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1. Introduction

Nonlocal integrable nonlinear Schrödinger (NLS) equations arise while taking

specific reductions.1 The corresponding inverse scattering transforms have been

recently established under zero or nonzero boundary conditions2–4 and N -soliton so-

lutions have been constructed from the Riemann–Hilbert problems with the identity
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jump matrix5 and by the Hirota bilinear method.6 Some multicomponent general-

izations7–9 and other nonlocal integrable equations10 were also presented. We would

like to present a class of general nonlocal reverse-space multicomponent NLS equa-

tions and analyze their inverse scattering transforms and soliton solutions through

formulating and solving Riemann–Hilbert problems.

The Riemann–Hilbert approach is one of the most powerful techniques to study

integrable equations and particularly generate soliton solutions.11 Many integrable

equations, including the multiple wave interaction equations,11 the general coupled

NLS equations,12 the Harry Dym equation,13 the generalized Sasa–Satsuma equa-

tion14 and the Ablowitz–Kaup–Newell–Segur (AKNS) soliton hierarchies,15 have

been studied by analyzing the associated Riemann–Hilbert problems.

The standard procedure for establishing Riemann–Hilbert problems is to start

from a pair of matrix spectral problems, let us say,

−iφx = Uφ, −iφt = V φ,

U = A(λ) + P (u, λ), V = B(λ) +Q(u, λ),
(1.1)

where i is the unit imaginary number, λ is a spectral parameter, u is a potential

and φ is an m × m matrix eigenfunction. The zero-curvature equation, i.e., the

compatibility condition of the above two matrix spectral problems,

Ut − Vx + i[U, V ] = 0, (1.2)

where [·, ·] is the matrix commutator, presents an integrable equation. To establish

an associated Riemann–Hilbert problem for this integrable equation, we use the

following equivalent pair of matrix spectral problems:

ψx = i[A(λ), ψ] + P̌ (u, λ)ψ, ψt = i[B(λ), ψ] + Q̌(u, λ)ψ, (1.3)

where ψ is an m×m matrix eigenfunction, P̌ = iP and Q̌ = iQ. We often assume

that A,B are constant commuting m×m matrices, and P,Q are trace-less m×m
matrices. The equivalence between (1.1) and (1.3) comes from the commutativity

of A and B, and (detψ)x = (detψ)t = 0 are two consequences of trP = trQ = 0.

There exists a direct relation between (1.1) and (1.3):

φ = ψEg, Eg = eiA(λ)x+iB(λ)t. (1.4)

For the pair of matrix spectral problems in (1.3), we can impose the asymptotic

conditions:

ψ± → Im, when x or t→ ±∞, (1.5)

where Im stands for the identity matrix of size m. From these two matrix eigen-

functions ψ±, we need to pick the entries and build two generalized matrix Jost

solutions T±(x, t, λ), which are analytical in the upper and lower half-planes C+

and C− and continuous in the closed upper and lower half-planes C̄+ and C̄−,

respectively, to formulate a Riemann–Hilbert problem on the real line:

G+(x, t, λ) = G−(x, t, λ)G0(x, t, λ), λ ∈ R, (1.6)
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where two unimodular generalized matrix Jost solutions, G+ and G−, and the jump

matrix, G0, are determined from T+ and T−.

Recall that the scattering matrix Sg(λ) of the matrix spectral problems is defined

through

ψ−Eg = ψ+EgSg(λ). (1.7)

Normally, the jump matrix G0 carries basic scattering data from Sg(λ). Solutions to

the associated Riemann–Hilbert problems provide the required generalized matrix

Jost solutions in recovering the potential of the matrix spectral problems, which

solves the corresponding integrable equation. Such solutions could be presented by

using the Sokhotski–Plemelj formula, upon computing their difference. Then, a re-

covery of the potential finishes the inverse scattering transforms, through observing

asymptotic behaviors of the generalized matrix Jost solutions G± at infinity of λ.

Soliton solutions are presented from solutions to the Riemann–Hilbert problems

with the identity jump matrix G0, or equivalently, the zero reflection coefficients.

In this paper, we first present a class of nonlocal reverse-space multicomponent

NLS equations by making a specific group of nonlocal reductions, and analyze their

inverse scattering transforms and soliton solutions, based on associated Riemann–

Hilbert problems. One example with two components is{
ip1,t(x, t) = p1,xx(x, t)− 2[c1p1(x, t)p∗1(−x, t) + c2p2(x, t)p∗2(−x, t)]p1(x, t),

ip2,t(x, t) = p2,xx(x, t)− 2[c1p1(x, t)p∗1(−x, t) + c2p2(x, t)p∗2(−x, t)]p2(x, t),
(1.8)

where c1 and c2 are arbitrary nonzero real constants. The rest of the paper is struc-

tured as follows. In Sec. 2, within the zero-curvature formulation, we recall the

AKNS integrable hierarchy with multiple potentials, and make a group of nonlo-

cal reductions to construct nonlocal reverse-space multicomponent NLS equations.

In Sec. 3, we analyze the inverse scattering transforms through Riemann–Hilbert

problems associated with higher-order matrix spectral problems. In Sec. 4, we con-

struct soliton solutions to the presented nonlocal reverse-space multicomponent

NLS equations from special associated Riemann–Hilbert problems on the real axis

where an identity jump matrix is taken. In Sec. 5, we give a conclusion, together

with some concluding remarks.

2. Nonlocal Reverse-space NLS Equations

2.1. Multicomponent AKNS hierarchy

Let n ∈ N be arbitrary, and α1 and α2, different real constants. We consider the

following matrix spectral problem16:

−iφx = Uφ = U(u, λ)φ, U = (Ujl)(n+1)×(n+1) =

[
α1λ p

q α2λIn

]
, (2.1)

where λ is a spectral parameter and u is a 2n-dimensional potential

u = (p, qT )T , p = (p1, p2, . . . , pn), q = (q1, q2, . . . , qn)T . (2.2)
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When pj = qj = 0, 2 ≤ j ≤ n, (2.1) becomes the standard AKNS spectral prob-

lem.17 Thus, we call it a multicomponent AKNS matrix spectral problem, and its

associated hierarchy, a multicomponent AKNS integrable hierarchy. On account of

the existence of a multiple eigenvalue of ∂U
∂λ , the matrix spectral problem (2.1) is

degenerate.

To derive an associated multicomponent AKNS integrable hierarchy, we first

solve the stationary zero-curvature equation

Wx = i[U,W ], (2.3)

corresponding to (2.1). We look for a solution W of the form

W =

[
a b

c d

]
, (2.4)

where a is a scalar, bT and c are n-dimensional columns, and d is an n× n matrix.

It is direct to show that the stationary zero-curvature equation (2.3) reads

ax = i(pc− bq), bx = i(αλb+ pd− ap),

cx = i(−αλc+ qa− dq), dx = i(qb− cp),
(2.5)

where α = α1 − α2. We take W as a formal series:

W =

[
a b

c d

]
=

∞∑
m=0

Wmλ
−m,

Wm = Wm(u) =

[
a[m] b[m]

c[m] d[m]

]
, m ≥ 0,

(2.6)

where b[m], c[m] and d[m] are expressed as

b[m] = (b
[m]
1 , b

[m]
2 , . . . , b[m]

n ), c[m] = (c
[m]
1 , c

[m]
2 , . . . , c[m]

n )T ,

d[m] = (d
[m]
jl )n×n, m ≥ 0.

(2.7)

Then, the system (2.5) exactly presents the following recursion relations:

b[0] = 0, c[0] = 0, a[0]
x = 0, d[0]

x = 0, (2.8a)

b[m+1] =
1

α
(−ib[m]

x − pd[m] + a[m]p), m ≥ 0, (2.8b)

c[m+1] =
1

α
(ic[m]

x + qa[m] − d[m]q), m ≥ 0, (2.8c)

a[m]
x = i(pc[m] − b[m]q), d[m]

x = i(qb[m] − c[m]p), m ≥ 1. (2.8d)
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Next, we fix the initial values:

a[0] = β1, d[0] = β2In, (2.9)

where β1, β2 are arbitrary but different constants, and take zero constants of inte-

gration in (2.8d), which means that we require

Wm|u=0 = 0, m ≥ 1. (2.10)

Then, with a[0] and d[0] given by (2.9), all matrices Wm,m ≥ 1, defined recursively,

are uniquely determined. For instance, a direct calculation, based on (2.8), yields

that

b
[1]
j =

β

α
pj , c

[1]
j =

β

α
qj , a[1] = 0, d

[1]
jl = 0; (2.11a)

b
[2]
j = − β

α2
ipj,x, c

[2]
j =

β

α2
iqj,x, a[2] = − β

α2
pq, d

[2]
jl =

β

α2
plqj ; (2.11b)

b
[3]
j = − β

α3
[pj,xx + 2pqpj ], c

[3]
j = − β

α3 [qj,xx + 2pqqj ],

a[3] = − β

α3
i(pqx − pxq), d

[3]
jl = − β

α3 i(pl,xqj − plqj,x);

(2.11c)



b
[4]
j =

β

α4
i[pj,xxx + 3pqpj,x + 3pxqpj ],

c
[4]
j = − β

α4
i[qj,xxx + 3pqqj,x + 3pqxqj ],

a[4] =
β

α4
[3(pq)2 + pqxx − pxqx + pxxq],

d
[4]
jl = − β

α4
[3plpqqj + pl,xxqj − pl,xqj,x + plqj,xx];

(2.11d)

where β = β1 − β2 and 1 ≤ j, l ≤ n. Based on (2.8d), we can obtain, from (2.8b)

and (2.8c), a recursion relation for b[m] and c[m]:[
c[m+1]

b[m+1]T

]
= Ψ

[
c[m]

b[m]T

]
, m ≥ 1, (2.12)

where Ψ is a 2n× 2n matrix operator

Ψ =
i

α


(
∂ +

n∑
j=1

qj∂
−1pj

)
In + q∂−1p −q∂−1qT − (q∂−1qT )T

pT∂−1p+ (pT∂−1p)T −
(
∂ +

n∑
j=1

pj∂
−1qj

)
In − pT∂−1qT

.
(2.13)
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The multicomponent AKNS integrable hierarchy is associated with the following

temporal matrix spectral problems:

−iφt = V [r]φ = V [r](u, λ)φ,

V [r] = (V
[r]
jl )(n+1)×(n+1) =

r∑
m=0

Wmλ
r−m, r ≥ 0.

(2.14)

The compatibility conditions of (2.1) and (2.14), i.e., the zero-curvature equations,

Ut − V [r]
x + i[U, V [r]] = 0, r ≥ 0, (2.15)

generate the so-called multicomponent AKNS integrable hierarchy:

ut =

[
pT

q

]
t

= Kr = i

[
αb[r+1]T

−αc[r+1]

]
, r ≥ 0. (2.16)

The first nonlinear integrable system in the above hierarchy (2.16) consists of the

standard NLS equations:
pj,t = − β

α2
i

[
pj,xx + 2

(
n∑
l=1

plql

)
pj

]
, 1 ≤ j ≤ n,

qj,t =
β

α2
i

[
qj,xx + 2

(
n∑
l=1

plql

)
qj

]
, 1 ≤ j ≤ n.

(2.17)

When n = 2, under a special kind of symmetric reductions, the multicomponent

NLS equations (2.17) can be reduced to the Manakov system18 and a decomposition

into finite-dimensional integrable Hamiltonian systems was made for that reduced

system in Ref. 19.

2.2. Nonlocal reverse-space NLS equations

Let us take a specific group of nonlocal reductions for the spectral matrix:

U†(−x, t,−λ∗) = −CU(x, t, λ)C−1, C =

[
1 0

0 Σ

]
, Σ† = Σ, (2.18)

which implies that

P †(−x, t) = −CP (x, t)C−1. (2.19)

Henceforth, † stands for the Hermitian transpose, ∗ denotes the complex conjugate,

Σ is a constant invertible Hermitian matrix, and for brevity, we adopt
A(x, t, λ) = A(u(x, t), λ),

A†(f(x, t, λ)) = (A(f(x, t, λ)))†,

A−1(f(x, t, λ)) = (A(f(x, t, λ)))−1,

(2.20)

for a matrix A and a function f .
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The matrix spectral problems of the multicomponent NLS equations (2.17) read

−iφx = Uφ = U(u, λ)φ, −iφt = V [2]φ = V [2](u, λ)φ, (2.21)

where the Lax pair is given by

U = λΛ + P, V [2] = λ2Ω +Q, (2.22)

with Λ = diag(α1, α2In), Ω = diag(β1, β2In), and

P =

[
0 p

q 0

]
,

Q =

[
a[1]λ+ a[2] b[1]λ+ b[2]

c[1]λ+ c[2] d[1]λ+ d[2]

]

=
β

α
λ

[
0 p

q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
.

(2.23)

In the above matrices P and Q, u, p, q are defined by (2.2), and a[m], b[m], c[m], d[m],

1 ≤ m ≤ 2, are determined in (2.11).

From (2.19), we obtain

q(x, t) = −Σ−1p†(−x, t). (2.24)

The vector function c in (2.5) under such a nonlocal reduction could be taken as

c(x, t, λ) = Σ−1b†(−x, t,−λ∗). (2.25)

Those nonlocal reduction relations guarantee that

a∗(−x, t,−λ∗) = a(x, t, λ), d†(−x, t,−λ∗) = Σd(x, t, λ)Σ−1, (2.26)

where a and d satisfy (2.5). For example, under (2.24) and (2.25), we can compute

that

(a∗(−x, t,−λ∗))x = −a∗x(−x, t,−λ∗)

= i[c†(−x, t,−λ∗)p†(−x, t)− q†(−x, t)b†(−x, t,−λ∗)]

= i{[b(x, t, λ)Σ−1][−Σq(x, t)]− [−p(x, t)Σ−1][Σc(x, t, λ)]}

= −i[b(x, t, λ)q(x, t)− p(x, t)c(x, t, λ)] = ax(x, t, λ),

from which the first relation in (2.26) follows. Therefore, upon using the Laurent

expansions for a, b, c and d, we obtain
(a[m])∗(−x, t) = (−1)ma[m](x, t),

(b[m])†(−x, t) = (−1)mΣc[m](x, t),

(d[m])†(−x, t) = (−1)mΣd[m](x, t)Σ−1,

(2.27)
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where m ≥ 0. This implies that

(V [2])†(−x, t,−λ∗) = CV [2](x, t, λ)C−1,

Q†(−x, t,−λ∗) = CQ(x, t, λ)C−1,
(2.28)

where V [2] and Q are defined in (2.22) and (2.23), respectively.

Therefore, it is direct to see that the nonlocal reduction (2.19) does not present

any new condition for the compatibility of the spatial and temporal matrix spectral

problems in (2.21). The multicomponent standard NLS equations (2.17) are then

reduced to the following nonlocal reverse-space multicomponent NLS equations:

ipt(x, t) =
β

α2
[pxx(x, t)− 2p(x, t)Σ−1p†(−x, t)p(x, t)], (2.29)

where Σ is an arbitrary invertible Hermitian matrix.

When n = 1, we can obtain two well-known scalar examples1:

ipt(x, t) = pxx(x, t)− 2σp2(x, t)p∗(−x, t), σ = ∓1. (2.30)

When n = 2, we can get a system of nonlocal reverse-space two-component NLS

equations (1.8).

3. Inverse Scattering Transforms

3.1. Distribution of eigenvalues

Let q be defined by (2.24). In what follows, we discuss the scattering and inverse

scattering for the nonlocal reverse-space multicomponent NLS equations (2.29)

through the Riemann–Hilbert approach11 (see also Refs. 20 and 21). The results

will lay the groundwork for soliton solutions in the following section. Assume

that all the potentials sufficiently rapidly vanish when x → ±∞ or t → ±∞.

For the matrix spectral problems in (2.21), we can impose the asymptotic be-

havior: φ ∼ eiλΛx+iλ2Ωt, when x, t → ±∞. Therefore, if we make the variable

transformation

φ = ψEg, Eg = eiλΛx+iλ2Ωt,

then we can have the canonical asymptotic conditions: ψ → In+1, when x, t →
∞ or − ∞. Upon setting P̌ = iP and Q̌ = iQ, the equivalent pair of matrix

spectral problems to (2.21) reads

ψx = iλ[Λ, ψ] + P̌ψ, (3.1)

ψt = iλ2[Ω, ψ] + Q̌ψ. (3.2)

Applying a generalized Liouville’s formula,22 we can have

detψ = 1, (3.3)

since (detψ)x = 0 due to trP̌ = trQ̌ = 0.

2150051-8
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Recall that the adjoint equation of the x-part of (2.21) and the adjoint equation

of (3.1) are given by

iφ̃x = φ̃U, (3.4)

and

iψ̃x = λ[ψ̃,Λ] + ψ̃P, (3.5)

respectively, for which there are the links: φ̃ = φ−1 and ψ̃ = ψ−1. Each pair of

adjoint matrix spectral problems and equivalent adjoint matrix spectral problems

do not bring any new condition, either, except the nonlocal reverse-space multi-

component NLS equations (2.29).

Let ψ(λ) be a matrix eigenfunction of the spatial spectral problem (3.1) asso-

ciated with an eigenvalue λ. Then, Cψ−1(x, t, λ) is a matrix adjoint eigenfunction

associated with the same eigenvalue λ. Under the nonlocal reduction in (2.19), we

can have

i[ψ†(−x, t,−λ∗)C]x = i[−(ψx)†(−x, t,−λ∗)C]

= −i{(−i)(−λ)[ψ†(−x, t,−λ∗),Λ]

+ (−i)ψ†(−x, t,−λ∗)P †(−x, t)}C

= λ[ψ†(−x, t,−λ∗),Λ]C + ψ†(−x, t,−λ∗)C[−C−1P †(−x, t)C]

= λ[ψ†(−x, t,−λ∗)C,Λ] + ψ†(−x, t,−λ∗)CP (x, t),

and so

ψ̃(x, t, λ) := ψ†(−x, t,−λ∗)C, (3.6)

presents another matrix adjoint eigenfunction associated with the same original

eigenvalue λ, i.e., ψ†(−x, t,−λ∗)C solves the adjoint spectral problem (3.5).

Now, we observe the asymptotic conditions for ψ, and find that by the unique-

ness of solutions, we have

ψ†(−x, t,−λ∗) = Cψ−1(x, t, λ)C−1, (3.7)

when ψ → In+1, x or t→∞ or −∞. This implies that if λ is an eigenvalue of (3.1)

(or (3.5)), then −λ∗ will be another eigenvalue of (3.1) (or (3.5)), and the property

(3.7) holds.

3.2. Riemann–Hilbert problems

Let us now formulate a class of associated Riemann–Hilbert problems with the

variable x. In order to facilitate the concrete expression, we also make the following

assumptions:

α = α1 − α2 < 0, β = β1 − β2 < 0. (3.8)

2150051-9
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In the scattering problem, we first introduce the two matrix eigenfunctions ψ±(x, λ)

of (3.1) with the asymptotic conditions:

ψ± → In+1, when x→ ±∞, (3.9)

respectively. It follows from (3.3) that detψ± = 1 for all x ∈ R. Since

φ± = ψ±E, E = eiλΛx, (3.10)

are both matrix eigenfunctions of (2.21), they must be linearly dependent, and

consequently, one has

ψ−E = ψ+ES(λ), λ ∈ R, (3.11)

where S(λ) = (sjl)(n+1)×(n+1) is the corresponding scattering matrix. Note that

detS(λ) = 1, thanks to detψ± = 1.

We turn the x-part of (2.21) into the following Volterra integral equations

for ψ±11:

ψ−(λ, x) = In+1 +

∫ x

−∞
eiλΛ(x−y)P̌ (y)ψ−(λ, y)eiλΛ(y−x) dy, (3.12)

ψ+(λ, x) = In+1 −
∫ ∞
x

eiλΛ(x−y)P̌ (y)ψ+(λ, y)eiλΛ(y−x) dy, (3.13)

where the asymptotic conditions (3.9) have been imposed. Now, the theory of

Volterra integral equations tells that by the Neumann series,23 one can show that

the eigenfunctions ψ± exist and allow analytical continuations off the real axis λ ∈ R
as long as the integrals on their right-hand sides converge. From the diagonal form

of Λ and the first assumption in (3.8), we can observe that the integral equation

for the first column of ψ− contains only the exponential factor e−iαλ(x−y), which

decays because of y < x in the integral, if λ takes values in the upper half-plane

C+, and the integral equation for the last n columns of ψ+ contains only the expo-

nential factor eiαλ(x−y), which also decays because of y > x in the integral, when λ

takes values in the upper half-plane C+. Thus, these n + 1 columns are analytical

in the upper half-plane C+ and continuous in the closed upper half-plane C̄+. In a

similar manner, we can know that the last n columns of ψ− and the first column

of ψ+ are analytical in the lower half-plane C− and continuous in the closed lower

half-plane C̄−.

First, to determine two generalized matrix Jost solutions T+ and T−, we express

ψ± = (ψ±1 , ψ
±
2 , . . . , ψ

±
n+1), (3.14)

that is, ψ±j denotes the jth column of φ± (1 ≤ j ≤ n + 1), and then we can take

the generalized matrix Jost solution T+ as

T+ = T+(x, λ) = (ψ−1 , ψ
+
2 , . . . , ψ

+
n+1)

= ψ−H1 + ψ+H2,
(3.15)
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which is analytic in λ ∈ C+ and continuous in λ ∈ C̄+. The generalized matrix Jost

solution

(ψ+
1 , ψ

−
2 , . . . , ψ

−
n+1) = ψ+H1 + ψ−H2 (3.16)

is analytic in λ ∈ C− and continuous in λ ∈ C̄−. Here, we introduce

H1 = diag(1, 0, . . . , 0︸ ︷︷ ︸
n

), H2 = diag(0, 1, . . . , 1︸ ︷︷ ︸
n

). (3.17)

Second, to determine the other generalized matrix Jost solution T−, we con-

struct the analytic counterpart of T+ in the lower half-plane C− from the ad-

joint counterparts of the matrix spectral problems. Note that the inverse matrices

φ̃± = (φ±)−1 and ψ̃± = (ψ±)−1 solve those two adjoint equations, respectively.

Upon expressing ψ̃± by

ψ̃± = (ψ̃±,1, ψ̃±,2, . . . , ψ̃±,n+1)T , (3.18)

that is, ψ̃±,j denotes the jth row of ψ̃± (1 ≤ j ≤ n + 1), we can prove by similar

arguments that we can take the generalized matrix Jost solution T− as the adjoint

matrix solution of (3.5), i.e.,

T− = (ψ̃−,1, ψ̃+,2, . . . , ψ̃+,n+1)T = H1ψ̃
− +H2ψ̃

+

= H1(ψ−)−1 +H2(ψ+)−1,
(3.19)

which is analytic for λ ∈ C− and continuous for λ ∈ C̄−, and the other generalized

matrix Jost solution of (3.5),

(ψ̃+,1, ψ̃−,2, . . . , ψ̃−,n+1)T = H1ψ̃
+ +H2ψ̃

− = H1(ψ+)−1 +H2(ψ−)−1, (3.20)

is analytic for λ ∈ C+ and continuous for λ ∈ C̄+.

Now we have constructed the two generalized matrix Jost solutions, T+ and

T−. Directly from detψ± = 1 and the scattering relation (3.11) between ψ+ and

ψ−, we have

detT+(x, λ) = s11(λ), detT−(x, λ) = ŝ11(λ), (3.21)

where S−1(λ) = (S(λ))−1 = (ŝjl)(n+1)×(n+1). It also follows that

lim
x→∞

T+(x, λ) =

[
s11(λ) 0

0 In

]
, λ ∈ C̄+;

lim
x→∞

T−(x, λ) =

[
ŝ11(λ) 0

0 In

]
, λ ∈ C̄−.

(3.22)
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This way, we can introduce the following two unimodular generalized matrix Jost

solutions: 
G+(x, λ) = T+(x, λ)

[
s−1

11 (λ) 0

0 In

]
, λ ∈ C̄+;

(G−)−1(x, λ) =

[
ŝ−1

11 (λ) 0

0 In

]
T−(x, λ), λ ∈ C̄−.

(3.23)

Those two generalized matrix Jost solutions form the required matrix Riemann–

Hilbert problems on the real line for the nonlocal reverse-space multicomponent

NLS equations (2.29):

G+(x, λ) = G−(x, λ)G0(x, λ), λ ∈ R, (3.24)

where by (3.11), the jump matrix G0 reads

G0(x, λ) = E

[
ŝ−1

11 (λ) 0

0 In

]
S̃(λ)

[
s−1

11 (λ) 0

0 In

]
E−1. (3.25)

In the above jump matrix G0, S̃(λ) has the factorization:

S̃(λ) = (H1 +H2S(λ))(H1 + S−1(λ)H2), (3.26)

which can be worked out as follows:

S̃(λ) = (s̃jl)(n+1)×(n+1) =



1 ŝ12 ŝ13 · · · ŝ1,n+1

s21 1 0 · · · 0

s31 0 1
. . .

...

...
...

. . .
. . . 0

sn+1,1 0 · · · 0 1


. (3.27)

Based on the Volterra integral equations (3.12) and (3.13), we can get the canon-

ical normalization conditions:

G±(x, λ)→ In+1, when λ ∈ C̄± →∞, (3.28)

for the presented Riemann–Hilbert problems. By the property (3.7), we see also

that

(G+)†(−x, t,−λ∗) = C(G−)−1(x, t, λ)C−1, (3.29)

and hence, the jump matrix G0 satisfies the following involution property:

G†0(−x, t,−λ∗) = CG0(x, t, λ)C−1. (3.30)

2150051-12
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3.3. Evolution of the scattering data

To complete the direct scattering transforms, we take the derivative of (3.11) with

time t and use the temporal matrix spectral problems:

ψ±t = iλ2[Ω, ψ±] + Q̌ψ±.

It then follows that the scattering matrix S satisfies an evolution law:

St = iλ2[Ω, S], (3.31)

which tells the time evolution of the time-dependent scattering coefficients:

s12 = s12(0, λ)eiβλ
2t, s13 = s13(0, λ)eiβλ

2t, . . . ,

s1,n+1 = s1,n+1(0, λ)eiβλ
2t,

s21 = s21(0, λ)e−iβλ
2t, s31 = s31(0, λ)e−iβλ

2t, . . . ,

sn+1,1 = sn+1,1(0, λ)e−iβλ
2t,

and all other scattering coefficients are independent of the time variable t.

3.4. Gelfand–Levitan–Marchenko-type equations

To get Gelfand–Levitan–Marchenko-type integral equations to determine the gener-

alized matrix Jost solutions, we transform the associated Riemann–Hilbert problem

(3.24) into {
G+ −G− = G−v, v = G0 − In+1, on R,

G± → In+1 as λ ∈ C̄± →∞,
(3.32)

where the jump matrix G0 is given by (3.25) and (3.26).

Let G(λ) = G±(λ) if λ ∈ C±. Suppose that G has simple poles off R: {µj}Rj=1,

where R is an arbitrary integer. Set

G̃±(λ) = G±(λ)−
R∑
j=1

Gj
λ− µj

, λ ∈ C̄±; G̃(λ) = G̃±(λ), λ ∈ C±, (3.33)

where Gj is the residue of G at λ = µj , i.e.,

Gj = res(G(λ), λj) = lim
λ→µj

(λ− µj)G(λ). (3.34)

Then, we have {
G̃+ − G̃− = G+ −G− = G−v, on R,

G̃± → In+1 as λ ∈ C̄± →∞.
(3.35)

By the Sokhotski–Plemelj formula,24 we obtain the solution

G̃(λ) = In+1 +
1

2πi

∫ ∞
−∞

(G−v)(ξ)

ξ − λ
dξ. (3.36)

2150051-13
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Now, taking the limit as λ→ µl yields

LHS = lim
λ→λl

G̃ = Fl −
R∑
j 6=l

Gj
µl − µj

,

RHS = In+1 +
1

2πi

∫ ∞
−∞

(G−v)(ξ)

ξ − µl
dξ,

where

Fl = lim
λ→µl

(λ− µl)G(λ)−Gl
λ− µl

, 1 ≤ l ≤ R, (3.37)

and accordingly, the required Gelfand–Levitan–Marchenko-type integral equations

are given by

In+1 − Fl +

R∑
j 6=l

Gj
µl − µj

+
1

2πi

∫ ∞
−∞

(G−v)(ξ)

ξ − µl
dξ = 0, 1 ≤ l ≤ R. (3.38)

These equations are used to determine solutions to the associated Riemann–Hilbert

problems and thus the generalized matrix Jost solutions. The existence and unique-

ness of solutions are yet to be investigated. In the case of soliton solutions, a for-

mulation of solutions will be presented for nonlocal integrable equations in the

following section.

3.5. Recovery of the potential

To recover the potential matrix P from the generalized matrix Jost solutions, we

make an asymptotic expansion

G+(x, t, λ) = In+1 +
1

λ
G+

1 (x, t) + O

(
1

λ2

)
, λ→∞. (3.39)

Plugging this asymptotic expansion into the matrix spectral problem (3.1) and

comparing O(1) terms yields

P = lim
λ→∞

λ[G+(λ),Λ] = −[Λ, G+
1 ]. (3.40)

This equivalently presents the potential matrix:

P =



0 −α(G+
1 )12 −α(G+

1 )13 · · · −α(G+
1 )1,n+1

α(G+
1 )21 0 0 · · · 0

α(G+
1 )31 0 0 · · · 0

...
...

...
. . .

...

α(G+
1 )n+1,1 0 0 · · · 0


, (3.41)

where G+
1 = ((G+

1 )jl)(n+1)×(n+1). Namely, the 2n potentials pj and qj , 1 ≤ j ≤ n,

of the standard multicomponent NLS equations (2.17) are determined by

pj = −α(G+
1 )1,j+1, qj = α(G+

1 )j+1,1, 1 ≤ j ≤ n. (3.42)

2150051-14
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When the nonlocal reduction requirement (2.19) is satisfied, the reduced po-

tentials pj , 1 ≤ j ≤ n, solve the nonlocal reverse-space multicomponent NLS

equations (2.29).

This completes the inverse scattering procedure from the scattering matrix S(λ),

through the jump matrix G0(λ) and the solution {G+(λ), G−(λ)} to the associated

Riemann–Hilbert problems, to the potential matrix P , which solves the nonlocal

reverse-space multicomponent NLS equations (2.29).

4. Soliton Solutions

4.1. Nonreduced local case

Let N be another arbitrary natural number. Assume that s11(λ) has N zeros {λk ∈
C, 1 ≤ k ≤ N}, and ŝ11(λ) has N zeros {λ̂k ∈ C, 1 ≤ k ≤ N}. To construct

soliton solutions, we also assume that all these zeros, λk and λ̂k, 1 ≤ k ≤ N, are

geometrically simple. Then, each of kerT+(λk), 1 ≤ k ≤ N , contains only a single

basis column vector, denoted by vk, 1 ≤ k ≤ N ; and each of kerT−(λ̂k), 1 ≤ k ≤ N ,

a single basis row vector, denoted by v̂k, 1 ≤ k ≤ N :

T+(λk)vk = 0, v̂kT
−(λ̂k) = 0, 1 ≤ k ≤ N. (4.1)

To work out soliton solutions explicitly, we need to take G0 = In+1 in

each Riemann–Hilbert problem (3.24). This can be achieved if we assume that

si1 = ŝ1i = 0, 2 ≤ i ≤ n+ 1, which means that only zero reflection coefficients are

taken in the scattering problem. This kind of special Riemann–Hilbert problems

with the canonical normalization conditions in (3.28) and the zero structures given

in (4.1) can be solved exactly in the case of local integrable equations,11,25 and in

consequence, we can directly determine the potential matrix P . However, in the

case of nonlocal integrable equations, we may not have

{λk|1 ≤ k ≤ N} ∩ {λ̂k|1 ≤ k ≤ N} = Ø. (4.2)

Without this condition, the solutions to the special Riemann–Hilbert problem with

the identity jump matrix can be presented through (see, e.g., Ref. 8):

G+(λ) = In+1 −
N∑

k,l=1

vk(M−1)klv̂l

λ− λ̂l
,

(G−)−1(λ) = In+1 +

N∑
k,l=1

vk(M−1)klv̂l
λ− λk

,

(4.3)

where M = (mkl)N×N is a square matrix whose entries are determined by

mkl =


v̂kvl

λl − λ̂k
if λl 6= λ̂k,

0 if λl = λ̂k,

1 ≤ k, l ≤ N, (4.4)
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and we need an orthogonal condition

v̂kvl = 0 if λl = λ̂k, 1 ≤ k, l ≤ N, (4.5)

to guarantee that

(G−)−1(λ)G+(λ) = In+1. (4.6)

Note that the zeros λk and λ̂k are constants, i.e., space–time independent, we can

compute the spatial and temporal evolutions for the vectors, vk(x, t) and v̂k(x, t),

1 ≤ k ≤ N , in the kernels. For instance, let us evaluate the x-derivative of both

sides of the first set of equations in (4.1). By using (3.1) first and then again the

first set of equations in (4.1), we can obtain

P+(x, λk)

(
dvk
dx
− iλkΛvk

)
= 0, 1 ≤ k ≤ N. (4.7)

This tells that for each 1 ≤ k ≤ N , dvk
dx − iλkΛvk is in the kernel of P+(x, λk) and

so a constant multiple of vk. Without loss of generality, we take

dvk
dx

= iλkΛvk, 1 ≤ k ≤ N. (4.8)

The time dependence of vk,

dvk
dt

= iλ2
kΩvk, 1 ≤ k ≤ N, (4.9)

can be obtained similarly through an application of the t-part of the matrix spectral

problem (3.2). As a result, we obtain

vk(x, t) = eiλkΛx+iλ2
kΩtwk, 1 ≤ k ≤ N, (4.10)

v̂k(x, t) = ŵke−iλ̂kΛx−iλ̂2
kΩt, 1 ≤ k ≤ N, (4.11)

where wk and ŵk, 1 ≤ k ≤ N , are arbitrary constant column and row vectors,

respectively, but need to satisfy

ŵkwl = 0 if λl = λ̂k, 1 ≤ k, l ≤ N, (4.12)

which is a consequence of the orthogonal condition (4.5).

Finally, from the solutions in (4.3), we get

G+
1 = −

N∑
k,l=1

vk(M−1)klv̂l, (4.13)

and further, the presentations in (3.42) lead to the following N -soliton solution to

the standard multicomponent NLS equations (2.17):

pj = α

N∑
k,l=1

vk,1(M−1)klv̂l,j+1, qj = −α
N∑

k,l=1

vk,j+1(M−1)klv̂l,1, 1 ≤ j ≤ n.

(4.14)
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4.2. Reduced nonlocal case

In order to compute N -soliton solutions to the nonlocal reverse-space multicom-

ponent NLS equations (2.29), we need to check an involution property for G+
1

determined in (4.13):

(G+
1 (−x, t))† = CG+

1 (x, t)C−1. (4.15)

This equivalently tells that the potential matrix P determined through (3.41) sat-

isfies the reduction requirement (2.19). The N -soliton solution to the standard

multicomponent NLS equations (2.17) is then reduced to the N -soliton solution:

pj = α

N∑
k,l=1

vk,1(M−1)klv̂l,j+1, 1 ≤ j ≤ n, (4.16)

for the nonlocal reverse-space multicomponent NLS equations (2.29).

Let us now state how to realize the involution property (4.15). We first take N

distinct zeros of detT+(λ) (or eigenvalues of the spectral problems under the zero

potential): λk ∈ C, 1 ≤ k ≤ N, and define

λ̂k =

{
−λ∗k if λk 6∈ iR, 1 ≤ k ≤ N ;

any value ∈ iR if λk ∈ iR, 1 ≤ k ≤ N ;
(4.17)

which are zeros of detT−(λ). Then, the kerT+(λk), 1 ≤ k ≤ N , are determined by

vk(x, t) = vk(x, t, λk) = eiλkΛx+iλ2
kΩtwk, 1 ≤ k ≤ N, (4.18)

respectively, where wk, 1 ≤ k ≤ N , are arbitrary column vectors. These column

vectors in (4.18) are eigenfunctions of the spectral problems under the zero potential

associated with λk, 1 ≤ k ≤ N . Further, according to the previous analysis in

Sec. 3.1, the kerT−(λk), 1 ≤ k ≤ N , are spanned by

v̂k(x, t) = v̂k(x, t, λ̂k) = v†k(−x, t, λk)C = w†ke−iλ̂kΛx−iλ̂2
kΩtC, 1 ≤ k ≤ N, (4.19)

respectively. These row vectors are eigenfunctions of the adjoint spectral problems

under the zero potential associated with λ̂k, 1 ≤ k ≤ N . To satisfy the orthogonal

property (4.12), we require the following condition:

w†kCwl = 0 if λl = λ̂k, 1 ≤ k, l ≤ N. (4.20)

It is interesting to note that the situation of λk = λ̂k occurs only when λk ∈ iR
and λ̂k = −λ∗k.

Now, it is direct to see that if the solutions to the specific Riemann–Hilbert

problems, determined by (4.3) and (4.4), satisfy the property (3.29), then G+
1 is in

agreement with the requirement (4.15) for each nonlocal reduction in (2.18), and

as a consequence, the formula (4.16), together with (4.3), (4.4), (4.18) and (4.19),

presents the required N -soliton solutions to the nonlocal reverse-space multicom-

ponent NLS equations (2.29).
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When N = n = 1, we choose λ1 = iη1, λ̂1 = −iη1, η1 ∈ R, and denote

w1 = (w1,1, w1,2)T . Then we can obtain the following one-soliton solution to the

nonlocal reverse-space scalar NLS equations in (2.30):

p(x, t) =
2η1iw1,1w

∗
1,2

ε|w1,1|2e−η1x+iη21t + |w1,2|2eη1x+iη21t
, (4.21)

where ε = ±1, η1 is an arbitrary real number, and w1,1 and w1,2 are arbitrary

complex numbers but satisfy σ|w1,1|2+|w1,2|2 = 0, which comes from the involution

property (4.15). This solution may have a singularity at a certain point in space

and the case of ε = 1 and σ = −1 can present the breather one-soliton in Ref. 2.

5. Concluding Remarks

This paper aims to present and analyze nonlocal reverse-space integrable multi-

component NLS equations and their inverse scattering transforms. The basic theory

is based on Riemann–Hilbert problems associated with higher-order matrix spec-

tral problems. The associated Riemann–Hilbert problems were transformed into

Gelfand–Levitan–Marchenko-type integral equations through the the Sokhotski–

Plemelj formula, and soliton solutions of the nonlocal reverse-space multicomponent

NLS equations were presented in the zero reflection coefficient situation.

The Riemann–Hilbert approach is very effective in generating soliton solutions

(see also, e.g., Refs. 12–14 and 26). It has been recently generalized to solve initial-

boundary value problems of integrable equations on the half-line and the finite in-

terval.27,28 Many other approaches to soliton solutions are available in the theory of

integrable equations, among which are the Hirota direct method,29 the generalized

bilinear technique,30 the Wronskian technique31,32 and the Darboux transforma-

tion.33,34 It would be important to determine connections between those distinct

approaches.

We also remark that it would be definitely interesting to construct different kinds

of exact solutions to integrable equations, such as position and complexion solu-

tions,35,36 lump and interaction solutions,37–40 Rossby wave solutions,41 solutionless

solutions42–44 and algebro-geometric solutions,45,46 through the Riemann–Hilbert

technique. It is our hope that there will be a clear understanding about those exact

solutions from a perspective of the Riemann–Hilbert technique.
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