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Abstract-Some explicit traveling wave solutions to a KolmogorovPetrovskiiPiskunov equation 
are presented through two ansltze. By a Cole-Hopf transformation, this Kolmogorov-Petrov- 
skii-Piskunov equation is also written as a bilinear equation and two solutions to describe non- 
linear interaction of traveling waves are further generated. Backlund transformations of the linear 
form and some special cases are considered. Copyright Q 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

The Cauchy problem of the Kolmogorov-Petrovskii-Piskunov equation [l] 

i 

nt - L =f(u), f non-linear, f(0) = 0, 

u(x, 0) = 4(x), x E R’ 

has been extensively investigated both by analytic techniques [2,3], and by probabilistic 
methods [4,5], and the existence of traveling wave solutions with various velocities has also 
been proved. A special case is the Fisher equation: 

u, - u,, = U(1 - u), 

which was originally proposed [6] as a model for the propagation of a favored gene. An 
explicit and exact solitary solution of the Fisher equation may be presented by Painlevi: 
analysis [7]. As an example of the above Kolmogorov-Petrovskii-Piskunov equation, 
Kametaka [3] considered the Cauchy problem of a generalized Fisher equation 

i 

nz - i&L = $U(l - Ufl), 

u(x, 0) = { 1 + (2”’ - l)e~~“‘2~““}~2~n, x E R', 

where Lo > 0, n E N, r~ > 0, and gave an explicit solution 

L i II 
-2/n 

u(x, t) = 1 + (2ni2 - 1) exp -qcJi,x +2&t) 

when 

cT=w=~l-J~, +;{(;+1>“‘+(;+1)-“‘}&. 

Abdelkader [8] and Wang [9] extended the integer rr to a real number CI satisfying tl 3 1 
and Wang successfully obtained a class of explicit traveling wave solutions by introducing 
a special non-linear transformation. 

In this paper, we consider the following Kolmogorov-Petrovskii-Piskunov equation: 

U, - U,, + /LU + vu2 + 6u3 = 0 (1) 

where p, v, 6 are three real constants. Some special cases with p + v + 6 = 0 of this equation 
have been studied (see for instance [lo- 131). Our purpose is to look for explicit and exact 
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solutions for the general case of (1). Note that a more general equation 

U,, - tlu,,,, + /LU + VU2 + 6u3 = 0, a # 0 

may be mapped into the Kolmogorov-Petrovskii-Piskunov equation (1) by a time scaling 
t’ -+ CG and therefore the Kolmogorov-Petrovskii-Piskunov equation (1) is no loss of 
generality. In Section 2, we analyze the possibilities of solutions which correspond to two 
Riccati equations and further give explicitly a number of exact solutions to (1). The essential 
point is to break the non-linear equation (1) into two smaller problems and then to solve 
these two smaller problems. In Section 3, we change the Kolmogorov-Petrovskii-Piskunov 
(1) into a bilinear equation, like the Hirota bilinear one, by making the well-known 
Cole-Hopf transformation, and present two explicit solutions to describe non-linear coales- 

cence of traveling wave solutions. In Section 4, Blcklund transformations of the linear form 
are discussed along with some explicit relations of Blcklund transformations for the 

obtained solutions. In Section 5, additional discussion is given. 

2. TRAVELING WAVE SOLUTIONS 

We consider traveling wave solutions to the Kolmogorov-Petrovskii-Piskunov (1) 

U(X, t) = U(4) = u(kx - wt), 

where the wavenumber k and the frequency o are required to be non-zero for generating 
non-trivial solutions. The resulting ordinary differential equation from (1) reads as 

- wu< - k2ur5 + pu + vu2 + 6u3 = 0. (2) 

In the following we generate traveling wave solutions to (1) starting with two ansatze. 

First we make the ansatze for (2) 

U(5) = ~ Uiui = ~ Ui(U(r))‘, vr=&(l-VZ), s=_+l. (3) 
i=O i=O 

It is easy to show that M must be 1 if the functions 1, v, v2,. . . , vM (M EN) are linear 
independent and 6 # 0. So, without loss of generality, we may choose 

and thus 

uc = &al - ca1v2, 

ur5 = - 2alv + 2alv3. 

The substitution into (2) yields the following conditions for determining ao, al, k, co: 

I 

- Fwal + puo + vu; + sa; = 0, 

2k2al + /ml + 2vaoa1 + 36~;~~ = 0, 

,s.oal + vaf + 36aoaf = 0, (4) 

- 2k2a, + Sa: = 0. 

We need to assume a, # 0 for non-trivial solutions, and thereby we obtain 

k2 = 2 da;, 0 = - E(VU1 + 36UOUl), (5) 

2v a2=-!!_-a 1 
6 6 

o - 34, 

a, + 8vaz + 86~: = 0, 

(6) 

(7) 
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in which (5) shows that 6 > 0. The equation (7) is a cubic equation. Krishnan [13] analyzed 
the case of (7) with p = a, v = - (a + l), 6 = 1, but he failed to give any solution. Actually, 
this equation has a solution a, = - v/26 by inspection. We can accordingly decompose 

(86u$ + 4vu,, + 2/~), 

from which we acquire three roots 

V 
a,, = --) 

-lJ+/Gl 

26 ao2,3 = 46 ’ 
A = v2 - 4~6. 

Of course, we can also solve the cubic equation (7) by computer algebra tools, for example, 
Mathematics, Maple and MuPAD. Further, we can obtain by (6) and (5) 

JA 
a11 =wjp u12,3 = E2,3”02,3; (9) 

k 
3 

=E 

(v f J&’ v 
166 

-- . 

2 1 
(10) 

(11) 

Now we may conclude that only when 6 > 0, A > 0, there are real solutions uo, a,, k, o and 
we acquire the following three exact solutions for the Kolmogorov-Petrovskii-Piskunov 
equation (1) with 6 > 0, A > 0: 

ul(x, t) = q(x, t; ~1, ~4) = a01 + ullv(klx - colt) 

u2(x, t) = u2(x, t; E2, Es) = uo2 + ulzu(kzx - w2t) 

-v+ 
&+E 

-v+$ 

46 
2 

46 

u3(x, t) = U3(x, t; E3, Eg) = uo3 + u13u(k3x - W3t) 

-v- 

46 
4+E 

3 
-“-fi, E6v+$x 

46 ( 4&Z 

(14) 

where u5 = 1 - v2, si = f 1,l Q i < 6. In the above solutions, we cancel the case of a = - 1 
due to the same solutions. 

Notice that the Riccati equation vy = a(1 - u”) (a E R’) has a general solution 

for B = 0, 

for A = 0, 

(15) 
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where A, B are arbitrary constants satisfying A2 + B2 # 0. This solution may be obtained 
by three tricks: a Mijbius transformation, a Cole-Hopf transformation or a relation [14] 

(Ul - U2)(% - v4) = c 

(II1 - QJ(2.2 - uq) ’ 

c = const, 

of the solutions UC, 1 6 i < 4, beginning with three known solutions 1, - 1, tanh(a<). From 
zj(l) = f 1, (12), (13) and (14) result in three constant solutions of(l), but after choosing 

~(5) = tanh(i’ + to), ~(5) = coth([ + to) (To arbitrary), 

(12), (13) and (14) yield non-trivial solutions: three explicit traveling front solutions and 
three explicit singular traveling solutions, respectively. 

Secondly, we make another ans;itze for (2) 

~(4) = f biv’ = $J bi(U([))‘, v< = c(1 + I?), 8 = f 1. (16) 
i=O i=O 

Similarly, M must equal 1 if the functions 1, v, v2, . . , v”(M E N) are linear independent 
and 6 # 0. So without loss of generality, we can choose 

u = b. + blv, 

and further we find 

uT = Eb, + eblc2, 

tit5 = 2b,u + 2b,v3. 

The substitution into (2) engenders the following conditions on bo, b,, k, co: 

- mbl + pbo + vb; + 6b:, = 0, 

-2k2bl + pbl + 2vb,bl + 36b;b, = 0, 

- UJ$~ + vhf + 36bobf = 0, 

- 2k2b, + 6b: = 0. 

(17) 

Note that there are only two terms in (4) and (17) have opposite signs. In an analogous way, 
we can prove that only when 6 > 0, A d 0, there exists a set of real non-zero solutions 
b,, bl, k, co, which may be worked out 

ho=-& 1 I- ), =E d- kxE2d= 
26 ’ 2JG’ 

0 = - &El vJ= (18) 
46 . 

In this case, notice that the corresponding Riccati equation vr = a(1 + v’), a E R’ has the 
solutions 

~(0 = tan(& + to), v(t) = - cot(a< + &I) 

with an arbitrary constant to. Accordingly, we obtain two explicit exact solutions for the 
Kolmogorov-Petrovskii-Piskunov equation (1) with b > 0, A < 0: 

1’ 
u; = - 2s + El G tan 26 E G x + F ‘a t + to 

* 2@ ” 46 
> (19) 

V Jzi Jx 
4 = -5 - El 26 cot ( &2 2@ x + El ‘J-t+< 46 

1 

0 > (20) 

where Ed, c2 = + 1 and to is arbitrary. In the above solutions, e is again incorporated into 
E~ due to the same solution. 

3. NON-LINEAR INTERACTIONS OF TRAVELING WAVES 

We make a Cole-Hopf transformation 

u = a(lnf)* = xfx/f; ct = const. (21) 
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for the Kolmogorov-Petrovski-Piskunov equation (1). We have 

(Ltf-Lft)f2 - (LX.& 3.LLX)f2 - 2LY+ p_Lf” + v&f” + s~‘_Lx”f= 0. (22) 

Therefore if we choose a = f a = I$@, we get a bilinear equation 

L*f-Lft -Lxxf+ 3L”L + &f+ vafx” = 0. (23) 

After assuming a kind of solutions to be expressed by an exponential function 

f= /fIek,x+w,t + &e“,x+W9 + A3eksx+%f, 

we find the conditions 

I 

2k? + v~k2 + ski = 0, 1 d i ~ 3, 

(pi - wj)(ki - kj) - (k3 + k3 - 3kik,? - 3kzkj) (24) 
+ p(ki + kj) + 2vakikj = 0, 1 < i < j < 3. 

By solving this equation, we get a non-trivial solution to the equation (23) 

f= /tI + &ek+x+(k:-0 + A,ek~“+‘ki-““, (25) 

where Ai, 1 < i < 3, are arbitrary constants and 

k, = 
--Ev+& -U&J_ 

2$S = 2@i 

Finally, we obtain two different solutions to the Kolmogorov-Petrovskii-Piskunov equa- 
tion (1) with 6 > 0, A b 0: 

dx> t) = G(X> t; A,, A,, A3) = 

2 Azk+e”‘+ + A3k_eq- J s A + A 
1 2 

es+ + A 
3 

eq_ > (26) 

with 

4 = 
-!J+JZ 

-k,x+(k; -p)c 
2J% ’ q*- 

~g(~,t)=~g(~,t;Al,A2,A3)= - 
2 Azk+eq- + A3k_eq- J 6A (27) 

1 
+A e,,+ +A e’7_> 

2 3 

with 

where Al, A,, A, are three arbitrary constants. We note that uq( - x, t, Al, A*, A3) = 
Q(X, t, Al, A,, A,). Therefore for the case of FitzHugh-Nagumo equation, I+ is exactly 
a solution lost in ref. [ 111. The solutions u 4, u5 describe the coalescence of two traveling 
fronts or two singular traveling waves of the same sense. Direct numerical calculations of 
non-linear interactions for the FitzHugh-Nagumo case of (26) were done in ref. [ll]. These 
two solutions are analytic on the whole plane of (x, t) when AiAj > 0, i #j, and they blow 
up at some points of (x, t) when Ai, 1 < i d 3 do not possess the same signs. 

4. BACKLUND TRANSFORMATIONS 

We know there are three solutions 

B = 0, /j=C, = +/A 

to the equation pfi + VP” + Sfi’ = 0, when A = v2 - 4~8 > 0. Make a linear transformation 

U = a6 + p, u # 0, /3=0 orC+. _ (28) 
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,UU + vu* + 6U3 = a(p + 2pv + 3/?6)G + MZ(V + 3/G)u”2 + a3&i3 

i 

MPG + cr2vu”2 + cX36113, for fi = 0, 
= 

- c1(2,~ + flv)u” + x”(v + 3p6)G2 + a3X3, for j3 = C,, 

and thus the Kolmogorov-Petrovskii-Piskunov equation (1) is equivalent to the following 
new Kolmogorov-Petrovskii-Piskunov equation 

_ - 
U, - U,, = - (p + 2pv + 3p%)u” - a(v + 3/?6)fi2 - c?6G3 

._ .- _ fijj _ crju”2 _ &3. (29) 

A direct calculation yields that 

a:=,-2 -$= 

I 

:$$&2, :;::: ; I:+; (30) 

$a’(~ - a)‘, when j3 = C. 

We remark that a similar equation u”, - I&, + @ - vu”’ + X3 = 0 is generated under the 
mirror transformation u = - & which possesses the same property as the old equation (1). 

The transformation (28) maps the case: 6 > 0, A 3 0 into the same case: s” > 0, a B 0. 
Therefore a new Kolmogorov-PetrovskiiPiskunov equation (29) also has five explicit 
exact solutions defined by 

u”i(X, t) = Ui(X, t)l,=g,v=;,n=g, 1 d i d 5, 

and further five new exact solutions to the old Kolmogorov-Petrovskii-Piskunov equa- 
tion (1) may be presented by Si(X, t) + p, 1 < i < 5. However, this transformation process 
has not given a new kind of solution to (1) beginning with the obtained five solutions, which 
will be shown below. 

Note that we have for a > 0, v 3 0: 

$ = &(v + JA), ?-J=.(-v+$), S+$=2c($, whenp=C+; 

$ = f!x(v - &), F - fi = - X(V + JA), ; + Jz 

-2a&, whenp=C_, ~30; 

,/a&-,), <-4L= -24, ii+Jz 

= - a(v + JA), whenfi=C_, ,LL<O. 

The concrete results of the Backlund transformation 

Wb: u(x, t) F+ au(x, t)lp=~,v=S,8=X -I- p (31) 

may be given out for a > 0, v 3 0 as follows: 

(WC+ : u1 (X, t; &I, &4) k-b tdJ(X, t; &3 = - &I, &6 = - &4), 

U2(X, t; 62, Es) H Uz(X, t; - E2, - h), 

u3(X, t; &3> &6) ++ ul(X, t; El = - &3, ‘54 = &6), 

U4(X, t; Al, A2, A3) H U,(X, t; A,, Al, A3), 

&(X9 t; Al, AZ, A3) ++ %(X9 t; A3, AZ, Al); 

(BT)c ,a a o: Ul(X, t; El, E4) ++ U,(X, t; E2 = - El, 5 = &4), 

u2(X, t; &Z, &g) ++ td3(X, t; &3 = - &2, &6 = - &g), 

u3(x, t; &3, &6) H %(X, t; cl = 63, ‘54 = - &6), 

U4(X, t; Al, AZ> A3) H U4(X, t; A,, Al, A3), 

%(X, t; Al, A2, A3) N %(X9 t; A,, AZ> A,); 
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W)c,, $0: h(X, t; El 9 E4) H u2(x, t; E2 = El 9 E5 = - &4), 

uz(x, t; &2,&I H Ul(X, t; 61 = 82, E4 = - hh 

u3cG t; &3, E6) H u,k t; - %, - &6), 

u4(x, t; Al, A2, A31 ++ U,(& t; A39 A2, Al), 

%(X, t; Al, AZ, A31 H %(X, t; A29 Al, A3). 
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When fl = 0, the transformation (28) also maps the other case: 6 > 0, A f 0 into the same 
case: 8 > 0, n < 0. We may show that (BT)B = O,a, 0 is an identity map on the set of solutions 
span {Ui, U> 11 d i < 5, j = 1,2) and that 

(BT)&?=o,,<o: %(x9 t; El, E4) I-+ %(X, t; -&1,&4), 

u2(& t; ‘72, 85) H u3(& t; 83 = 62, 86 = - k,), 

u3(x, t; &3, &6) k+ u2(x, t; &2 = h, ES = - &6), 

u4(x, t; Al, A2, A3) t-k h(X, t; Al, A29 ‘431, 

%(X, t; Al, A29 A3) t--P u4(x, t; Al, A2, A3), 

u;G% t; El, 82) H u’,(x, t; --El, &2), 

~;(x,t;~l,~2) H &(x,t; -&1,&Z). 

The rest case of (BT),, may be computed similarly. It is interesting to note that 
(BT)p=o,,<o casts the solution (26) into the solution (27) and vice versa. 

We point out that we may also transform a more general equation 

wt - w,, =f(w) = a + bw + cw2 + dw3, a # 0, (32) 

where a, b, c, d are real constants, into the Kolmogorov-Petrovskii-Piskunov equation (1) 
under the linear transformation w = au + /J c(, b = constants. Therefore we can generate 
solutions to (32) by the obtained results. However, we should note that equation (32) lost the 
propertyf(0) = 0. 

5. DISCUSSION 

The Kolmogorov-Petrovskii-Piskunov equation (1) contains the following various equa- 
tions with p + v + 6 = 0, for which there is always the condition A = v2 - 4~6 = 
(FL - c?)~ > 0, and thus has five explicit solutions. 

(i) The non-integrable Newell-Whitehead [ 151 equation: 

ut - %CX =u-$ (33) 

is a special case with p = - 1, v = 0, 6 = 1. The cases of p = 0, v = - 1, 6 = 1 and p = 1, 
v = - 2, 6 = 1 engender the equations 

ut - L = u2(1 - u), (34) 

u, - %X = - u(1 - u)2, (35) 

respectively. The above three equations are all simple generalizations of the Fisher equa- 
tion. Interestingly, another simple generalization of the Fisher equation U, - u,, = 
~(1 - u)” has no non-constant solution of the form: 

u = E ai tanh’(kx - wt + to), 

M 
U = C bi coth’(kx - at + co), Ui, bi E R’. 

i=O i=O 

This is in agreement with the result in ref. [lo], where it was shown that this equation has no 
solution of the form a, tanh(kx - wt + co) + a,. 
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(ii) The case of p = a, v = - (a + l), 6 = 1 engenders the FitzHugh-Nagumo equation 

u, - %X = u(u - a)(1 - u), (36) 

where a is arbitrary. This equation may describe nerve pulse propagation in nerve fibers and 
wall motion in liquid crystals. Its solutions were discussed in refs [ll, 121. 

Our method in Section 2 is a kind of combination of the direct method [16] and the 
ansatze method [17, 181 and thus we term it the combined ansatze method. The idea is to 
make the unknown variable u to be a practicable function g(o) of the anshtze unknown 
variable v, which satisfies a differential equation solvable by quadratures. This allows us to 
solve a large class of physically important non-linear equations including some non- 
integrable ones, for example, 2DPKdVBurgers equations [19] and seventh-generalized 
KdV equation [20]. The crucial point is to choose the proper ansatze equations solvable by 
quadratures. We here list two useful ansatze equations and their solutions. The first one is 
the Bernoulli equation 

vy = au + bv’, a,b,xERl, ab#O, ccfl. (37) 

It has a general solution 

1 
1/t=- 1) 

for to = 0, 

= { -&[tanh(vi _!!I?$) + 1]1”“-“, for to > 0, (38) 

{ -xjcoth(~~-~)+ll)“‘~-“, for tO<O, 

where to is arbitrary. The second one is the Riccati equation 

vt = a0 + alv + a2v2, Ui E R’, a2 # 0. 

This equation has the following solutions: 

a1 1 

U=--2a2) -a2<+~0 
-2, (A=O); 

2 

(39) 

(40) 

(E = * l), 

for to = 0, 

for to > 0, (A > 0); (41) 

for 5 <0 0 > 

ll= (A < 0); (42) 
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where A = a: - 4aOa2 and &, is arbitrary. The Bernoulli equation and the Riccati equation 
have appeared in [17,18]. However, singular solutions of these two equations are all 
missing in their works. 

For the general Fisher equation 

U*-Uu,,+I*u+vu2=o, &VERl, (43) 

the same combined ansgtze as ones for the Kolmogorov-Petrovskii-Piskunov (1) may also 
result in solutions, but only a kind of solutions 

u(X t)= P IPI I wu E2mX+5wt 
7 

E2mX+5wt ~ - ~ - 
2v 4v 2v ( 12 12 ) ( 

+I&2 

4v 12 12 
> ’ (44) 

where v5 = 1 - v*, Ed, c2 = + 1. In particular, the Fisher equation (43) has no solution of the 
form 

U = f Ui tan’(kX - wt + to), 24 = f biCOt’(kX - Ot + E(j)> ai, bi E R' . (45) 
i=O i=O 

It is worth pointing out that the Fisher equation cannot be solved through the ansatze 
method proposed in refs [17, 181. When we choose v = tanh(t + lo) or v = coth(< + to), 
the solution (44) yields two explicit solutions, for instance, a traveling front solution 

(46) 

They contain two solutions of the standard Fisher equation U, - u,, = ~(1 - u). 
Finally, we remark that any Riccati equation possesses an important property: given 

a particular solution, its general solution may be found by quadratures. This property is 
named the Riccati property by Fuchssteiner and Carillo [21] and a method to construct 
ordinary differential equations which have the Riccati property is proposed in their works 
[21,22]. We may also take the differential equations proposed in refs [21,22] as the basic 
ansgtze equations. This may make more non-linear equations solvable by quadratures. 
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