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Abstract—Some explicit traveling wave solutions to a Kolmogorov—Petrovskii-Piskunov equation
are presented through two ansiitze. By a Cole-Hopf transformation, this Kolmogorov—Petrov-
skii-Piskunov equation is also written as a bilinear equation and two solutions to describe non-
linear interaction of traveling waves are further generated. Bicklund transformations of the linear
form and some special cases are considered. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION
The Cauchy problem of the Kolmogorov—Petrovskii-Piskunov equation [1]

U, — Uy = f(u), f non-linear, f(0)=0,
u(x,0) = ¢(x), xeR!

has been extensively investigated both by analytic techniques [2, 3], and by probabilistic

methods [4, 5], and the existence of traveling wave solutions with various velocities has also
been proved. A special case is the Fisher equation:

U — Uy = u(l - u)a

which was originally proposed [6] as a model for the propagation of a favored gene. An
explicit and exact solitary solution of the Fisher equation may be presented by Painlevé
analysis [7]. As an example of the above Kolmogorov—Petrovskii-Piskunov equation,
Kametaka [3] considered the Cauchy problem of a generalized Fisher equation

Uy — Uy = Agu(l — "),
u(x,0) = {1 + (2"* — 1)e”"2ox} =2 x e RY,

where 45 > 0, ne N, o > 0, and gave an explicit solution

u(x,t) = [1 (M2 — 1)exp{— g g {x + 2/11t)}:|_2/n

i 172 —-1/2
G'=0'1:/11— /1%—/«1%, /nulzz{(g‘{-l) +<g‘+1> })@Q

Abdelkader [8] and Wang [9] extended the integer n to a real number « satisfying a = 1
and Wang successfully obtained a class of explicit traveling wave solutions by introducing
a special non-linear transformation.

In this paper, we consider the following Kolmogorov—Petrovskii-Piskunov equation:

when

Uy — Uy, + pu +vu> + 5u® =0 )

where u, v, § are three real constants. Some special cases with p + v + § = 0 of this equation
have been studied (see for instance [10—13]). Our purpose is to look for explicit and exact
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solutions for the general case of (1). Note that a more general equation
Uy — My + it + v +0u* =0, a#0

may be mapped into the Kolmogorov—Petrovskii-Piskunov equation (1) by a time scaling
t" — ot and therefore the Kolmogorov—Petrovskii-Piskunov equation (1) is no loss of
generality. In Section 2, we analyze the possibilities of solutions which correspond to two
Riccati equations and further give explicitly a number of exact solutions to (1). The essential
point is to break the non-linear equation (1) into two smaller problems and then to solve
these two smaller problems. In Section 3, we change the K olmogorov-—Petrovskii-Piskunov
(1) into a bilinear equation, like the Hirota bilinear one, by making the well-known
Cole-Hopf transformation, and present two explicit solutions to describe non-linear coales-
cence of traveling wave solutions. In Section 4, Backlund transformations of the linear form
are discussed along with some explicit relations of Bicklund transformations for the
obtained solutions. In Section 5, additional discussion is given.

2. TRAVELING WAVE SOLUTIONS
We consider traveling wave solutions to the Kolmogorov—Petrovskii—Piskunov (1)

u(x, t) = u(é) = ulkx — wt),

where the wavenumber k and the frequency w are required to be non-zero for generating
non-trivial solutions. The resulting ordinary differential equation from (1) reads as

— ouy — kK*uge + pu + vu® + 0w’ = 0. (2

In the following we generate traveling wave solutions to (1) starting with two ansitze.
First we make the ansitze for (2)

M M
u@ =73 ar'=Y a@l)), vy=e1—-v"), e=+1 3
i=0 i=0
It is easy to show that M must be 1 if the functions 1, v, v?,...,v™ (M € N) are linear

independent and d # 0. So, without loss of generality, we may choose

u= ap + av,
and thus

U = ea; — eagv?,
Ugeg = — 2a1U + 2a1U3.
The substitution into (2) yields the following conditions for determining aq, a4, k, w:

— eway + pag + vag + dai =0,
2k%a; + pa; + 2vaga, + 3daja, =0,
ewa; + vai + 3dagai = 0,

—2k%a, + 6a3 =0.

We need to assume a; # 0 for non-trivial solutions, and thereby we obtain

1

k2 = 5 5“%9 W= — 8(va1 =+ 36a0a1)7 (5)
2v
a%:—%—gao_Sa(z)’ (6)

V2

f(ao):z%-l—z(gﬁtu)ao + 8va + 8da3 = 0, (7)
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in which (5) shows that § > 0. The equation (7) is a cubic equation. Krishnan [13] analyzed
the case of (7) with g = a, v = — (@ + 1), § = 1, but he failed to give any solution. Actually,
this equation has a solution a, = — v/2d by inspection. We can accordingly decompose

flag) = (ao + = )(85(10 + dvay + 2u),

from which we acquire three roots

v —vi\/Z

o1 = — 25’ do2,3 = a5 A =v* —4us. (8)

Of course, we can also solve the cubic equation (7) by computer algebra tools, for example,
Mathematica, Maple and MuPAD. Further, we can obtain by (6) and (5)

JA
a1 =& 75 12,3 = €3,3002,3; )

N /NS NS

X =g , = 10

2./26 RN NG (10
v /A vFILJAP v

Wy = 861 —4‘\{3——, W33 = —&823 |:(—16—5—) - 5] (1)

Now we may conclude that only when é > 0, A > 0, there are real solutions a,, a,, k, w and

we acquire the following three exact solutions for the Kolmogorov-Petrovskii-Piskunov
equation (1) with 6 > 0, A = O

ui(x,t) = uy(x, t; &1, 84) = @o1 + ay10(k1x — w;1t)
—l+£ \/KU 3 \/K Vf

1 5 42\/'276 & 45 s
Uy (x, 1) = U (X, 1; &, &5) = doz + ar20(kyx — wat)

B —v+\/K+8 —v+f v—/A

N 45 4./28

. 2|:(v—f)2 _g]t)’ 43

(12)

166 2
us(x, ty = us(x, t; €3, €6) = Ag3 + a130(k3x — w3t)

[W+vry_ﬁ]0, (14)

166 2

where v, =1 —v%,¢; = + 1,1 < i < 6. In the above solutions, we cancel the case of ¢ = — 1
due to the same solutions.

Notice that the Riccati equation v; = a(1 — v?) (a € R') has a general solution

(1 for B=0,
—1 for A =0,

A — Be %% 15
U=U(é):4—_a=< ( )
A + Be™ 2 tanh(aé — lln <E>> for AB >0,

2 A
1 B
\ coth (aé —Eln <_Z>> for AB <0,
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where A, B are arbitrary constants satisfying 4% 4+ B? # 0. This solution may be obtained
by three tricks: a Mébius transformation, a Cole-Hopf transformation or a relation [14]
(v, — vy)(vs — v4)
(v1 — v3)(v2 — v4)
of the solutions v;, 1 < i < 4, beginning with three known solutions 1, —1, tanh(aé). From
v(&) = £+ 1, (12), (13) and (14) result in three constant solutions of (1), but after choosing
v(&) =tanh(¢ + &o),  vll) =coth({ + &) (o arbitrary),

(12), (13) and (14) yield non-trivial solutions: three explicit traveling front solutions and
three explicit singular traveling solutions, respectively.
Secondly, we make another ansitze for (2)

= (C, C = const.

M
u(@ =y byt = Z bi(v(&)), ve=¢(1+0%), e=+1 (16)
i=0

Similarly, M must equal 1 if the functions 1, v, v%, . . ., v™(M € N) are linear independent
and ¢ # 0. So without loss of generality, we can choose

u= b() + bll/',
and further we find
ué = Sbl + gb1L~2’
ug“é = 2b1U + 2b1U3.
The substitution into (2) engenders the following conditions on by, by, k, w:
—ewby + pbo + vb§ + 9b3 =0,
—2k2by + uby + 2vbhoh, + 36b3b, =0,
— 8wﬁ1 + Vb% + 36b0b% = 0,
—2k%b, + 6b3 = 0.

(17

Note that there are only two terms in (4) and (17) have opposite signs. In an analogous way,
we can prove that only when § > 0, A <0, there exists a set of real non-zero solutions
by, b1, k, @, which may be worked out

NET

b():_—? b1:81 s k:82

- A
26 ’

49

, W= —g&

(18)

ED

In this case, notice that the corresponding Riccati equation v, = a(1 + v*), a € R' has the
solutions

v(§) =tan(al + o) v(f) = —cot(al + &o)

with an arbitrary constant £,. Accordingly, we obtain two explicit exact solutions for the
Kolmogorov—Petrovskii—Piskunov equation (1) with ¢ > 0, A < 0:

v + &1 tan (62 & t + éO)a (19)

26 26 \/'
LY v - - «/
Uy = —2—5—31 % cot( \/__ X + & t+fo) 20)

where ¢4, &; = + 1 and &, is arbitrary. In the above solutions, ¢ is again incorporated into
&, due to the same solution.

3. NON-LINEAR INTERACTIONS OF TRAVELING WAVES
We make a Cole-Hopf transformation

u=oa(lnf), =af./f, o=-const 21
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for the Kolmogorov—Petrovski—Piskunov equation (1). We have
(faf = LS = foxef = L) [2 = 202 + ufof 3 + vaf2f? + 602 f2f = 0. (22)
Therefore if we choose a = + /2/0 = &./2/0, we get a bilinear equation
faf = ey = frxxf + 3fcfox + wfief + vafd = 0. (23)
After assuming a kind of solutions to be expressed by an exponential function
f= Aot 4 gogkaxtoat 4 giehaxtodl
we find the conditions
2k +vok? + pk; =0, 1<i<3,
(; — w)) ki — k;) — (ki + k} — 3kik; — 3kik;) (24)
+ulk; + k) + 2vakik; =0, 1<i<j<3.
By solving this equation, we get a non-trivial solution to the equation (23)
S= Ay + Ak 6T gk xr ke (25)

where A;, 1 < i< 3, are arbitrary constants and

K. = —svi\/_&: — v+ /v —4ud
NG 2./26 '

Finally, we obtain two different solutions to the Kolmogorov—Petrovskii—Piskunov equa-
tion (1) with 6 >0, A =2 0:

' 2 Arkie™ + Ask_e™
u4(xa t) = u4(x, ta Ala A2> AS) = \/% Al + AZC'H + A3e"‘ ’ (26)

with
—v+ JA
kiz—\/—” Ny =kox + (k3 — it
2./20
. 2A2k+e"' + A3k_e"‘
uS(-x’ t) = uS(xa t7A1’A27A3) = - \/%Al + Azerh + A3Cn’ 2 (27)
with

k. — v+ \/X

T2 /2

where A, A,, A; are three arbitrary constants. We note that u,( — x,t, A(, A5, A3) =

us(x,t, Ay, As, A,). Therefore for the case of FitzHugh—-Nagumo equation, us is exactly

a solution lost in ref. [11]. The solutions u,, us describe the coalescence of two traveling

fronts or two singular traveling waves of the same sense. Direct numerical calculations of

non-linear interactions for the FitzHugh—Nagumo case of (26) were done in ref. [11]. These

two solutions are analytic on the whole plane of (x, t) when 4;4; > 0, i # j, and they blow
up at some points of (x, t) when A;, 1 < i< 3 do not possess the same signs.

Ma =kox + (K% — p,

4. BACKLUND TRANSFORMATIONS
We know there are three solutions

F=0 F=Cy =75
to the equation uf + vf? + 8% = 0, when A = v? — 46 > 0. Make a linear transformation

u=oi+f, o #0, p=0 orC,. (28)
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This moment
uu + vu? + oud = a(p + 28v + 3B%8)i + o> (v + 3P8)a* + o6

_ apil + o2vii® + a350°, for p =0,
—au + Pv)i + o (v + 3B0)a* + o353, for f=C,,

and thus the Kolmogorov—Petrovskii-Piskunov equation (1) is equivalent to the following
new Kolmogorov—Petrovskii-Piskunov equation

i, — G = — (1 + 2Bv + 3B20)il — a(v + 3B0)i#? — 28

= — il — Vi — i, (29)
A direct calculation yields that
a?A when =0,
A= — 6 ={ (v + \/Z)z, when f=C,; (30)

1o2(v — /A, when f=C_.

We remark that a similar equation &, — i, + uéi — vii* + 54> = 0 is generated under the
mirror transformation u = — &, which possesses the same property as the old equation (1).

The transformation (28) maps the case: 6 > 0, A = 0 into the same case: §>0,A>0.
Therefore a new Kolmogorov—Petrovskii-Piskunov equation (29) also has five explicit
exact solutions defined by

ai(xs t) = ui(x9 t)|u=ﬂ,v=‘7,(5=5’ 1 < l < 5’

and further five new exact solutions to the old Kolmogorov—Petrovskii-Piskunov equa-
tion (1) may be presented by adi;(x, t) + f, | < i < 5. However, this transformation process
has not given a new kind of solution to (1) beginning with the obtained five solutions, which
will be shown below.

Note that we have for a > 0, v > 0:

JA=tav+ JA), T —JE=a(~v+ /A, T+ /E=20/A whenf=0C,;
VA =1av — /A, \7~\/:=—oc(v+\/g), 7+ /A
= —20(\/5, when f=C_, u=0;
VA=ta(JA—v), i— A= —2/A T+ /&
= —oc(v+\/g), when f=C_, u<0.
The concrete results of the Biacklund transformation
(BT )g: u(x, t) = ou(x, t)|y=pv=56-5 + B (31)
may be given out for a > 0, v = 0 as follows:
(BT )c,: Uy (X, t;61,84) > Us(X, t; 63 = — 1,86 = — &4),
Uy(X, t; €5, &5) > Us(X, t; — &3, — €5),
Us(X, t; €3, &) +> U1 (X, ;&) = — €3, &4 = E¢),
Ua(X, t; Ay, Az, Az) o ug(x, t; Ay, Ay, As),
us(x, t; Ay, Az, Az) — us(x, t; As, Az, A1);

(BT )c_,pzo0 Ui(X, L eq,84) > Up(X, L 82 = — €, 85 = £4),
Us(X, t; 82, €5) V> Uz(x, £, €3 = — €3, 66 = — Es),
usz(x, t; £35, &6) = U1 (X, 1; 61 = €3, 64 = — &),

us(x, t; Ay, Az, Az) = ug(x, t; Ay, Ay, As),
us(x, t; Ay, Az, As) = us(x, t; Az, Az, Ay);
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(BT)c_,u<o: Ui(X, B er, 84) o Up(X, 5 62 = £1,85 = — &4),
Uy(X, 15 &2, &5) > Uy (X, L &1 = &3, 84 = — &5),
us(x, 1; &3, &6) > Uz (x, t; —&3, — &),
us(x, t; Ay, Az, As) > ug(x, 6 As, Az, Ay),
us(x, t; Ay, Az, As) — us(x, t; A3, 4y, 43).

When g = 0, the transformation (28) also maps the other case: 6 > 0, A < 0 into the same
case: § > 0, A < 0. We may show that (BT )s— g4 is an identity map on the set of solutions
span {u;, u;|1 <i<5,j=1,2} and that

(BT )g=0,a<0: U1(X, t; &1,84) > Uy (X, t; —&1,84),
Us(X, t; €3, €5) > us(X, 1; 63 = &3, &6 = — €5),
us(x, t; €3, €6) > Uz(X, 1; &2 = €3, 85 = — &),
us(x, t; Ay, Ay, A3) > us(x, t; Ay, Az, Az),
us(x, t; Ay, Az, As) o ua(x, t; Ay, Az, As),
Ui (X, 4 g1, 82) > UL (X, 8 — €1, 82),
us(x, 6 €1, €2) > Us(X, £ — &1, &2)-

The rest case of (BT)c, may be computed similarly. It is interesting to note that
(BT )g=0,4<0 casts the solution (26) into the solution (27) and vice versa.
We point out that we may also transform a more general equation

W, — Wey=f(W)=a+bw +cw? +dw?, a#0, (32)

where a, b, ¢, d are real constants, into the Kolmogorov—Petrovskii-Piskunov equation (1)
under the linear transformation w = au + f, o, § = constants. Therefore we can generate
solutions to (32) by the obtained results. However, we should note that equation (32) lost the
property f(0) = 0.

5. DISCUSSION

The Kolmogorov—-Petrovskii—Piskunov equation (1) contains the following various equa-
tions with u+ v+ 6 =0, for which there is always the condition A =v? —4ué =
(¢ — 8)* = 0, and thus has five explicit solutions.

(i) The non-integrable Newell-Whitehead [15] equation:

U — Uy = U — U (33)
isaspecial case with p = — 1, v=0,8=1. Thecasesof u=0,v=—1,d=1and p =1,
v= — 2, 0 = 1 engender the equations

U — Uy = (1 — u), (34)
Uy — Uy = — u(l — u)?, (35)

respectively. The above three equations are all simple generalizations of the Fisher equa-
tion. Interestingly, another simple generalization of the Fisher equation u, — u,, =
u(1 — u)? has no non-constant solution of the form:

M M
u= Zo a; tanh'(kx — wt + &), u= Y b;cothitkx —wt + &), a; b;eR".
i= i=0

This is in agreement with the result in ref. [ 10], where it was shown that this equation has no
solution of the form a; tanh(kx — wt + &) + ag.
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(i) The case of u =a,v = — (a + 1), = 1 engenders the FitzHugh-Nagumo equation
Uy — Uyx = u(a - a)(l - u)’ (36)

where a is arbitrary. This equation may describe nerve pulse propagation in nerve fibers and
wall motion in liquid crystals. Its solutions were discussed in refs [11, 12].

Our method in Section 2 is a kind of combination of the direct method [16] and the
ansdtze method [17, 18] and thus we term it the combined ansidtze method. The idea is to
make the unknown variable u to be a practicable function g{») of the ansétze unknown
variable v, which satisfies a differential equation solvable by quadratures. This allows us to
solve a large class of physically important non-linear equations including some non-
integrable ones, for example, 2D-KdV-Burgers equations [19] and seventh-generalized
KdV equation [20]. The crucial point is to choose the proper ansitze equations solvable by
quadratures. We here list two useful ansétze equations and their solutions. The first one is
the Bernoulli equation

v: = av + b, a,b,xeR!, ab#0, o#l. (37)

It has a general solution

a 1 1/(e— 1)

( 1fta=1)
a
< _ %) , for (=0,
B a a@—1), Iné&, Ha=1)
_< {_%[tanh( 7 E— > >+1]} s for {o >0, (38)

k {_ %[coth(a(“; 1)5 3 ln(;§0)> R 1]}1/(01_1)’ for £ <0,

where £, is arbitrary. The second one is the Riccati equation

Ve =dao + a;v + ayv®, a;eR', a, #0. (39)
This equation has the following solutions:

a; 1 a,
. - (A=0) 40
0 2a, al +&  2a, ( ) (40)

8\/Z 1 s\/K a, +1)

P = — + — 5N E=
as ioexp(—s\/gi)+1 2a;  2a (
( 8\/Z a,
2a, _2712’ for S0 =0.
A A 1
B R LS (1) DT S ST
2(12 2 2 2aZ
VA (A, eln(=&))
\ —Ecoth<—§—£——# _Z—aZ’ for & <O,
p
FZ v —A a
3as tan( 5 é-l—fo)—‘z—aza
U=< (A <0); 42)
— Y _Acot v _A§+éo)—£,
2(12 2 2a2
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where A = a} — 4aqa, and ¢, is arbitrary. The Bernoulli equation and the Riccati equation
have appeared in [17, 18]. However, singular solutions of these two equations are all
missing in their works.

For the general Fisher equation

Uy — Ugx + pti +vu® =0, p,veR!, (43)

the same combined ansétze as ones for the Kolmogorov—Petrovskii—~Piskunov (1) may also
result in solutions, but only a kind of solutions

/ 5
u _M+81—H0<32 6|u]x+581ﬂt>+wvz <82 6t;u|x+ 81#[), (44)

)= —
U =—3 -5t 12 12 4 12 12

wherev: = 1 —v%, ¢, &, = + 1. In particular, the Fisher equation (43) has no solution of the
form

<
f
Mx

M
a;tan' (kx — wt + &), u= )Y bcotitkx — wt + &), ai.b;eR'. (45
i=0

i=0

It is worth pointing out that the Fisher equation cannot be solved through the ansétze
method proposed in refs [17, 18]. When we choose v = tanh (¢ + &) or v = coth(¢ + &),
the solution (44) yields two explicit solutions, for instance, a traveling front solution

g ld | ep /6l Seip
)= —— — 2 4 M aph (X2 t
Ut = = o0y Ty < n Yt it
lul 2/ 0lul S
+4vtanh B x + B t+ & ). (46)

They contain two solutions of the standard Fisher equation u, — u,, = u(l — u).

Finally, we remark that any Riccati equation possesses an important property: given
a particular solution, its general solution may be found by quadratures. This property is
named the Riccati property by Fuchssteiner and Carillo [21] and a method to construct
ordinary differential equations which have the Riccati property is proposed in their works
[21, 22]. We may also take the differential equations proposed in refs [21, 22] as the basic
ansdtze equations. This may make more non-linear equations solvable by quadratures.
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