja);
g B
bg- J= gl[pj,xm + 3papj, + 3p2qp;l,
4 B .
= —alldjzes + 3p94j.0 + 3pdza);
; (2.11d)
a[4] = g[3(pq)2 + DGra — P2qa +pzmQ]v
B
dﬁ] = —g[?)pzpqu + Doy — Plalje + D1 exl;

where f = 81 — B2 and 1 < 5,1 < n. Based on (2.8d), we can obtain, from (2.8b)
and (2.8¢), a recursion relation for 5™ and c[™l:

clm+1] clm)
pm+1T =V pimT |’ m 21, (2.12)

where VU is a 2n X 2n matrix operator

<8+ZQj81pj)In +4907'p —q07'q" — (q0~'q")"
vt =
o n
pro-lp+(rotp)t - (3 + ij31Qj> I —pTo~q"
j=1

(2.13)
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The multicomponent AKNS integrable hierarchy is associated with the following
temporal matrix spectral problems:
—igy = V"o = VIi(u, 1)e,

. r (2.14)
V[T] = (V;l )(n+1)><(n+1) = Z Wm/\r_ma r > 0.

m=0

The compatibility conditions of (2.1) and (2.14), i.e., the zero-curvature equations,

U, — v +iu, vl =0, r>o, (2.15)
generate the so-called multicomponent AKNS integrable hierarchy:
pT Oéb[TJrl]T
up = =K, =i r>0. (2.16)
q], —aclr 1]

The first nonlinear integrable system in the above hierarchy (2.16) consists of the
standard NLS equations:

B,
J:t 2

n
Dj,zx +2 (ZP!QZ) pJ‘| ) 1 SJ g n,

=1

B . . .
oL Qjzz + 2 ZPHZZ G|, 1<j<n

=1

(2.17)
qjt =

When n = 2, under a special kind of symmetric reductions, the multicomponent
NLS equations (2.17) can be reduced to the Manakov system'® and a decomposition
into finite-dimensional integrable Hamiltonian systems was made for that reduced
system in Ref. 19.

2.2. Nonlocal reverse-space NLS equations
Let us take a specific group of nonlocal reductions for the spectral matrix:
1 0

Ul(—z,t,—\*) = —=CU(z,t,\)C~!, C= ,
0 %

which implies that
PY(—z,t) = —CP(z,t)C L. (2.19)

Henceforth, 1 stands for the Hermitian transpose, * denotes the complex conjugate,
¥ is a constant invertible Hermitian matrix, and for brevity, we adopt

Az, t,\) = A(u(x,t), ),
AT(f(x,t,0) = (A(f (@, . )T,
AT (f (2,1, 0) = (A(f (2,1, 1)) 7

for a matrix A and a function f.

(2.20)
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The matrix spectral problems of the multicomponent NLS equations (2.17) read
—igy =Uo =U(u,Ng, —idy = VEo=VE(u, N, (221)
where the Lax pair is given by
U=MM+P, VE=X20+0, (2.22)
with A = diag(ay, asl,,), Q = diag(f1, S21,), and

0 p
q 0

P =

)

alI\ + a2l plx 4 pl2
I 4+ cl2 gty 4 g2

7@/\0177& Pq P
@ lg 0] o |—ig, —qp|

In the above matrices P and @, u, p, ¢ are defined by (2.2), and al™l plml clml glml
1 <m <2, are determined in (2.11).
From (2.19), we obtain

(2.23)

q(z,t) = =X 1pl (=, 1). (2.24)
The vector function ¢ in (2.5) under such a nonlocal reduction could be taken as
clz,t,\) = D7 (—x, t, —\"). (2.25)
Those nonlocal reduction relations guarantee that
a*(—x,t,=\*) = a(z,t, ), d(—z,t,—\*) = Sd(z,t, )2, (2.26)

where a and d satisfy (2.5). For example, under (2.24) and (2.25), we can compute
that

(a*(=z,t, =A"))e = —a;p(—x,t, =)
= i[cf(—x,t, =\)pl(—x,t) — ¢ (—z, )T (=, t, —=\*)]
= i{[b(z, t, NVE[~Eq(z, )] — [=p(z, )27 [Se(z, ¢, A)]}
= —i[b(z,t, \)q(x,t) — p(z, t)c(z, t, N)] = agp(z,t, A),

from which the first relation in (2.26) follows. Therefore, upon using the Laurent
expansions for a, b, c and d, we obtain

(alm)* (=, t) = (=1)™al™(z,1),
(b (—z,t) = (=1)™Zcl™ (z, 1), (2.27)
(dm) (=, t) = (=1)™2dlm) (2, )81,
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where m > 0. This implies that
(V[Q])T(f‘xﬂ; 7)‘*) = CV[Q](ZL'7t, )‘)Cila ( )
2.28
Qi (—z,t,—\*) = CQ(z,t,\)C™*,

where V2 and @Q are defined in (2.22) and (2.23), respectively.

Therefore, it is direct to see that the nonlocal reduction (2.19) does not present
any new condition for the compatibility of the spatial and temporal matrix spectral
problems in (2.21). The multicomponent standard NLS equations (2.17) are then
reduced to the following nonlocal reverse-space multicomponent NLS equations:

ipt (1’, t) = % [pxx (:L’, t) - 2]9(1’, t)zilpT (—.’E, t)p(:L'7 t)]v (229)

where ¥ is an arbitrary invertible Hermitian matrix.
When n = 1, we can obtain two well-known scalar examples':

ipe(x,t) = pao(,t) — 20p2(x,t)p*(f:r,t), o= 7Fl1. (2.30)

When n = 2, we can get a system of nonlocal reverse-space two-component NLS
equations (1.8).

3. Inverse Scattering Transforms
3.1. Distribution of eigenvalues

Let ¢ be defined by (2.24). In what follows, we discuss the scattering and inverse
scattering for the nonlocal reverse-space multicomponent NLS equations (2.29)
through the Riemann-Hilbert approach!! (see also Refs. 20 and 21). The results
will lay the groundwork for soliton solutions in the following section. Assume
that all the potentials sufficiently rapidly vanish when z — Zo0o0 or ¢ — Zoo.
For the matrix spectral problems in (2.21), we can impose the asymptotic be-
havior: ¢ ~ eMa+AN 2 when 7.t — +oo. Therefore, if we make the variable

transformation
_ _ iMAz4iAZQt
o= ¢Ega Eg =€ )

then we can have the canonical asymptotic conditions: ¥ — I,,41, when z,t —
oo or — oo. Upon setting P = ¢P and @ = i@, the equivalent pair of matrix
spectral problems to (2.21) reads

Y = IA[A,P] + Py, (3.1)
P = iN[Q, Y] + Qu. (3.2)
Applying a generalized Liouville’s formula,?? we can have
deth = 1, (3.3)
since (det ), = 0 due to trP = trQ = 0.

2150051-8
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Recall that the adjoint equation of the z-part of (2.21) and the adjoint equation
of (3.1) are given by

and
ithe = A0, A] + 9P, (3.5)

respectively, for which there are the links: (5 = ¢! and 1[) = ¢~ 1. Bach pair of
adjoint matrix spectral problems and equivalent adjoint matrix spectral problems
do not bring any new condition, either, except the nonlocal reverse-space multi-
component NLS equations (2.29).

Let ¥(A) be a matrix eigenfunction of the spatial spectral problem (3.1) asso-
ciated with an eigenvalue \. Then, Cy~1(x,t,)\) is a matrix adjoint eigenfunction
associated with the same eigenvalue A. Under the nonlocal reduction in (2.19), we
can have

il (=2, t,=A")Cla = i[— () (—2, t, =A")C]
= —i{(=)(=N)[WT (=2, 1, =A"), A]
+ (=i)Yf (2, t, = \*) Pt (—2,t)}C
= \T (=2, t,=\*),A]C + 9T (=2, t, = \*)C[-C L PT(—z,1)C]
= MYt (=, t, = \)C, A] + T (—a,t, —\*)COP(x,1t),
and so
O(x,t,N) = f (=2, t, =\, (3.6)

presents another matrix adjoint eigenfunction associated with the same original
eigenvalue )\, i.e., ¥t (—x,t, —\*)C solves the adjoint spectral problem (3.5).

Now, we observe the asymptotic conditions for 1, and find that by the unique-
ness of solutions, we have

QPT(_JU%—)\*) = Cw_l(x?ta)‘)c_la (37)

when ©) — I, 41, T or t — oo or —oo. This implies that if A is an eigenvalue of (3.1)
(or (3.5)), then —A* will be another eigenvalue of (3.1) (or (3.5)), and the property
(3.7) holds.

3.2. Riemann—Hilbert problems

Let us now formulate a class of associated Riemann—Hilbert problems with the
variable z. In order to facilitate the concrete expression, we also make the following
assumptions:

a=a1—ay <0, B=p8 -5 <0. (3.8)

2150051-9
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In the scattering problem, we first introduce the two matrix eigenfunctions 1 (z, \)
of (3.1) with the asymptotic conditions:
YF = I,41, when x — o0, (3.9)
respectively. It follows from (3.3) that det* =1 for all x € R. Since
¢t =¢*E, E =7, (3.10)

are both matrix eigenfunctions of (2.21), they must be linearly dependent, and
consequently, one has

Y E=9¢TES(\), AER, (3.11)

where S(X) = (5;1)(n41)x(n+1) 1S the corresponding scattering matrix. Note that
det S(\) = 1, thanks to det )™ = 1.

We turn the z-part of (2.21) into the following Volterra integral equations
for =11

B (Az) = Ty + / NEY Py (A, )M gy (3.12)
P ) = Ty — / @) Pyt (A, y)e AP gy (3.13)

where the asymptotic conditions (3.9) have been imposed. Now, the theory of
23 one can show that
the eigenfunctions ¢* exist and allow analytical continuations off the real axis A € R
as long as the integrals on their right-hand sides converge. From the diagonal form
of A and the first assumption in (3.8), we can observe that the integral equation
for the first column of ¢~ contains only the exponential factor e ****=¥) which
decays because of y < x in the integral, if A takes values in the upper half-plane
C™T, and the integral equation for the last n columns of 1™ contains only the expo-
nential factor e***#=%) which also decays because of y > z in the integral, when A
takes values in the upper half-plane C*. Thus, these n + 1 columns are analytical
in the upper half-plane C* and continuous in the closed upper half-plane C*. In a
similar manner, we can know that the last n columns of ¥y~ and the first column
of 9™ are analytical in the lower half-plane C~ and continuous in the closed lower
half-plane C~.

First, to determine two generalized matrix Jost solutions 7' and 7'~ we express

OE = (005, . i), (3.14)

that is, wji denotes the jth column of ¢* (1 < j < n + 1), and then we can take
the generalized matrix Jost solution T as

T+ = T+(£U, A) = (7111_,7//;_7 .. 717/}7—:,_—',-1)
=y H; +'¢J+H27

Volterra integral equations tells that by the Neumann series,

(3.15)

2150051-10
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which is analytic in A € C* and continuous in A € CT. The generalized matrix Jost
solution

(W Wy e ) = YT HL + Y Hy (3.16)
is analytic in A € C~ and continuous in A € C~. Here, we introduce
H, = diag(1,0,...,0), Hy=diag(0,1,...,1). (3.17)
N—— N——

Second, to determine the other generalized matrix Jost solution T, we con-
struct the analytic counterpart of 77 in the lower half-plane C~ from the ad-
joint counterparts of the matrix spectral problems. Note that the inverse matrices
¢ = (%)~ and ¥F = (*)~! solve those two adjoint equations, respectively.
Upon expressing in by

OF = (PFL 2, pET (3.18)

that is, ¥ denotes the jth row of = (1 <j<n+1), wecan prove by similar
arguments that we can take the generalized matrix Jost solution 7'~ as the adjoint
matrix solution of (3.5), i.e.,

T = (1;_71?1;4_,27 N 517;+7n+1)T = Hl,&_ + H21;+

(3.19)
= Hi(¢7) 7"+ Ha(v) 7,

which is analytic for A € C~ and continuous for A € C~, and the other generalized
matrix Jost solution of (3.5),

WHL G2 T = Hy T+ Hod™ = Hy(6h) 7+ Ha(7) 7 (3.20)

is analytic for A € CT and continuous for A € C*.

Now we have constructed the two generalized matrix Jost solutions, T+ and
T~. Directly from det* = 1 and the scattering relation (3.11) between 1+ and
1™, we have

det TT(z,\) = s11()), detT (x,\) = 511(N), (3.21)

where STHA) = (S(N) ™ = (81) (n+1)x (n+1)- 1t also follows that

s11(A 0 _
lim T*(z,\) = n®) . AeCH,
(3.22)
aa(0) 0 _
lim T~ (z,\) = n®) . AeC .
T—00 0 In

2150051-11
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This way, we can introduce the following two unimodular generalized matrix Jost
solutions:

Gz, \) = T+ (2, A) [Suow f] et
S0 o0 " (3.23)

T=(z,\), AeC~.
0 I,

(G7) @, \) = [

Those two generalized matrix Jost solutions form the required matrix Riemann—
Hilbert problems on the real line for the nonlocal reverse-space multicomponent
NLS equations (2.29):

Gt (z,\) = G~ (2, \)Go(z,)), NER, (3.24)

where by (3.11), the jump matrix Gy reads

A1 —1
S 0 & s11 (A
Go(z,\)=E | " » S| » EL (3.25)
0 I, 0 I
In the above jump matrix Go, S()\) has the factorization:
S(\) = (Hy + HyS(\)(Hy + S™YH\)Hy), (3.26)
which can be worked out as follows:
[ 1 312 813 81 n41|
521 10 0
SN = Gi)menxmrn = | ss 01 oDl (3.27)
0
LSn+1,1 0 s 0 1 |

Based on the Volterra integral equations (3.12) and (3.13), we can get the canon-
ical normalization conditions:

G*(x,\) = I,41, when A € CF — oo, (3.28)

for the presented Riemann—Hilbert problems. By the property (3.7), we see also
that

(G (—a,t,=X") = C(GT) . t, )CT, (3.29)
and hence, the jump matrix G satisfies the following involution property:
Gl(=z,t,=\*) = CGo(x,t,\)C 1. (3.30)

2150051-12



Inverse scattering for nonlocal reverse-space NSL equations

3.3. FEwvolution of the scattering data

To complete the direct scattering transforms, we take the derivative of (3.11) with
time t and use the temporal matrix spectral problems:

i =N 0%] + QU
It then follows that the scattering matrix S satisfies an evolution law:
S, = iNQ, 9], (3.31)

which tells the time evolution of the time-dependent scattering coefficients:

iBA%t iBA%t
) b

S12 = 812(0, /\)e 813 = 813(07 )\)e “ey

S oy 2
Sin+1 = 81,n+1(0,)\)elﬁ)‘ ta

521 = 521(0, A)e_w’\zty S31 = 831(0,)\)€_i5’\2t, cee
a2
Snt1,1 = Snt1,1(0,N)e” PN

and all other scattering coefficients are independent of the time variable ¢.

3.4. Gelfand—Levitan—Marchenko-type equations

To get Gelfand—Levitan—Marchenko-type integral equations to determine the gener-
alized matrix Jost solutions, we transform the associated Riemann—Hilbert problem
(3.24) into

(3.32)

Gt -G =G v, v=Gg—1I,41, onR,
Gt = 1,11 as A€ Ct — o0,

where the jump matrix Gy is given by (3.25) and (3.26).
Let G()\) = GF()) if A € C*. Suppose that G has simple poles off R: {y;} £

j=1
where R is an arbitrary integer. Set

R
éi(A)ZGi(A)—ZAz, AeCt G\ =GT(\), MeCt, (3.33)

j=1
where G is the residue of G at A = p;, i.e.,

G =res(G(N), Aj) (A= p;)G(N). (3.34)

= lim
A= i

Then, we have

Gt—G =Gt -G~ =G v, onR,
~ _ (3.35)
Gi—>In+1 as A € CF - .
By the Sokhotski-Plemelj formula,?* we obtain the solution
; L [= (G70)©)
A) =1, — —==d¢. .
GO =T + 5 [ 2 ae (3.36)
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Now, taking the limit as A — p; yields
R

LHS = Jim G=F -3 — 2

A=A Pl )

1 [ (G
RHS = Iy + —— [ (G0 4
2mi —o0 5 — M
where
B = fim ATREN =G g (3.37)
A= A — 7]

and accordingly, the required Gelfand-Levitan-Marchenko-type integral equations
are given by

R
G, 1 [ (G
L —F+) —~ +—_/ C0E ge o, 1<i<r (339)
— =y 2m ) o &=
J#l
These equations are used to determine solutions to the associated Riemann—Hilbert
problems and thus the generalized matrix Jost solutions. The existence and unique-
ness of solutions are yet to be investigated. In the case of soliton solutions, a for-
mulation of solutions will be presented for nonlocal integrable equations in the
following section.

3.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix Jost solutions, we
make an asymptotic expansion

1 1

Plugging this asymptotic expansion into the matrix spectral problem (3.1) and
comparing O(1) terms yields

P = /\11_}11010 A[GT (M), A] = —[A, GT . (3.40)
This equivalently presents the potential matrix:
0 —a(G)z —a(Gi)s -+ —a(GY)1n41]
(G 0 0 0
p=| alGi)n 0 0 0 . (3.41)
(@G sis 0 (N o

where G = ((Gf)jl)(nﬂ)x(nﬂ). Namely, the 2n potentials p; and ¢;, 1 < j <n,
of the standard multicomponent NLS equations (2.17) are determined by

pi=—a(Gijs, ¢ =a(G)j1, 1<j<n. (3.42)
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When the nonlocal reduction requirement (2.19) is satisfied, the reduced po-
tentials p;, 1 < j < n, solve the nonlocal reverse-space multicomponent NLS
equations (2.29).

This completes the inverse scattering procedure from the scattering matrix S(\),
through the jump matrix Go(\) and the solution {G*()\), G~ ()} to the associated
Riemann—Hilbert problems, to the potential matrix P, which solves the nonlocal
reverse-space multicomponent NLS equations (2.29).

4. Soliton Solutions
4.1. Nonreduced local case

Let N be another arbitrary natural number. Assume that s11(A) has N zeros {\; €
C, 1 < k < N}, and 811(\) has N zeros {S\k € C, 1 <k < N}. To construct
soliton solutions, we also assume that all these zeros, Ay and A, 1 < k < N, are
geometrically simple. Then, each of ker T ()\;), 1 < k < N, contains only a single
basis column vector, denoted by v, 1 < k < N; and each of ker T~ (5%), 1<k<N,
a single basis row vector, denoted by v, 1 < k < N:

T Mok =0, 9T (A\) =0, 1<k<N. (4.1)

To work out soliton solutions explicitly, we need to take Gy = I,4+1 in
each Riemann-Hilbert problem (3.24). This can be achieved if we assume that
si1 =81, =0, 2 <14 <n+ 1, which means that only zero reflection coefficients are
taken in the scattering problem. This kind of special Riemann—-Hilbert problems
with the canonical normalization conditions in (3.28) and the zero structures given

11,25

in (4.1) can be solved exactly in the case of local integrable equations, and in

consequence, we can directly determine the potential matrix P. However, in the
case of nonlocal integrable equations, we may not have

ML <E<NIN{M1<E<N}=0. (4.2)

Without this condition, the solutions to the special Riemann—Hilbert problem with
the identity jump matrix can be presented through (see, e.g., Ref. 8):

N 1 ~
GT\) = It — Z M,

k=1 A=A
(4.3)
I vk (M ™)ty
(G ) ( — In+1 + Z ’
k=1 R
where M = (my;) Nxn IS a square matrix whose entries are determined by
VRO e # A
mg =< A= Ak 1<k, [I<N, (4.4)
0 if )\l = ;\ka

2150051-15



W. X. Ma, Y. Huang & F. Wang

and we need an orthogonal condition
o =0 ifN=X\, 1<k, [<N, (4.5)
to guarantee that
(G NG = Lo (4.6)

Note that the zeros A, and Ay, are constants, i.e., space—time independent, we can
compute the spatial and temporal evolutions for the vectors, v (z,t) and vy (z,t),
1 < k < N, in the kernels. For instance, let us evaluate the x-derivative of both
sides of the first set of equations in (4.1). By using (3.1) first and then again the
first set of equations in (4.1), we can obtain

Pz, \) (CSZ“ - i)\kAvk> =0, 1<k<N. (4.7)

This tells that for each 1 < k < N, % — iAgAvg is in the kernel of PT(x, \) and
so a constant multiple of v,. Without loss of generality, we take

d
Wk — ineAvp, 1<k <N. (4.8)
dx
The time dependence of vy,
d
% = i\2Quy,, 1<k<N, (4.9)

can be obtained similarly through an application of the ¢-part of the matrix spectral
problem (3.2). As a result, we obtain

vg(x,t) = e”"“Am“)‘imwk, 1<k<N, (4.10)
(1) = Wpe MATTIARQL ) < < N (4.11)

where wr and wg, 1 < k < N, are arbitrary constant column and row vectors,
respectively, but need to satisfy

Wpw; =0 if AN =X\, 1<k, [<N, (4.12)
which is a consequence of the orthogonal condition (4.5).

Finally, from the solutions in (4.3), we get

N

Gl+ = — Z Uk(M_l)kl@l, (4.13)
k=1

and further, the presentations in (3.42) lead to the following N-soliton solution to
the standard multicomponent NLS equations (2.17):

N N
—1 ~ —1 ~ .
pj =« Z Vgt (M ™ )wilnjv1, @ = —« Z Ok 1 (M )itry, 1<j<n.
k,l=1 k=1

(4.14)
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4.2. Reduced nonlocal case

In order to compute N-soliton solutions to the nonlocal reverse-space multicom-
ponent NLS equations (2.29), we need to check an involution property for G
determined in (4.13):

(G (=2, 1)) = CGT (z,t)C L. (4.15)

This equivalently tells that the potential matrix P determined through (3.41) sat-
isfies the reduction requirement (2.19). The N-soliton solution to the standard
multicomponent NLS equations (2.17) is then reduced to the N-soliton solution:

N
pi=a Y vea(M Db, 1<j<n, (4.16)
k=1

for the nonlocal reverse-space multicomponent NLS equations (2.29).

Let us now state how to realize the involution property (4.15). We first take NV
distinct zeros of det T+(\) (or eigenvalues of the spectral problems under the zero
potential): A, € C, 1 < k < N, and define

) A if Ay Z iR, 1<k < N;
R = { k © ¥ (4.17)

any value € iR if \y €iR, 1 <k < N;
which are zeros of det T~ (A). Then, the ker T+ ()\g), 1 < k < N, are determined by
vg(x,t) = vz, t, M) = M ATHINEQLy, ] < | < N, (4.18)

respectively, where wy, 1 < k < N, are arbitrary column vectors. These column
vectors in (4.18) are eigenfunctions of the spectral problems under the zero potential
associated with Ax, 1 < k < N. Further, according to the previous analysis in
Sec. 3.1, the ker T~ (Ag), 1 < k < N, are spanned by

ip(x,) = tp (2, M) = vf (—2,t, \e)C = wle M Ar=Ni2% 1 < | < N, (4.19)

respectively. These row vectors are eigenfunctions of the adjoint spectral problems
under the zero potential associated with A\, 1 < k < N. To satisfy the orthogonal
property (4.12), we require the following condition:

wiCw, =0 if N =X, 1<k [<N. (4.20)

It is interesting to note that the situation of A\ = S\k occurs only when A, € iR
and A\, = —\%.

Now, it is direct to see that if the solutions to the specific Riemann—Hilbert
problems, determined by (4.3) and (4.4), satisfy the property (3.29), then G} is in
agreement with the requirement (4.15) for each nonlocal reduction in (2.18), and
as a consequence, the formula (4.16), together with (4.3), (4.4), (4.18) and (4.19),
presents the required N-soliton solutions to the nonlocal reverse-space multicom-
ponent NLS equations (2.29).
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When N = n = 1, we choose A\ = in, 5\1 = —in, m € R, and denote
w, = (w171,w1,2)T. Then we can obtain the following one-soliton solution to the
nonlocal reverse-space scalar NLS equations in (2.30):

27712'1017111)1:2

= 4.21
p(l’,t) €|w1’1|2€—nlz+in%t + |w1’2‘2€n1z+i7]%t’ ( )
where ¢ = %1, 7 is an arbitrary real number, and w;; and w; 2 are arbitrary
complex numbers but satisfy o|w; 1|?+|w; 2|*> = 0, which comes from the involution
property (4.15). This solution may have a singularity at a certain point in space

and the case of ¢ = 1 and 0 = —1 can present the breather one-soliton in Ref. 2.

5. Concluding Remarks

This paper aims to present and analyze nonlocal reverse-space integrable multi-
component NLS equations and their inverse scattering transforms. The basic theory
is based on Riemann-Hilbert problems associated with higher-order matrix spec-
tral problems. The associated Riemann-Hilbert problems were transformed into
Gelfand—Levitan—Marchenko-type integral equations through the the Sokhotski—
Plemelj formula, and soliton solutions of the nonlocal reverse-space multicomponent
NLS equations were presented in the zero reflection coefficient situation.

The Riemann—Hilbert approach is very effective in generating soliton solutions
(see also, e.g., Refs. 12-14 and 26). It has been recently generalized to solve initial-
boundary value problems of integrable equations on the half-line and the finite in-
terval.2”2® Many other approaches to soliton solutions are available in the theory of
integrable equations, among which are the Hirota direct method,2? the generalized

bilinear technique,?® the Wronskian technique3!:32
33,34

and the Darboux transforma-
tion.
approaches.

We also remark that it would be definitely interesting to construct different kinds

It would be important to determine connections between those distinct

of exact solutions to integrable equations, such as position and complexion solu-
tions,2%3% lump and interaction solutions,>” 4% Rossby wave solutions,*! solutionless

solutions*2 44

and algebro-geometric solutions,*>46 through the Riemann-Hilbert
technique. It is our hope that there will be a clear understanding about those exact

solutions from a perspective of the Riemann—Hilbert technique.
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