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1. Introduction

Integrable couplings are coupled systems of integrable equations which contain given

integrable equations as their sub-systems.1,2 There are much richer mathematical

structures behind integrable couplings than scalar integrable equations.1–8 More-

over, the study of integrable couplings generalizes the symmetry problem and pro-

vides clues towards complete classification of integrable equations.1,2,9

It is also shown that zero curvature representations on semi-direct sums of Lie

algebras result in integrable couplings,10,11 and a kind of variational identity as-

sociated with general matrix spectral problems has been established to present

Hamiltonian structures of the resulting integrable couplings.12,13 Based on special

semi-direct sums of Lie algebras, Lax pairs of block form and with several spectral

parameters bring diverse interesting integrable couplings.2,14,15

Let us consider an integrable evolution equation

ut = K(u) = K(x, t, u, ux, uxx, . . .) , (1)

where u is a column vector of dependent variables. Assume that it has a zero
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curvature representation16:

Ut − Vx + [U, V ] = 0 , (2)

where the Lax pair, U and V , belongs to a matrix loop algebra, let us say, g. We

recall that the Gateaux derivative of a function or an operator P along a direction

X is given by

P ′(u)[X ] =
∂

∂ε

∣

∣

∣

∣

ε=0

P (u + εX) . (3)

Any vector field S = S(x, t, u) is a symmetry of Eq. (1), if it satisfies

∂S

∂t
= K ′(u)[S] − S′(u)[K] . (4)

If S is time-independent, the above condition (4) can be reduced to a commutativity

condition between K and S:

[K, S] = K ′(u)[S] − S′(u)[K] = 0 . (5)

An operator Φ = Φ(x, t, u) mapping vector fields to vector fields is called a recursion

operator of Eq. (1),17 if it satisfies:

∂Φ

∂t
X + Φ′(u)[K]X − K ′(u)[ΦX ] + ΦK ′(u)[X ] = 0 (6)

for any vector field X = X(x, t, u). A recursion operator maps symmetries to sym-

metries.

Given two integrable couplings of the integrable equation (1) (see Refs. 1 and 2

for definition):

ū1,t = K̄1(ū1) =

[

K(u)

S(u, v)

]

, ū1 =

[

u

v

]

, (7)

and

ū2,t = K̄2(ū2) =

[

K(u)

T (u, w)

]

, ū2 =

[

u

w

]

, (8)

we can form a new bigger system

ût = K̂(û) =





K(u)

S(u, v)

T (u, w)



 , û =





u

v

w



 . (9)

Obviously, this is a degenerate system, since the second and third dependent vari-

ables are separate. A possible choice of S and T , which leads to integrable couplings,

is the first-order perturbation.1–3,9 Naturally, we would like to ask here whether

the above coupled system of two given integrable couplings is still integrable or not.

This paper is organized as follows. In Secs. 2–4, zero curvature representations,

symmetry algebras and recursion operators are analyzed and presented for the
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coupled system of two given integrable couplings. In Sec. 5, a few concluding re-

marks are given, along with a question on Hamiltonian structures of the coupled

system (9).

2. Zero Curvature Representations

Zero curvature representations are one of the keys to study nonlinear integrable

equations by Darboux transformation, Bäcklund transformation, the Hamiltonian

method, etc.18–20 Let us assume that two given integrable couplings (7) and (8)

have the following kind of Lax pairs for their zero curvature representations:

Ūi(ūi) =

[

U(u) Ui(ūi)

0 U(u)

]

, V̄i(ūi) =

[

V (u) Vi(ūi)

0 V (u)

]

, i = 1, 2 , (10)

respectively (see Ref. 10 for the continuous case and Ref. 11 for the discrete case),

where ū1 = (uT , vT )T and ū2 = (uT , wT )T . The enlarged zero curvature equations

Ūi,t − V̄i,x + [Ūi, V̄i] = 0, i = 1, 2 , (11)

equivalently yield
{

Ut − Vx + [U, V ] = 0

Ui,t − Vi,x + [U, Vi] + [Ui, V ] = 0, i = 1, 2,
(12)

which exactly present the integrable couplings (7) and (8), respectively.

Let us now form a matrix Lie algebra ĝ consisting of square matrices of the

following block form:

P̂ =





P 0 P1

0 P P2

0 0 P



 , (13)

where P , P1 and P2 are the same size square sub-matrices as U and V . This Lie

algebra ĝ has two sub-Lie algebras

ḡ1 = {P̂ |P2 = 0}, ḡ2 = {P̂ |P1 = 0} . (14)

They can be written as semi-direct sums of sub-Lie algebras:

ḡ1 = ḡ1|P1=0 A ḡ1|P=0, ḡ2 = ḡ2|P2=0 A ḡ2|P=0,

and thus, the Lie algebra ĝ is non-semi-simple. The two given integrable couplings

(7) and (8) are associated with those two sub-Lie algebras ḡi, i = 1, 2, respectively.

Theorem 1. Assume that two integrable couplings (7) and (8) have the zero cur-

vature representations (11) with Lax pairs Ūi and V̄i, i = 1, 2, being defined by

Eq. (10). Then the coupled system of two integrable couplings (9), has an enlarged

zero curvature representation

Ût − V̂x + [Û , V̂ ] = 0 , (15)
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with the Lax pair being defined by

Û(û) =







U(u) 0 U1(u, v)

0 U(u) U2(u, w)

0 0 U(u)






∈ ĝ , V̂ (û) =







V (u) 0 V1(u, v)

0 V (u) V2(u, w)

0 0 V (u)






∈ ĝ ,

(16)

where û = (uT , vT , wT )T .

Proof. Obviously, the enlarged zero curvature equation (15) equivalently engenders

a coupling system:











Ut − Vx + [U, V ] = 0 ,

U1,t − V1,x + [U, V1] + [U1, V ] = 0 ,

U2,t − V2,x + [U, V2] + [U2, V ] = 0 ,

(17)

on the basis of the special form of Eq. (16). They imply exactly the coupled

system of the zero curvature representations (11) of two integrable couplings (7)

and (8). Therefore, the coupled system of two integrable couplings (9) has a zero

curvature representation (15) with a Lax pair given by Eq. (16). This completes the

proof.

Example 1. The AKNS system of nonlinear Schrödinger equations21 has the fol-

lowing two integrable couplings12:






























pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2,

v2,t = −
1

2
(p + v2)xx + p(pq + v3p + v2q) + v2pq,

v3,t =
1

2
(p + v3)xx − (pq + v3p + v2q)q − v3pq,

(18)

and















































































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2,

w1,t =
1

4
(pqxx − pxxq),

w2,t = −
1

2
(p + w2)xx − (w1p)x + p(pq + w3p + w2q)

−w1px + w2pq −
1

2
p(pqx − pxq),

w3,t =
1

2
(p + w3)xx − (w1q)x − (pq + w3p + w2q)q

−w3pq − w1qx +
1

2
(pqx − pxq)q .

(19)
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Let u = (p, q)T , ū1 = (p, q, v2, v3)
T and ū2 = (p, q, w1, w2, w3)

T . The above two

integrable couplings have their Lax pairs

Ūi(ūi) =

[

U(u) Ui(ūi)

0 U(u)

]

, V̄i(ūi) =

[

V (u) Vi(ūi)

0 V (u)

]

, i = 1, 2, (20)

where

U(u) =

[

−λ p

q λ

]

, U1(ū1) =

[

0 v2

v3 0

]

, U2(ū2) =

[

−w1 w2

w3 w1

]

,

and

V (u) =









−λ2 +
1

2
pq λp −

1

2
px

λq +
1

2
qx λ2 −

1

2
pq









,

V1(ū1) =









−λ2 +
1

2
(pq + v3p + v2q) λ(p + v2) −

1

2
(p + v2)x −

1

2
p

λ(q + v3) +
1

2
(q + v3)x −

1

2
q λ2 −

1

2
(pq + v3p + v2q)









,

V2(ū2) =









−λ2 +
1

2
(pq + w3p + w2q) − a3 λ(p + w2) −

1

2
(p + w2)x − w1p

λ(q + w3) +
1

2
(q + w3)x − w1q λ2 −

1

2
(pq + w3p + w2q) + a3









with a3 = 1
4
(pqx − pxq). Now, the coupled system of two integrable couplings (18)

and (19) reads


















































































































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2,

v2,t = −
1

2
(p + v2)xx − px + p(pq + v3p + v2q) + v2pq,

v3,t =
1

2
(p + v3)xx − qx − (pq + v3p + v2q)q − v3pq,

w1,t =
1

4
(pqxx − pxxq),

w2,t = −
1

2
(p + w2)xx − (w1p)x + p(pq + w3p + w2q)

−w1px + w2pq −
1

2
p(pqx − pxq),

w3,t =
1

2
(p + w3)xx − (w1q)x − (pq + w3p + w2q)q

−w3pq − w1qx +
1

2
(pqx − pxq)q,

(21)
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and by Theorem 1, it has a Lax pair

Û(û) =







U(u) 0 U1(ū1)

0 U(u) U2(ū2)

0 0 U(u)






, V̂ (û) =







V (u) 0 V1(ū1)

0 V (u) V2(ū2)

0 0 V (u)






, (22)

where û = (p, q, v2, v3, w1, w2, w3)
T . ♦

Integrable couplings can have another kind of Lax pair for their zero curvature

representations (see Refs. 22 and 23). Let us now assume that two given integrable

couplings (7) and (8) have the following kind of Lax pair for their zero curvature

representations:

Ūi(ūi) =

[

U(u) Ui(ūi)

0 0

]

, V̄i(ūi) =

[

V (u) Vi(ūi)

0 0

]

, i = 1, 2 , (23)

respectively. Two additional matrices U1 and U2 (or V1 and V2) may not have the

same size. If so, we add zero columns to the left of a smaller one to make them all

the same size. This modification does not affect our discussion, and so, without loss

of generality, we can assume that U1 and U2 have the same size from now on.

The enlarged zero curvature equations

Ūi,t − V̄i,x + [Ūi, V̄i] = 0, i = 1, 2, (24)

equivalently give rise to

{

Ut − Vx + [U, V ] = 0 ,

Ui,t − Vi,x + UVi − V Ui = 0, i = 1, 2 ,
(25)

which exactly present the integrable couplings (7) and (8), respectively.

We can similarly form a matrix Lie algebra ĝ consisting of square matrices of

the following block form:

Q̂ =







Q 0 Q1

0 Q Q2

0 0 0






, (26)

where Q is the same size square sub-matrix as U and V , and Q1 and Q2 are the

same size square sub-matrices as U1 and U2. This Lie algebra ĝ also has two sub-Lie

algebras

ḡ1 = {Q̂ |Q2 = 0}, ḡ2 = {Q̂ |Q1 = 0} (27)

of semi-direct sum type, and so, ĝ is non-semi-simple. Actually, the two given

integrable couplings (7) and (8) are generated from those two sub-Lie algebras

ḡi, i = 1, 2, respectively.
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A similar computation can show the following consequence on another zero

curvature representation for the coupled system of two integrable couplings (9).

Theorem 2. Assume that two integrable couplings (7) and (8) have the zero cur-

vature representations (24) with Lax pairs Ūi and V̄i, i = 1, 2, being defined by

Eq. (23). Then the coupled system of two integrable couplings (9) has another en-

larged zero curvature representation

Ût − V̂x + [Û , V̂ ] = 0, (28)

with the Lax pair being defined by

Û(û) =







U(u) 0 U1(u, v)

0 U(u) U2(u, w)

0 0 0






∈ ĝ, V̂ (û) =







V (u) 0 V1(u, v)

0 V (u) V2(u, w)

0 0 0






∈ ĝ ,

(29)

where û = (uT , vT , wT )T .

Example 2. The AKNS system of nonlinear Schrödinger equations has the follow-

ing integrable coupling22:


































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2,

rt = −rxx − psx +
1

2
pqr −

1

2
pxs,

st = sxx + qrx +
1

2
qxr −

1

2
pqs.

(30)

It has a Lax pair

Ū =





−λ p r

q λ s

0 0 0



 , V̄ =















−λ2 +
1

2
pq λp −

1

2
px λr − rx

λq +
1

2
qx λ2 −

1

2
pq λs + sx

0 0 0















. (31)

Therefore, we can form a coupled system of two such integrable couplings:






































































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2 ,

rt = −rxx − psx +
1

2
pqr −

1

2
pxs ,

st = sxx + qrx +
1

2
qxr −

1

2
pqs ,

vt = −vxx − pwx +
1

2
pqv −

1

2
pxw ,

wt = wxx + qvx +
1

2
qxv −

1

2
pqw ,

(32)
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and by Theorem 2, this coupled system has a Lax pair

Û(û) =













−λ p 0 0 r

q λ 0 0 s

0 0 −λ p v

0 0 q λ w

0 0 0 0 0













, (33)

V̂ (û) =



































−λ2 +
1

2
pq λp −

1

2
px 0 0 λr − rx

λq +
1

2
qx λ2 −

1

2
pq 0 0 λs + sx

0 0 −λ2 +
1

2
pq λp −

1

2
px λv − vx

0 0 λq +
1

2
qx λ2 −

1

2
pq λw + wx

0 0 0 0 0



































, (34)

where û = (p, q, r, s, v, w)T . ♦

3. Symmetry Algebra

When two given integrable couplings have symmetry algebras, the following the-

orem guarantees that there will be a symmetry algebra for the coupled system of

two integrable couplings as well.

Theorem 3. Let ū1 = (uT , vT )T and ū2 = (uT , wT )T be defined as in Eqs. (7) and

(8). If two integrable couplings (7) and (8) have their Abelian symmetry algebras

Āi = {(XT (u), Y T
i (ūi))

T |X ∈ A(u), Yi ∈ Bi(ūi)}, i = 1, 2 , (35)

then the coupled system of two integrable couplings (9), has an Abelian symmetry

algebra

Â = {(XT (u), Y T
1 (ū1), Y

T
2 (ū2))

T |X ∈ A(u), Y1 ∈ B1(ū1), Y2 ∈ B2(ū2)} . (36)

Proof. We only consider the time-independent case. The proof of the general case

is completely similar.

Let X ∈ A(u) and Yi ∈ Bi(ūi), i = 1, 2. Then, it follows from the assumption

of the theorem that X̄1(ū1) = (XT (u), Y T
1 (ū1))

T and X̄2(ū2) = (XT (u), Y T
2 (ū2))

T

satisfy

[K̄i, X̄i] = K̄ ′

i(ūi)[X̄i] − X̄ ′

i(ūi)[K̄i] = 0, i = 1, 2,
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where K̄1(ū1) and K̄2(ū2) are defined by Eqs. (7) and (8), respectively. Furthermore,

for any enlarged vector field

X̂(û) = (XT (u), Y T
1 (ū1), Y

T
2 (ū2))

T ∈ Â,

it follows from the above two equalities that

[K̂, X̂ ] = K̂ ′(û)[X̂] − X̂ ′(û)[K̂]

=









K ′(u)[X(u)] − X ′(u)[K(u)]

(S(u, v))′(u, v)[X̄1(u, v)] − (Y1(u, v))′(u, v)[K̄1(u, v)]

(T (u, w))′(u, w)[X̄2(u, w)] − (Y2(u, w))′(u, w)[K̄2(u, w)]









= 0 ,

where û = (uT , vT , wT )T and K̂ is defined by Eq. (9). Therefore, any enlarged

vector field X̂ ∈ Â is a symmetry of the coupled system (9). The same argument

can show that Â is Abelian, since Āi, i = 1, 2, are Abelian. This completes the

proof.

Example 3. Let us consider the following two integrable couplings of the AKNS

system of nonlinear Schrödinger equations12:



































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2 ,

v2,t = −
1

2
(p + v2)xx + p(pq + v3p + v2q) + v2pq ,

v3,t =
1

2
(p + v3)xx − (pq + v3p + v2q)q − v3pq ,

(37)

and



































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2 ,

w2,t = −
1

2
(p + w2)xx − 2px + p(pq + w3p + w2q) + w2pq ,

w3,t =
1

2
(p + w3)xx − 2qx − (pq + w3p + w2q)q − w3pq .

(38)

Let u = (p, q)T , ū1 = (p, q, v2, v3)
T , ū2 = (p, q, w2, w3)

T and ∂ = ∂
∂x

. The inte-

grable couplings (37) and (38) have infinitely many commuting symmetries12:

K̄i,n(ūi) = Φ̄n
i (ūi)K̄i,1(ūi) =

[

Φ(u) 0

Φi(ūi) Φ(u)

]n




px

qx

Si



 , n ≥ 0, i = 1, 2 , (39)



Final Reading
June 25, 2009 16:7 WSPC/147-MPLB 02001

1856 W. X. Ma & L. Gao

where


































































Φ(u) =









−
1

2
∂ + p∂−1q p∂−1p

−q∂−1q
1

2
∂ − q∂−1p









,

Φ1(ū1) =

[

v2∂
−1q + p∂−1v3 v2∂

−1p + p∂−1v2

−v3∂
−1q − q∂−1v3 −v3∂

−1p − q∂−1v2

]

,

Φ2(ū2) =

[

w2∂
−1q + p∂−1w3 − 1 w2∂

−1p + p∂−1w2

−w3∂
−1q − q∂−1w3 −w3∂

−1p − q∂−1w2 − 1

]

,

(40)

and

S1 =

[

(p + v2)x

(q + v3)x

]

, S2 =

[

(p + w2)x + 2p

(q + w3)x − 2q

]

. (41)

Those two hierarchies of commuting symmetries defined by Eq. (39) span two

Abelian symmetry algebras described in Theorem 3. Now, the coupled system of

the two integrable couplings (37) and (38) reads



































































pt = −
1

2
pxx + p2q, qt =

1

2
qxx − pq2,

v2,t = −
1

2
(p + v2)xx + p(pq + v3p + v2q) + v2pq,

v3,t =
1

2
(p + v3)xx − (pq + v3p + v2q)q − v3pq,

w2,t = −
1

2
(p + w2)xx − 2px + p(pq + w3p + w2q) + w2pq,

w3,t =
1

2
(p + w3)xx − 2qx − (pq + w3p + w2q)q − w3pq,

(42)

and by Theorem 3, it has infinitely many commuting symmetries:

K̂n(û) = Φ̂n(û)K̂1(û) =







Φ(u) 0 0

Φ1(ū1) Φ(u) 0

Φ2(ū2) 0 Φ(u)







n























px

qx

(p + v2)x

(q + v3)x

(p + w2)x + 2p

(q + w3)x − 2q























, n ≥ 0 , (43)

where û = (p, q, v2, v3, w2, w3)
T . The space span{K̂n(û)|n ≥ 0} is exactly the

Abelian symmetry algebra generated according to Theorem 3 for the coupled

system (42). ♦
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4. Recursion Operator

Let us now consider how to generate symmetries for the coupled system of two

integrable couplings (9), by a recursion operator.

Theorem 4. Let ū1 = (uT , vT )T and ū2 = (uT , wT )T be defined as in Eqs. (7) and

(8). Assume that two integrable couplings (7) and (8) possess the following recursion

operators

Φ̄1(ū1) =

[

Φ(u) 0

Φ1(u, v) Φ(u)

]

, Φ̄2(ū2) =

[

Φ(u) 0

Φ2(u, w) Φ(u)

]

, (44)

respectively. Then, the coupled system of two integrable couplings (9), has an

enlarged recursion operator:

Φ̂(û) =







Φ(u) 0 0

Φ1(u, v) Φ(u) 0

Φ2(u, w) 0 Φ(u)






, û =





u

v

w



 . (45)

Proof. Since Φ̄i, i = 1, 2, are recursion operators of Eqs. (7) and (8), respectively,

we have

∂Φ̄i

∂t
X̄i + Φ̄′

i(ūi)[K̄i]X̄i − K̄ ′

i(ūi)[Φ̄iX̄i] + Φ̄iK̄
′

i(ūi)[X̄i] = 0, i = 1, 2,

for any X̄i = (XT (ūi), Y
T
i (ūi))

T , i = 1, 2. The two second components of these

equalities lead to the second and third components of the following equality:

∂Φ̂

∂t
X̂ + Φ̂′(û)[K̂]X̂ − K̂ ′(û)[Φ̂X̂ ] + Φ̂K̂ ′(û)[X̂] = 0 (46)

for any X̂ = (XT (û), Y T
1 (û), Y T

2 (û))T . The first component of Eq. (46) is exactly

the same as the first component in the previous two equalities. We view v and w as

dummy variables when needed in the computation of the above equality. The proof

is finished.

Example 4. Let u = (p, q)T , ū1 = (p, q, v2, v3)
T and ū2 = (p, q, w2, w3)

T . The two

integrable couplings (37) and (38) of the AKNS system of nonlinear Schrödinger

equations have recursion operators12:

Φ̄i(ūi) =

[

Φ(u) 0

Φi(ūi) Φ(u)

]

, i = 1, 2 , (47)

respectively, where Φ, Φ1 and Φ2 are defined by Eq. (40). Then by Theorem 4, the

coupled system of two integrable couplings (42), possesses the recursion operator

Φ̂(û) defined in Eq. (43), i.e.

Φ̂(û) =







Φ(u) 0 0

Φ1(ū1) Φ(u) 0

Φ2(ū2) 0 Φ(u)






, (48)



Final Reading
June 25, 2009 16:7 WSPC/147-MPLB 02001

1858 W. X. Ma & L. Gao

where û = (p, q, v2, v3, w2, w3)
T . It can be verified that this enlarged recursion

operator Φ̂(û) is hereditary.24 Such hereditary recursion operators possess many

nice properties.25 ♦

5. Concluding Remarks

A problem of constructing integrable couplings by coupling known integrable cou-

plings has been presented and discussed. Zero curvature representations, Abelian

symmetry algebras and recursion operators have been analyzed and generated for

the coupled system of two given integrable couplings. Other integrable properties

such as bilinear forms and Bäcklund transformations26 can be also discussed for

coupled systems of integrable couplings.

There are two other possible choices for Lax pairs of the coupled system of two

integrable couplings (9). The first one is

Û(û) =







U(u) U1(u, v) U2(u, w)

0 U(u) 0

0 0 U(u)






, V̂ (û) =







V (u) V1(u, v) V2(u, w)

0 V (u) 0

0 0 V (u)






, (49)

if the two integrable couplings (7) and (8) have Lax pairs in Eq. (10) for their zero

curvature representations. The second one is

Û(û) =







U(u) 0 0

0 U(u) 0

U1(u, v) U2(u, w) 0






, V̂ (û) =







V (u) 0 0

0 V (u) 0

V1(u, v) V2(u, w) 0






, (50)

if the two integrable couplings (7) and (8) have Lax pairs

Ūi(ūi) =

[

U(u) 0

Ui(ūi) 0

]

, V̄i(ūi) =

[

V (u) 0

Vi(ūi) 0

]

, i = 1, 2, (51)

for their zero curvature representations.

Moreover, enlarged Lax pairs of direct-sum type always hold for coupled sys-

tems. For example, an enlarged spectral matrix Û(û) can be taken as either of the

following matrices:













U(u) U1(u, v) 0 0

0 U(u) 0 0

0 0 U(u) U2(u, w)

0 0 0 U(u)













,













U(u) U1(u, v) 0 0

0 U(u) 0 0

0 0 U(u) U2(u, w)

0 0 0 0













. (52)

Furthermore, from the idea of using the Kronecker product,27,28 we can construct

many different zero curvature representations.
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On the other hand, we can form a general coupled system of n integrable cou-

plings:

ut = K(u), v1,t = S1(u, vn), . . . , vn,t = Sn(u, vn) (53)

for any given natural number n. Similar properties can be verified for this large cou-

pled system. Such coupled systems of integrable couplings can also provide examples

of soliton equations sharing diversities of exact solutions (see, e.g. Refs. 29–34).

The following is a remaining question for us: Is there any Hamiltonian structure

for a coupled system of integrable couplings, defined by Eq. (53), if ut = K(u) is

Hamiltonian? In particular, does any Hamiltonian structure exist for the following

coupled system:

ut = K(u), vt = K ′(u)[v], wt = K ′(u)[w], (54)

where K ′(u)[X ] = ∂
∂ε

∣

∣

ε=0
K(u + εX) as defined by Eq. (3)? This system is related

to the first-order perturbation,1,2 and so, polynomial Virasoro algebras35 may be

useful. It is hoped that our analysis on integrable couplings could help us work

towards a complete classification of integrable equations.
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