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Integrable couplings are presented by coupling given integrable couplings. It is shown
that such coupled integrable couplings can possess zero curvature representations and
recursion operators, which yield infinitely many commuting symmetries. The presented
zero curvature equations are associated with Lie algebras, each of which has two sub-Lie
algebras in form of semi-direct sums of Lie algebras.
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1. Introduction

Integrable couplings are coupled systems of integrable equations which contain given
integrable equations as their sub-systems."? There are much richer mathematical
structures behind integrable couplings than scalar integrable equations.!™® More-
over, the study of integrable couplings generalizes the symmetry problem and pro-
vides clues towards complete classification of integrable equations.!:?»°

It is also shown that zero curvature representations on semi-direct sums of Lie
algebras result in integrable couplings,!0!!

sociated with general matrix spectral problems has been established to present

and a kind of variational identity as-

Hamiltonian structures of the resulting integrable couplings.'?'? Based on special

semi-direct sums of Lie algebras, Lax pairs of block form and with several spectral

parameters bring diverse interesting integrable couplings.?14:1?

Let us consider an integrable evolution equation
up = K(u) = K(x,t, u, Uy, Uggy - - -) (1)
where u is a column vector of dependent variables. Assume that it has a zero
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curvature representation'®:

U -V, +[U,V]=0, (2)

where the Lax pair, U and V', belongs to a matrix loop algebra, let us say, g. We
recall that the Gateaux derivative of a function or an operator P along a direction
X is given by

0

P@x)=g

P(u+eX). (3)

Any vector field S = S(z,t,u) is a symmetry of Eq. (1), if it satisfies

oS , ,
= = K'()[S] - S (W], 4)

If S is time-independent, the above condition (4) can be reduced to a commutativity
condition between K and S:

(K, 8] = K'(u)[S] = S"(u)[K] = 0. ()

An operator ® = ®(z, t, u) mapping vector fields to vector fields is called a recursion
operator of Eq. (1), if it satisfies:

%—‘fx + 0 (u)[K]X — K'(0)[®X] + BK (w)[X] = 0 (6)

for any vector field X = X(x,t,u). A recursion operator maps symmetries to sym-
metries.

Given two integrable couplings of the integrable equation (1) (see Refs. 1 and 2
for definition):

_ K 1 [
= Ki(u) = {5(1%) ;= ﬂ ; (7)
and
_ K 1 [
s = Kotm) = [ | =[] 0
we can form a new bigger system
. K(u) U
iy = K(a) = | S(u,v) |, a=|v| . (9)
T (u,w) w

Obviously, this is a degenerate system, since the second and third dependent vari-
ables are separate. A possible choice of S and T', which leads to integrable couplings,
is the first-order perturbation.' ™3 Naturally, we would like to ask here whether
the above coupled system of two given integrable couplings is still integrable or not.

This paper is organized as follows. In Secs. 2—4, zero curvature representations,
symmetry algebras and recursion operators are analyzed and presented for the
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coupled system of two given integrable couplings. In Sec. 5, a few concluding re-
marks are given, along with a question on Hamiltonian structures of the coupled
system (9).

2. Zero Curvature Representations

Zero curvature representations are one of the keys to study nonlinear integrable
equations by Darboux transformation, Backlund transformation, the Hamiltonian
method, etc.'® 20 Let us assume that two given integrable couplings (7) and (8)
have the following kind of Lax pairs for their zero curvature representations:

T B ) R

respectively (see Ref. 10 for the continuous case and Ref. 11 for the discrete case),

where i; = (uT,vT)T and 1y = (uT,wT)T. The enlarged zero curvature equations

Uzt_‘/z,ac"‘[Uu‘_/z]:Oa 121727 (11)

)

equivalently yield
{Ut—Vw—l—[U,V] =0

(12)
Ui,t_‘/i,ac"‘ [Ua sz} +[UZaV] :Oa 1= 1a27

which exactly present the integrable couplings (7) and (8), respectively.
Let us now form a matrix Lie algebra ¢ consisting of square matrices of the
following block form:

P 0
P=|0 P (13)
0 0

aves RS

where P, P, and P, are the same size square sub-matrices as U and V. This Lie
algebra ¢ has two sub-Lie algebras

G1={P|P=0}, go={P|P=0}. (14)
They can be written as semi-direct sums of sub-Lie algebras:
91 =Ggilp=0 € g1lp=0, 92 = 2| P,=0 € G2|P=o0,
and thus, the Lie algebra ¢ is non-semi-simple. The two given integrable couplings

(7) and (8) are associated with those two sub-Lie algebras g;, ¢ = 1, 2, respectively.

Theorem 1. Assume that two integrable couplings (7) and (8) have the zero cur-
vature representations (11) with Lax pairs U; and Vi, i = 1,2, being defined by
Eq. (10). Then the coupled system of two integrable couplings (9), has an enlarged
zero curvature representation

U -V, +[U,V]=0, (15)
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with the Lax pair being defined by

U(uw) 0 Ui (u,v) Viu) 0 Vi(u,v

Ua)=1| 0 U) Uy(u,w)|eg, V@a=] 0 V() Va(u,w)|€g,
0 0 U(u) 0 0 V(u)

(16)

where @ = (u®, o7 wT)T.

Proof. Obviously, the enlarged zero curvature equation (15) equivalently engenders
a coupling system:
U, -V, +[U,V]=0,
Ul,t - Vl,z + [Ua Vl] + [Ul, V} = 07 (17)
Usp = Voo +[U, V2] + [U, V] =0,
on the basis of the special form of Eq. (16). They imply exactly the coupled
system of the zero curvature representations (11) of two integrable couplings (7)
and (8). Therefore, the coupled system of two integrable couplings (9) has a zero

curvature representation (15) with a Lax pair given by Eq. (16). This completes the
proof. O

Example 1. The AKNS system of nonlinear Schrédinger equations?! has the fol-
lowing two integrable couplings'?:

1 2 1 2
Pt = —5Pzx P74 G = Squx — PG,

2 2
1
vz = =5 (P +v2)as +p(pa + v3p + v2q) + v2pyg, (18)

1
Vg = §(p + v3)2x — (Pg + V3P + V2q)q — V3PY,

and

1 2 1 2
Pt = —2Pzx P74 @t = Qe — PG,

2 2
1
w1, = Z(p%ca: _pwa)a
1
wop = —E(p + W2)ze — (W1P)e + p(Pg + w3p + Ww2q)
1 (19)
— w1py + wopq — =P(Pqe — Paq),

2

1
wsy = 5(1) + W3)ze — (W19) — (Pg + w3p + w2q)q

1
— w3pq — Wiqy + 5(19% — P2q)q -
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Let u = (p,q)T, 41 = (p,q,v2,v3)T and 4y = (p,q, w1, w2, wz)’. The above two
integrable couplings have their Lax pairs

_ U(u) U;(u; _ Vu) Vi(u
i) = ) Tsla) o Vilw) = ) Vi) , i=1,2,  (20)
0 U(u) 0 V(u)
where
-\ p 0 v —w; W
U(u) = . Ui = o A B
q A vy 0 w3 w1
and
S
AT ope A= oPe
Viw) = 1 1|’
— 2 _ —
| A+ 50 A 5Pd
r , 1 1 1
=\ + 5(1761 + v3p + v2q) Ap +v2) — §(p+ V2)y — P
Vi(i) = 1 1 1 ’
Ma +vs) + 5(a+ vs)e = 5 A — 5 (P +vsp + v29)
! 1
=2+ §(pq +wsp +waq) —az  A(p+wz) — §(p+wz)z —wip
Valtiz) = 1 1
)\(q+w3)+§(q+w3)z —w1q M — §(PQ+w3p+w2Q)+03

with a3 = %(pqm — pzq). Now, the coupled system of two integrable couplings (18)
and (19) reads

1

_ 1 2 _ 2
bt = _Epaca: +p°q, ¢« = E%ca: —pq,

1
Vo = —E(p +v2) 2z — Dz + (P + V3D + v2q) + vapy,

1
V3t = =(P+V3)ex — ¢z — (Pg + v3p + v2q)q — v3PY,

2
1
wyy = Z(pqm — Daaq)s
) (21)
wop = —E(p + w2)ex — (W1P)z + P(Pg + w3p + w2q)
1
— w1py + wopq — =p(Pqe — P2q),

2

1
wsy = 5(1) + W3)ze — (W19) — (Pg + w3p + w2q)q

1
—w3pq — Wige + §(pqm — P2q)q,
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and by Theorem 1, it has a Lax pair

) U(u) 0 Uy (tq) ) V(u) 0 Vi(ur)
Uay=| 0 Uw @m|, V@=| 0o vV V@], @2
0 0 U(u) 0 0 V(u)
where @ = (p, q, v2, v3, w1, wa, w3)T. O

Integrable couplings can have another kind of Lax pair for their zero curvature
representations (see Refs. 22 and 23). Let us now assume that two given integrable
couplings (7) and (8) have the following kind of Lax pair for their zero curvature
representations:

Ulu) Us(u)
0 0

V(u) V()

U;(u;) =
(1;) 0 0

, Vi(a;) = , 1=1,2, (23)

respectively. Two additional matrices Uy and Us (or V4 and V) may not have the
same size. If so, we add zero columns to the left of a smaller one to make them all
the same size. This modification does not affect our discussion, and so, without loss
of generality, we can assume that U; and U, have the same size from now on.

The enlarged zero curvature equations

Ui,t - ‘_/i,af + [UZa ‘72] = 07 1= 1a 27 (24)
equivalently give rise to
U,-V,+[U,V]=0,
(25)
Uz,t_‘/Z,I—i_U‘/Z_VUZ:Oa i:1,27

which exactly present the integrable couplings (7) and (8), respectively.
We can similarly form a matrix Lie algebra § consisting of square matrices of
the following block form:

Q 0
Q=10 Q Qf, (26)
0 0 0

where () is the same size square sub-matrix as U and V, and @1 and Q) are the
same size square sub-matrices as U; and Us,. This Lie algebra ¢ also has two sub-Lie
algebras

91=1{Q|Q2 =0}, 92 =1{Q|Q1 =0} (27)

of semi-direct sum type, and so, § is non-semi-simple. Actually, the two given
integrable couplings (7) and (8) are generated from those two sub-Lie algebras
gi, © = 1,2, respectively.
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A similar computation can show the following consequence on another zero
curvature representation for the coupled system of two integrable couplings (9).

Theorem 2. Assume that two integrable couplings (7) and (8) have the zero cur-
vature representations (24) with Lax pairs U; and V;, i = 1,2, being defined by
Eq. (23). Then the coupled system of two integrable couplings (9) has another en-
larged zero curvature representation

U~ Vo +[U,V] =0, (28)
with the Lax pair being defined by
Uw) 0  Ui(u,v) Vw) 0 Vi (u,v)
Ua)=| 0 U) Us(u,w)| €g, V(@=| 0 V) Va(uw)| €g,
0 0 0 0 0 0

where 4 = (u®,vT,wT)T.

Example 2. The AKNS system of nonlinear Schrodinger equations has the follow-
ing integrable coupling??:

1 2 1 2
bt = _ipzz +D07q, @& = Eq:r:x —pbq,
1 1
Tt = —Tez = PSz+ P47~ 5Pas, (30)
1 1
St = Sga + qry + §Qwr - ipqs-

It has a Lax pair

1 1
N Hopg A —gpe ATy

A 2 2
X p o7
T — I/ — 1 1
U= q A s y V= )\q+_qa: /\2__pq AS—FSw (31)
0 00 2 2
0 0 0
Therefore, we can form a coupled system of two such integrable couplings:
1 2 1 2
bt = _ipa?a? +D07q, @& = Eq:r:x —pPqg,
1 1
Ty = —Tgz — DSz + ipq'r - ipzsv
1 1
St = Sgx +qre + §Qwr - §pq5a (32)
1 1
UVt = —Uggy — PWg + ipqv - §pww7
1 1
Wy = Wyy + qUz + 5G2V — ZPqU,

2 2
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and by Theorem 2, this coupled system has a Lax pair

(34)

-2 p 0 0 r
qg X 0 0 s
Uw)=]0 0 =X p v, (33)
0 0 q X w
o 0 0 0 O
_ 1 1 -
N+ -pg AP — sPe 0 0 AT — 1y
2 2
1 , 1
)\q—l—iqw A°— 3P4 0 0 AS + Sz
(7)) = 1
V() = 0 0 -2+ 5Pq AD 3Px A —v, |
1 , 1
0 0 )\q—i-iqm A —5Pq AW+ Wy
i 0 0 0 0 0 |
where @ = (p,q,7,5,v,w)". %

3. Symmetry Algebra

When two given integrable couplings have symmetry algebras, the following the-
orem guarantees that there will be a symmetry algebra for the coupled system of
two integrable couplings as well.

Theorem 3. Let ii; = (ul,v7)T and 4z = (ul', wD)T be defined as in Eqs. (7) and

(8). If two integrable couplings (7) and (8) have their Abelian symmetry algebras

T
)

Ay = {(XT (), ;T (@)T | X € A(u), Vi € Bi(w)}, i=1,2, (35)

then the coupled system of two integrable couplings (9), has an Abelian symmetry
algebra

A= {(XT(w), Y] (@), Yy (a2))" | X € A(u), Y1 € Bi(tn), Yz € Ba(tiz)} . (36)

Proof. We only consider the time-independent case. The proof of the general case
is completely similar.

Let X € A(u) and Y; € B;(4;), ¢ = 1,2. Then, it follows from the assumption
of the theorem that Xi(u1) = (X7 (u), YT (41))T and Xa(ta) = (X7T (u), Y5 (u2))T
satisfy
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where K (i) and K(t2) are defined by Eqs. (7) and (8), respectively. Furthermore,
for any enlarged vector field

X(a) = (X" (u), Y (w), Yy (u2))" € A,

it follows from the above two equalities that

[, X] = K'(@)[X] - X'(a)[K]
K'(w)[X (u)] = X' (u)[K (u)]
= | (S(,)) (u,v)[X1(u,v)] = (V1(u,0))"(u,v)[Ki(u,0)] | =0,
(T (u, w))' (u, w) [ Xz (u, w)] = (Va(u, w))' (u, w) [ Kz (u, w))
where 4 = (AuT,UAT,wT)T and K is defined by Eq. (9). Therefore, any enlarged
vector field X € A is a symmetry of the coupled system (9). The same argument

can show that A is Abelian, since A4;, i = 1,2, are Abelian. This completes the
proof. O

Example 3. Let us consider the following two integrable couplings of the AKNS
system of nonlinear Schrédinger equations!?:

1 2 1 2
Pt = —5Pxx +DP°4¢ Q¢ = Gz — P,

2 2
1
Vo = —E(p + v2)zx + P(Pg + V3P + v2q) + V2pg, (37)

1
U3 = 5(1) + v3) e — (Pg + v3p + v29)q — V3DY,

and

1 2 1 2
Pt = —5Pxx +DP°¢ Q¢ = 59z — PG,

2 2
1
wo = —E(p + W2) gz — 2z + p(Pg + w3p + Waq) + wapq, (38)

1
w3 = 5(1) + W3)ze — 22 — (Pg + w3p + Ww2q)q — w3Pq .

Let u = (pa q)T7 uy = (paq7’U2aU3)T7 Uz = (paq7w27w3)T and 0 = 3 . The inte-
grable couplings (37) and (38) have infinitely many commuting symmetrles12

Kin(w) = @} (w)Kiq1(w) =

)




1856 W. X. Ma & L. Gao

where
[ 1 -1 -1
—58 +pdq po~'p
(I)(u) = 1 ;
—q07q 50~ g0 'p
[ 0207 q+p0tus w0 'p+ pd s
(I)l(al) - 1 )
| —0307 g — g0 vy —v307'p — g0 o
) [ w07 q 4+ pd~tws — 1 w20~ p + p0~twy
o(tiz) = -1 —1 —1 -1
—w3d~ g — g0~ tws —w30 'p—q0 twy — 1
and
(p+v2)z (p+w2)s +2p
S| = Sy = .
(g +v3)e (¢ +w3)z —2¢

(40)

|

(41)

Those two hierarchies of commuting symmetries defined by Eq. (39) span two
Abelian symmetry algebras described in Theorem 3. Now, the coupled system of

the two integrable couplings (37) and (38) reads

1 2 1 2
Pt = _ipa?a? +p7°q, gt = quz_pq ’

1
Vo = —§(p + V2) 2z + P(Pg + V3P + v2q) + v2pg,

1
V3t = 5(13 +v3)ze — (P + v3p + v2q)q — V3PY, (42)
1
wa,t = =5 (D +w2)ae = 2ps +p(pq +wsp + w2q) +wapg,
1
ws,t = 5P+ Ws)ow — 200 — (g + wsp + w2q)q — w3py,
and by Theorem 3, it has infinitely many commuting symmetries:
_ . i
d(u) 0 01" e
S e _ (p+v2)s
K,(u)=o"(0)K1(a) = | ®1(a1) @) O ,n>0, (43)
_ (q+v3)z
CI)Q(UQ) 0 (I)(’LL)
(p+w2)z +2p
L (¢ +ws3)s —2q
where @ = (p,q,v2,v3,wa, ws3)T. The space span{f{n(ﬁ)m > 0} is exactly the

Abelian symmetry algebra generated according to Theorem 3 for the coupled

system (42).

O
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4. Recursion Operator

Let us now consider how to generate symmetries for the coupled system of two
integrable couplings (9), by a recursion operator.

Theorem 4. Let iy = (u?,v1)T and iz = (u', wT)T be defined as in Eqs. (7) and
(8). Assume that two integrable couplings (7) and (8) possess the following recursion
operators

D (u) 0

1) = ®1(u,0) D(u)

) 2(2) = (44)

D (u) 0
Do(u,w) Pu)|’
respectively. Then, the coupled system of two integrable couplings (9), has an

enlarged recursion operator:

®(u) 0 0

d(a)= | dy(u,0) ®w) 0 |, Ga=|v]. (45)
Oy(u,w) 0 D(u) w

Proof. Since ®;, i = 1,2, are recursion operators of Eqs. (7) and (8), respectively,
we have

09,

ot
for any X; = (XT(u;),Y;"(w;))T, i = 1,2. The two second components of these
equalities lead to the second and third components of the following equality:

O o o o A
EX%—@’(@)[K}X—K’(&)[(I)X]+<I>K’(ﬁ)[X] =0 (46)
for any X = (X7 (a), Y (a), Yy (2))7. The first component of Eq. (46) is exactly
the same as the first component in the previous two equalities. We view v and w as

dummy variables when needed in the computation of the above equality. The proof
is finished. O

Example 4. Let u = (p,q)T, @1 = (p,q,v2,v3)T and iz = (p, q, wa, w3)?. The two
integrable couplings (37) and (38) of the AKNS system of nonlinear Schrédinger

equations have recursion operators'?:

D (u) 0
respectively, where ®, ®; and @, are defined by Eq. (40). Then by Theorem 4, the

coupled system of two integrable couplings (42), possesses the recursion operator
@ () defined in Eq. (43), i.e.

u) 0 0
O(a) = | P1(u1) P(uw) 0 |, (48)
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where 4 = (p,q,va,v3,wa, w3)T. It can be verified that this enlarged recursion
operator ®(7) is hereditary.?* Such hereditary recursion operators possess many
nice properties.?’ O

5. Concluding Remarks

A problem of constructing integrable couplings by coupling known integrable cou-
plings has been presented and discussed. Zero curvature representations, Abelian
symmetry algebras and recursion operators have been analyzed and generated for
the coupled system of two given integrable couplings. Other integrable properties

26 can be also discussed for

such as bilinear forms and Bécklund transformations
coupled systems of integrable couplings.
There are two other possible choices for Lax pairs of the coupled system of two

integrable couplings (9). The first one is

U(u) Ui(u,v) Us(u,w) V(u) Vi(u,v) Va(u,w)
U@a)=| 0 U(u) 0 , V@=1] o V(u) 0 , (49)
0 U(u) 0 0 V(u)

if the two integrable couplings (7) and (8) have Lax pairs in Eq. (10) for their zero
curvature representations. The second one is

U(u) 0 0 V(u) 0 0
Ula) = 0 Uw) 0|, V(a)= 0 V() 0|, (50)
Ui(u,v) Us(u,w) 0 Vi(u,v) Va(u,w) O

if the two integrable couplings (7) and (8) have Lax pairs

Uu) 0 _ V(u) 0 .
Ui(a) 0], Vi (a;) ], 1=1,2, (51)

Ui(u;) =

for their zero curvature representations.

Moreover, enlarged Lax pairs of direct-sum type always hold for coupled sys-
tems. For example, an enlarged spectral matrix U () can be taken as either of the
following matrices:

U(w) Ui(u,v) 0 U(u) Up(u,v) 0 0
0 U(u) 0 7 0 U(u) 0 2
0 0 U(u) Usz(u,w) 0 0 U(u) Us(u,w)
0 0 U 0 0 0 0

Furthermore, from the idea of using the Kronecker product,2”-2® we can construct
many different zero curvature representations.
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On the other hand, we can form a general coupled system of n integrable cou-
plings:

u = K(u), vipg=51(u,vp),..., 00t = Sn(u,vy) (53)

for any given natural number n. Similar properties can be verified for this large cou-
pled system. Such coupled systems of integrable couplings can also provide examples
of soliton equations sharing diversities of exact solutions (see, e.g. Refs. 29-34).

The following is a remaining question for us: Is there any Hamiltonian structure
for a coupled system of integrable couplings, defined by Eq. (53), if uy = K(u) is
Hamiltonian? In particular, does any Hamiltonian structure exist for the following
coupled system:

u = K(u), v = K'(u)[v], wy = K'(u)[w], (54)
where K'(u)[X] = 2 oK (u+¢eX) as defined by Eq. (3)7 This system is related
to the first-order perturbation,’? and so, polynomial Virasoro algebras3® may be
useful. It is hoped that our analysis on integrable couplings could help us work
towards a complete classification of integrable equations.
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