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Backlund Transformations of Soliton Systems from
Symmetry Constraints

Wen-Xiu Ma and Xianguo Geng

ABSTRACT. Binary symmetry constraints are applied to constructing Backlund
transformations of soliton systems, both continuous and discrete. Construc-
tion of solutions to soliton systems is split into finding solutions to lower-
dimensional Liouville integrable systems, which also paves a way for separa-
tion of variables and exhibits integrability by quadratures for soliton systems.
Hlustrative examples are provided for the KdV equation, the AKNS system of
nonlinear Schrodinger equations, the Toda lattice, and the Langmuir lattice.

1. Introduction

Symmetry constraints [7,12] play an important role in showing integrability
by quadratures for soliton systems, both continuous and discrete. They help to
generate finite-dimensional integrable systems [4,5,12] and integrable symplectic
mappings [14], and further provide a way of constructing finite-gap solutions to
soliton systems by means of Riemann-theta functions [2]. Based on Lax pairs,
symmetries themselves can also be applied to constructing Bicklund transforma-
tions of soliton systems [15]. However, there is little work showing the importance
of symmetry constraints in the study of Bicklund transformations. In this paper
we focus on the construction of Bécklund transformations by using symmetry con-
straints, and show in certain cases that symmetry constraints can break up soliton
systems into lower-dimensional Liouville integrable systems.

Let us recall some fundamental concepts. A system of continuous equations
ur = K(u,uz,...) is said to have a continuous Lax pair

if it is equivalent to the compatibility condition U — V, + [U, V] = 0 of (1.1)
under the isospectral condition A, = 0, and a system of discrete equations u; =
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K(u, E~'u, Eu,...) (where E is the shift operator, i.e., (Bu)(n) = u(n+1)) is said
to have a discrete Lax pair
(1.2) E¢ =U(u,\)p, ¢ =V(u, E" u, Eu,...;\)o,

if it is equivalent to the compatibility condition U, —(EV)U+UV = 0 of (1.2) under
the isospectral condition A; = 0. The corresponding adjoint Lax pairs presenting
the same compatibility conditions read as

(1.3) Yo = —UT (u, \)p, Yo ==V (u,ug, ... A,

(1.4) E7N = (B7UT (u, )Y, o = =V (w, B, Bu, .. A,

where ()7 denotes matrix transpose. Adjoint Lax pairs can help us determine the
variational derivative of the spectral parameter with respect to the potential u (see,

for example, [6,10] for the continuous case).
A soliton hierarchy of continuous or discrete systems

(1.5) u, =K, ="Ky = JG, = J5§i", n >0,

can be gencrated through the isospectral (\;, = 0) compatibility conditions of
continuous Lax pairs

(1.6) o = U, N, ¢r, =V (uuz,.. 100,

or discrete Lax pairs

(1.7) E¢=U(u,N)¢, ¢, =V (u, BV, Eu,.. ;N\,

where V(") are Laurent polynomials in A, ® is a hereditary recursion operator to
map symmetries into symmetries, and J is a Hamiltonian operator to map conserved
covariants to symretries.

In this paper, we would like to show that symmetry constraints can be applied
to constructing Backlund transformations of soliton systems from Lax pairs. The
resulting Bécklund transformations separate each soliton system (in a hicrarchy)
into two lower-dimensional integrable systcms. Thus, symmetry constraints are
shown to be very useful in exposing integrability by quadratures for soliton systems.
ustrative examples will be given in both continuous and discrete cases.

2. Symmetry Constraints

Let us consider the space parts and the time parts of Lax pairs and adjoint Lax

pairs:
b2 = Ulu, Ao, b1, =V (u,up, .5 M),
wlf - *UT(u's )\)1/% q/)tn - _V(TL)T(U’ Ugy .} )\)1/}7
or
Ed = U(u,\)é, b, =V (u, B, Bu,...; \)g,
E~ = (E7WUT (u, \), Yr, = VT (u E-u, Eu, ... ; N,
By using the space parts, we can work out
A oU (u, \) dA OU (u, A)
2. — =T 22 — = ="
(2.1) du @ du nor ou AEYT) Ju %,

| where a and f3 are two constants. Note that the Lie homomorphism J& /(du) trans-
: forms conserved functionals to symmetries. Therefore, J ((6N)/ (611,)) is a symmetry

|
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of each system u;, = Ky, since A is a conserved functional, i.e., \;, = ()\(U))f =0
when uy, = K.
Now for all my > 0, we can make symmetry constraints

1 60X 70U (u, \)

[(m) =—J—==Jy {¥¢a
(2.2) o bu v ou
’ 1 6\ oU (u, )
Ky = =J— = J(EpT)Z——222¢.
If we take distinct eigenvalues Aj,..., Ay, and suppose that
(2.3) o = U 2)e", 4 = U (u, A9,
or
(2.4) E¢V) = U(u, M), B~ = (B0 (u, A)))p),
where
OV = (¢15, .. 0)T, WD = (g, )T
we can make more systematical symmetry constraints
N N
IA; OX;
2.5 K., = J— K., = —J—
(25) 0 Z a; du’ o E Z B ou’
7=1 Jg=1
namely,
N oU (u, Aj)
Koy = ;J¢<J)TT¢(J) or
(2.6) g
AU (u, Aj) (.
K,y = J(E (J)T Ay ‘(3)7
0 ]; (4 P

where c; and f; are the constants defined as in (2.1). These symmetry constraints
suggest

N N ,

@) Gy = 3T 0 o G, = 3 (o) PN )
Jj=1 Jj=1

Among those constraints between the potential, u. and the eigenfunctions and ad-

joint eigenfunctions, ¢t and 1), the Bargmann constraint will be applied to con-

structing Bicklund transformations between soliton systems and lower-dimensional

integrable systems.

3. Bicklund Transformations

Let us take the Bargmann constraint, i.e., the constraint (2.7) with G,,, =
Gmy (u) not involving any &'u (9 = 9/(dz)), i > 0, or any E'u, i # 0. Note that
the discrete constraint defined by (2.7) can be rewritten as

(Slq'm (’U,) N 1 6/\ N T oU (U, )\) (s
3.1 G = UM = () U~ NZZA ) S (0G)
( ) 0 (U) E E Y J) u oY,

ou /i Su
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and therefore, in each of continuous and discrete cases, the Bargmann constraint
defined by (2.7) is an algebraic equation on u, ¢U), and ). Assume that solving
the corresponding algebraic equation for u gives rise to an explicit expression of w:

(3'2) U = f‘(¢(1)7 ¢)(2)7 M) ¢(N); w(l)ﬂ Ilf/b<2)? AR ‘L/}(ZV))'

Substituting this expression of u into Lax pairs and adjoint Lax pairs leads to two
systems, called binary constrained Lax pairs. Binary constrained continuous Lax
pairs read as

| e = ~UT(f )00, 1< <N,
(3.4) 6 = VO (F, fari i 0))80), 1<j<N,
. wt(i) — -V(")T(f, For _;/\j)w(j)’ 1<j<N,

the first of which is a system of ordinary differential equations, but the second of
which is a system of partial differential equations since V(™ contains some deriva-
tives of u with respect to x. Binary constrained discrete Lax pairs read as

(3.5) EQW = U(f, )6V, L<j<N,
' EU = (EUT(f,0))9Y), 1<) <N,

36) o =VOULETLES .08, 1<j<N.
' 0= VOB A, 1< <N,

the first of which is a system of difference equations, but the second of which
is a system of difference-differential equations since V(' contains some of Eiy,
i # 0. However, the second systems can be transformed into systems of ordinary
differential equations by using the first systems. Furthermore, it can be shown by
r-matrix formulation that all binary constrained Lax pairs, both continuous and ’
discrete, are integrable in the Liouville sense [1, 3].

Therefore, (3.2) provides Bicklund transformations between soliton systems ’
and integrable binary constrained Lax pairs, and construction of solutions u — ‘
f(d)(j),d)(j)) to soliton systems is split into finding solutions ¢ and () to two
lower-dimensional integrable systems.

4. Examples of Continuous Systems

EXAMPLE 4.1. Let us consider the KAV Equation

1 3 6H . 1 3
(4.1) wy, = Zu”x + Euuw = Jﬁ, J=0, H|= /<§uu“ + 5“3> dx,
which can be written as U, — V, + [U,V] =0 with

0 1 — Ly A+ 2u
_ _ Uz 2
(4.2) Uﬁ()\_u 0), V_</\2—%u)\—ium~§u2 %ux :

Take the Bargmann symmetry constraint

N
(43) Km() = 287 Z,L/}(J)Tdij%¢(])7 where Kmo = A’O = Uy,
j=1 '

-1
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which implies the following equation

N 0 0\ (6, N
Uy = 20, Z(d}lja%j) <_1 0) <¢;j) =28, Z¢1j¢2j.
J=1 j=1

Integrating this equation with respect to x yields a Bécklund transformation

N
(4.4) w= fisvhig) =2 1125 = 2(Py, Qy),

j=1
where (-, -) denotes the standard inner product of RY and P, and (; are defined
by

Bi= (i dias o )T, Qi = (i1, 1bia, . )T t=1,2.
A general Bécklund transformation o — 2(Pi, Q2) + ¢ with an arbitrary constant
¢ can also result from the above symmetry constraint, but it will not generate
essentially new integrable systems from Lax pair of the KdV equation and so we
omit to discuss it.
Keeping (4.4) in mind, the corresponding constrained Lax pairs (3.3) and (3.4),

where two matrices U and V(") = V are defined by (4.2), can simultaneously be
rewritten as

DH® oH*®

(4.5) Pix:-TQ, Qm:ﬁ, H=-F;, i=12,
OH¢ OH¢ ,

(4.6) Py = *aTgl-’ Qi = aTD-l’ H{=-F, i=1,2,

where the functions F,, are given by
FO:O:« F1:17 FQ:O7
13 = (P, Q1) — (P1,Q2)* + (AP, Qs),

m—4

o 7 _ 7 1,
LS Z (@i@m—i—a + biCrui—a) + Cms + br—o — §fbm_3, m >4,
i=0

ai - <AiP17Q1> - <AiP2’Q2>a El = <AiP17Q2>7 EZ' - <A1P27Q1>a

through F = det V|,_; = Yoo Ep ATV = Yooeo ViA™? satistying V, = [, v].
Note that we always accept

These two systems (4.5) and (4.6) are Liouville integrable [1], since they have
involutive integrals of motion F,, m >0, and

(4.7) Fj = ¢1;01; + bojiha;, 1<j <N,

among which I3, Fy,..., Fyx 4 and Fi,... Fy are functionally independent. All
functions

(4.8) u(w, t) = 2(Py(z, ty), Qa(2,t1)) = <9§19;}1P10a9f19§}1¢220>,

where g7, and 921 are the Hamiltonian flows associated with (4.5) and (4.6) respec-
tively, and Py and Q4 are two arbitrary constant vectors, will determine solutions
to the KdV equation (4.1).
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ExXAMPLE 4.2. Let us now consider the coupled nonlinear Schrédinger system:

1 2 r7

— 5 + QT 6H,

(4.9) up, = (?) = ( . 2) =J 2
to 9l xx qr u

with the Hamiltonian operator J and the Hamiltonian functional H,:

0 -2 ~ 1
(4.10) J = <2 0) , Ho= e /(qu — GaTe + Qror — 3q27'2) dx.

It has a Lax pair

-\ —/\Q-i‘l r )\‘l(m
(4.11) U~< q), = L b
oA TA+ 57e AT — 5gr
The Bargmann symmetry constraint (2.6) reads as

N
R oo OU(u, N s . 7
(4.12) K, = J;:l w(])T(aiuj)qu, where K, = Ko = J <;> :

This implies the following equation

e ey (O LY (@1
(4.13) J(Q):J% (wlj’wzj)(o 0> (z2j> -JZN:<¢2J'¢M'>,

V 01 s \ 15125
I=E N (1, ¢25) ((1) 8) (i:) o\

which equivalently engenders a Bécklund transformation
N
q ‘ 1525 <P1>Q2>>
4.14 u = = fi';'i" = ‘J“J == .
(4.14) (r) @i i) ]; (Q)Qj%j) <<P2«,Q1>

Keeping (4.14) in mind, the corresponding constrained Lax pairs (3.3) and (3.4),
where two matrices U and V(") =V are defined by (4.11), can simultaneously be
transformed into the following

JoH¢ oH*® . 1
(415) Pu=-Fa- Qu=gp, H'=R-7F. i=12

OHS OHS 1 3 .
(4.16) Pm:“—{da?, Qizg:a-;, HQC:FB*§Fle*f*§ZF{3~ i==1,2,

where the functions F,, arc given by

Fy = (P, Q2) — (P, (),

m—2
F?n = Z li%((/llpl Ql) - <A7P2~Q2>

i=0
((A™ 2P, Q1) — (AT 2Py, Q0)) + (A'Py, Qo) (A™ 2Py, Q)
+ (AP, Qa) — (ATTIPLQy), m 22,

These two systems are completely integrable in the Liouville sense [1], since they
have involutive integrals of motion F,,, m > 0, defined above, and F';, 1 < j < N,
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defined by (4.7), among which Fi, Fa,...,FyandFy, ... Fy are functionally inde-
pendent. The Backlund transformation (4.14) determines solutions to the coupled
nonlinear Schrédinger system (4.9):

{ 4(@,t2) = (Pr(a,t2), Qalw, t2)) = YN | 1, t) oy (. 1),
r(x,tz) = <P2(x,t2),Q1(.r,t2)> = Zjvzl Ga;(x, ta)n;(z, ts),

if ¢;;(z,%2) and Yij(x,tz) simultancously solve two integrable finite-dimensional
Hamiltonian systems (4.15) and (4.16).

(4.17)

5. Examples of Discrete Systems
EXAMPLE 5.1. Let us consider the Toda lattice [13]:
(5.1)  ar(n,t) = a(n,t) (b(n + 1,) — b(n, 1), be(nt) =an,t) — a(n —1,t),

which associates with the discrete spectral problem

(5.2) E¢=U(u, Ny, Ulu,\) = <_(1) A“b>, ¢ = Cf;;) :

where v = (a,5)” and ) is a spectral parameter. In order to derive a hierarchy of
lattice equations associated with (5.2), we first solve the stationary discrete zero-
curvature equation:

(5.3) (EVIU-UV =0, V= (Vij)axa,
by assuming

Vit=aB+ (b= AC, Vig=E"'aC, Vi =-C, Vi =E B,

B=Y "B\, C= Zci_lxi.

i>0 i>0

where

The discrete zero-curvature equation (5.3) requires |
(54) JG_l —= O, A/[Gn_l = JGn, n Z O,

where G, = (B,,,C,)T, and J, M are two skew-symmetric operators:

- _ 0 al (oA - A%)q alAb
(5.5) 7= <~A*a 0 ) » M= < —bA*a al — A*a) '

We choose G_; = (0, )7, and assume that all terms of G, n >0, do not belong to
ker J = {G_y,G_3} where G_, = (a™1,0)7, when we uniquely determine all G,,,
n 2 0. For instance, the second member has to be G, = (1,b)*. This requirement
also means that we just choose the key vector fields to form systems of lattice
equations.

Let Ay,..., Ay be distinct eigenvalues. Then we have
(5.6) (Bdij, Edoj) = (d1), 02,)U(u, )T, 1< <N,
(5.7) (B, Bng) = (7, 400;)U(u, A)7Y, 1< j < N.
It is easy to see that
oA, SN,
5. M2 =)\ J2
(58) du T Sy
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where (6);)/(du) is determined by

Go) DN 5\ _ B (O = D)oyt + dagie;
' du % a a¢2jz/)1j

Now the Bargmann constraint Gg = Z;\;l ﬁj_l (0X;)/(du) leads to a Backlund trans-
formation

(5.10) a= (AP, P1) + (P2, Q) — (P2,Q1)%, b= (P,Q1),

where A = diag(A1,...,An), P = (di1, ..., o), Qi = (i1, ..., )T, and (-, -)
is the standard inner product of R, as defined before.
Substituting (5.10) into (5.6) and (5.7) yields a discrete Bargmann system

EPy = ((AP2, Q1) + (P, Q2) — (P2,Q1)?) P,
EPy=—P —~ (P,Q1) P2 + APy,

) , B; = const.

(5'11) EQ, = Q2—(P2,Q1)Q1+AQ:
L= (AP, Q) TPz, Q2) —(P2,Q1)2°
EQy =y,
which determines a symplectic mapping H:
(5.12) (EPL,EPy, EQ1,EQ2) = H(P1, P2,Q1,Q2),

since we have by a direct calculation

N N
Zd(E¢(j)) A d(Ew(j)) — Zd¢(j) A dypd),

Jj=1 Jj=1 !

The generating function Fy = det V|,=;:

Fa=—Qx(AP1, Q1) — Qa(P1,Q2) + (P1,Q1)Qx(P2, Q1)

{
Q)\(Plan) Q)\ PlaQZ
A(P2, Q1) Qx(P2,Q2)

ZF/\ml

where

; N
Qa6 =2 B = S (A mat,
| i1

J m>0

generates a hierarchy of invariants of (5.11): i
Fo = (AP, Q1) — (P1,Q2) + (P1, Q1) (P2, Q1),
Fyp = —(A™ P, Q1) — (A" Pr, Q2) + (P, Q1)(A™ Py, Q1)

(AP, Q) (A™TP,, Q)
*2:1 ATIPL Q) (AP, Qy)|”

A direct computation can show the involutivity
{Fm,Fl}:O, m,lZO,

where the variants Fj = 15915 + P2;125, 1 < j < N, defined as before. Now we
can easily see that the symplectic mapping (5.11) is Liouville integrable [3].
Introduce an initial-value problem

oF, oF;
; (5.13) Pyi = —56(:, Qi = apo (Pi(), Qi(1))],_, = (Pio, Qio), 1=1,2,

—
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where Py and Qy9, i = 1,2, are arbitrary constant vectors. Let (Pi(t),Qi(t)),
i = 1,2, be a solution to the initial-value problems (5.13), and further define

(514) (Pl(n,t), Pz(n,t), Ql(n,t),Qg(n,t)) = Hn(Pl(t)7P2(t), Ql(f),QQ(t))

Then a(n,t) and b(n,t) determined by the Bicklund transformation (5.10) solves
the Toda lattice (5.1).

EXAMPLE 5.2. Let us now consider the Langmuir lattice [16]:

(5.15) ar(n,t) = a(n,t)(a(n + 1,t) —a(n - 1, t)),

which associates with a reduction of the discrete spectral problem (5.2):

(5.16) E¢=U@Ng, Uan=( " %) 4=(?)
-1 A @2

|
|
|
|

Assume that its discrete zero-curvature equation
(5.17) (EV)U —UV =0, V= (Vij)aua,
has a solution

Vit =aB - X’C, Vip=AE %C, Vo =-\C, Vi =FE 'aB

B= ZBZ)\‘%, C = Zcix%.

i>0 i>0
Then upon choosing By = Cy = 1, we can easily find that (5.17) is equivalent to
Manlzt]Bn, B():l, (ijZl,
Cn =(A"a—aA) 'A%aB,, n> 1,

where two skew-symmetric operators J and M read as

k)

where

(5.18)

(5.19) M =a(A~A%a, J=aA(A% —aA) 'A%,
Let Ay,..., An be distinct cigenvalues, then we have
(5.20) (E¢1j, Edas) = (¢15, ¢2;)Ula, A;) T, 1<j<N,
(Bvry, Eoy) = (5, 92)U(a, Ny) ™Y, 1< j <N,
and
O O\ O 3
(5.21) A{(g—(; = )‘?']5—;7 where 5_(; = %()\j%g’%j + d25125),  Bj = const.

Now similarly, the Bargmann constraint Gy = By = Zjvzl ﬁj-l(d)\j)/(éa) leads to
a Bicklund transformation

(522) a = <AP2, Q1> + <P2, Q2>
Substituting (5.22) into (5.20), we obtain another discrete Bargmann system

EP1 = ((APy, Q1) + (P2, Q2)) P,

EPy, =-P + AP,
(523) Q2+AQ:
EQ = (AP27Q21)+<P2,Q2>’
EQ2 = _Qh
which determines a symplectic mapping H:
(5.24) (EPL,EPy, EQ1, EQ2) = H(Py, Po, Q1, Q).
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This symplectic mapping is Liouville integrable [3], since we have involutive invari-
ants: Fj = G115 + o125, 1 < g < N, and F,,, m > 0, defined by

Fy = —(A*P, Q1) — (AP, Q2) + (P, Q1) (AP, Q1) + (P, Q2)),

Fp = —(AP2P Q1) — (APTP Q) + (P, Qu) (AP Py, Q)

(A%72P Q) (AP~ 2HLP, Q)
(AP71P, Q) (AP 212Dy Qo))

m

+ (Po, Qo) (A% P, Qi) + )
i=1

Let (P;(t),Q;(1)), i = 1,2, be a solution to an initial-value problem:
8F0 aFO
a Qit = T a5
0Q; OP;
where Pyy and Qu, ¢ = 1,2, are arbitrary, and similarly define
(526) (Pl (77/, t)7 PZ(”’ t), Ql(na t)a Q2(77’? f)) =H" (Pl(f)7 Pg(t), Ql(t)v QQ(t)) .
Then a(n,t) determined by the Bécklund transformation (5.22):

a(n,t) = <AP2(n,t),Ql(n,t)>+<P2(n,t),Qg(n,t)>,

provides a solution to the Langmuir lattice (5.15).

(5.25) Py = (Pi(t)sQi(t))!,:o = (P, Qiv), i=1,2,

6. Concluding Remarks

It has been shown that solving symmetry constraints for u can give rise to
Bécklund transformations between soliton systems and lower-dimensional Liouville
integrable systems, which supplements the study of binary nonlinearization of Lax
pairs [8-10,12]. Construction of solutions to soliton systems is split into finding
solutions to the space and time parts of integrable constrained Lax pairs, which
gives a way to separate variables for soliton systems and exhibits integrability by
quadratures for soliton systems. Upon solving the Riemann—Jacobi inversion prob-
lems for constrained Lax pairs, the resulting Backlund transformations can generate
finite-gap solutions to soliton systems in terms of Ricmann-theta functions.

We remark that all symmetry constraints defined by (2.7) can put Lax pairs into
intcgrable symplectic mappings and/or integrable finite-dimensional Hamiltonian
systems. The corresponding constrained Lax pairs may have some specific prop-
erties, ¢.g., bi-Hamiltonian and quasi-bi-Hamiltonian structures. Therefore, sym-
metry constraints are very powerful in constructing lower-dimensional integrable
systems from Lax pairs of soliton systems. Nevertheless, there exist symmetry
constraints which do not force Lax pairs into integrable systems with constant co-
cfficient symplectic forms [11], and the problem of integrability has not been solved
for the time parts of the original constrained Lax pairs, i.e., systems of partial
differential equations

{G%ff = VO f fos0)0D, 1< <N,

6.1 : v
(6.1) o) = VT (A, 1< <N,

and systems of difference-differential equations

{¢§i) = V(n>(.f’ Ef’Eilf,.. .;)\j)gf)(j)7 1 S ] S ]\77

6.2 g .
(6.2) o = T B ET LAY, 1< <N

We are curious to known whether they are good candidates for integrable systems.
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