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Abstract. This paper aims to explore dispersion-managed lump waves in a spatial sym-

metric KP model. Negative second-order linear dispersive terms play an important role

in creating lump waves with the nonlinearity in the model. The starting point is a Hirota

bilinear form with an ansatz on quadratic function solutions to the corresponding Hirota

bilinear equation. Symbolic computation with Maple is conducted to determine lump

waves, and characteristic behaviors are analyzed for the resulting lump wave solutions.
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1. Introduction

Generally speaking, the amplitudes and widths of waves change during propagation

in nonlinear media. Under certain circumstances, however, the effects of nonlinearity and

dispersion can cancel each other to create permanent and localized waves called solitons.

Such a kind of phenomenon was first observed in water waves [50,51] and then in optical

fibers [47].

In mathematical physics, there are a few methods to determine solitons in nonlinear

dispersive models, two of which are the inverse scattering transform [2] and the Hirota

bilinear method [8]. The inverse scattering transform can be used to solve Cauchy problems
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of integrable models [63] and obtain long-time asymptotics of solitonless waves [1]. We

will apply the Hirota bilinear method to our analysis on lump waves in (2+1)-dimensions

below.

Suppose that P is a polynomial in two space variables x , y and time t. A Hirota bilinear

differential equation in (2+1)-dimensions is defined as follows:

P(Dx , Dy , Dt) f · f = 0,

where Dx , Dy and Dt are Hirota’s bilinear derivatives [8]

Dp
x Dq

y Dr
t f · f

=

�

∂

∂ x
−
∂

∂ x ′

�p � ∂

∂ y
−
∂

∂ y ′

�q � ∂

∂ t
−
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∂ t′
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f (x , y, t) f (x ′, y ′, t′)
�

�

x ′=x ,y′=y,t ′=t

for nonnegative integers p,q, r. An associated partial differential equation (PDE) with a de-

pendent variable u is often determined by some logarithmic derivative transformation of

u= 2(ln f )x , u= 2(ln f )x x , u = 2(ln f )x y .

Within the Hirota bilinear theory, an N -soliton solution (please refer to, e.g., [7,25,26,39])

is presented through

f =
∑

µ=0,1

exp

 

N
∑

i=1

µiξi +
∑

i< j

µiµ jai j

!

,

where
∑

µ=0,1 stands for the sum over all possibilities for µ1,µ2, · · · ,µN taking either 0 or

1, and the wave variables and the phase shifts are defined by

ξi = ki x + li y −ωi t + ξi,0, 1≤ i ≤ N ,

eai j = −
P(ki − k j , li − l j ,ω j −ωi)

P(ki + k j , li + l j ,ω j +ωi)
, 1≤ i < j ≤ N .

In the above N -soliton solution, the wave numbers ki, li and the frequenciesωi, 1≤ i ≤ N ,

are required to satisfy the associated dispersion relations

P(ki , li ,−ωi) = 0, 1≤ i ≤ N ,

but the phase shifts ξi,0, 1 ≤ i ≤ N , are arbitrary constants. There are abundant applica-

tions of the Hirota bilinear method to nonlinear dispersive wave equations [10,34].

Lump waves (or rogue waves) in integrable models are remarkably varied, and they

can describe diverse nonlinear phenomena [43]. Such waves are determined by means of

rational functions, and localized in all directions in space [43, 44, 54]. Computing long

wave limits of solitons can also lead to lump wave solutions [52]. It is known that the KPI

equation has diverse lump wave solutions [19], and its special lump waves can be gener-

ated from its solitons, indeed [45]. Other integrable models which possess lump waves

include the three-wave resonant interaction [12], the Davey-Stewartson II equation [52],
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the BKP equation [6, 59], and the KP equation with a self-consistent source [61]. More-

over, nonintegrable models can possess lump waves, among which are several generalized

KP, BKP, KP-Boussinesq and Sawada-Kotera equations in (2+1)-dimensions [23,37,40,64],

and there are lump waves in linear models [22,24] and with dispersion relations of higher-

order [42]. An essential step in generating lump waves is to construct positive quadratic

function solutions to Hirota bilinear equations, and then by means of quadratic function

solutions, being positive, the logarithmic derivative transformations generate lump waves

for nonlinear PDE models [43,44].

In this paper, we would like to look for lump waves in a spatial symmetric KP model.

We will apply the Hirota bilinear method in the solution process [17,43,44]. The proposed

spatial symmetric KP model contains two sets of second-order linear dispersion terms and

nonlinear terms. The dispersion terms balance the nonlinear terms to yield lump wave so-

lutions, which will be computed through symbolic computation with Maple. Characteristic

properties will be explored for the resulting lump waves. A conclusion and a few concluding

remarks will be provided in the final section.

2. A Spatial Symmetric KP Model

Motivated by recent studies on lump waves with symbolic computation [19, 43], we

introduce a spatial symmetric KP model equation

P(u, v, w) = ux t + 6ux vx + 6ux x v + ux x x x − uy y

+ uy t + 6uy w y + 6uy y w+ uy y y y − ux x = 0, (2.1)

where vy = ux and wx = uy , to explore dispersion-managed lump waves.

It is straightforward to observe that through the logarithmic derivative transformations

u = 2(ln f )x y , v = 2(ln f )x x , w = 2(ln f )y y , (2.2)

the above spatial symmetric KP model equation (2.1) is changed into the following Hirota

bilinear equation

B( f ) =
�
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y

�

f · f

= 2

�

�

fx x x x f − 4 fx x x fx + 3 f 2
x x

�

+
�

f y y y y f − 4 f y y y f y + 3 f 2
y y

�

+ ( fx t f − fx ft) + ( f y t f − f y ft)−
�
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�

−
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�
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= 0, (2.3)

where Dx , Dy , Dt are three Hirota bilinear derivative operators. Actually, the connection

between the nonlinear model equation and the bilinear equation reads

P(u, v, w) =

�

B( f )

f 2

�

x y

, (2.4)
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where u, v, w are defined through the use of f in (2.2). Therefore, when f solves the bilinear

equation (2.3), u, v, w determined by (2.2) solve the spatial symmetric KP model equation

(2.1). We will show in the next section that there exist various lump wave solutions to our

model equation (2.1).

3. Lump Wave Solutions

In this section, we would like to compute lump wave solutions to the spatial symmetric

KP model equation (2.1) via symbolic computation with Maple, though the equation itself

does not pass the three-soliton test [18,25].

Applying a genetic ansatz on lump wave solutions in (2+1)-dimensions [19], we start

to determine positive quadratic function solutions

f = ξ2
1 + ξ

2
2 + a9, ξ1 = a1 x + a2 y + a3 t + a4, ξ2 = a5 x + a6 y + a7 t + a8 (3.1)

to the corresponding Hirota bilinear equation (2.3), where ai, 1≤ i ≤ 9, are real constants

to be determined. It is recognized that this is a general form for lump wave solutions

of lower order in (2+1)-dimensions [43]. The crucial task is then to conduct symbolic

computation to determine those constant parameters ai , 1≤ i ≤ 9.

A direct computation with a Maple code determines a set of solutions for the parameters
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6
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2(a1a6 − a2a5)
2

,

(3.2)

and all other ai are arbitrary. The above solutions for a3 and a7 tell a kind of dispersion

relations in (2+1)-dimensional dispersive waves, and the solution for a9 exhibits a compli-

cated coefficient in quadratic function solutions to Hirota bilinear equations. Lump waves

with dispersion relations of higher-order have also been explored for the second equation

in the integrable KP hierarchy [42].

We emphasize that all the above expressions for the wave frequencies and the constant

term in (3.2) were simplified with the help of Maple. Note that

a1 + a2 = a5 + a6 = 0

leads to

∆ = a1a6 − a2a5 = 0.

Therefore, to generate lump wave solutions from the logarithmic derivative transforma-

tions, we need only one basic condition

∆ = a1a6 − a2a5 6= 0, (3.3)
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which is necessary and sufficient to guarantee the characteristic properties of the lump

waves: both the analyticity of the rational solutions and the localization of the solutions in

all spatial directions.

4. Characteristic Behaviors

Let us consider the system

fx (x(t), y(t), t) = 0, f y(x(t), y(t), t) = 0

to determine critical points of the function f . Since f is quadratic, it gives

a1ξ1 + a5ξ2 = 0, a2ξ1 + a6ξ2 = 0,

which is equivalent to

ξ1 = a1 x + a2 y + a3 t + a4 = 0, ξ2 = a5 x + a6 y + a7 t + a8 = 0 (4.1)

under the condition (3.3). Solving this system (4.1) for both x and y, we obtain all critical

points of f

x = x(t) = −
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2
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5
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6
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,

(4.2)

where t is an arbitrary time parameter. All these critical points form two characteristic

lines traveling with fixed velocities. Because the sum of two squares, namely, the function

f − a9, vanishes at all critical points, it follows that f is positive if and only if a9 > 0. This

implies that u, v, w determined by (2.2) are analytical in R3 if and only if a9 > 0. It further

follows that our rational solutions u, v, w are all analytical in R3, since we have a9 > 0 in

our solutions by (3.2).

For any fixed time t, it is direct to see that each point (x(t), y(t)) by (4.2) is also a critical

point of the functions u, v and w determined by (2.2). Then by the second derivative test,

we see that the solutions v and w have a peak at the point (x(t), y(t)), upon noting that
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But the solution u will have a peak or valley at the point (x(t), y(t)), depending on a1a2+

a5a6 > 0 or a1a2+a5a6 < 0, when 3(a1a2+a5a6)
2 > (a1a6−a2a5)

2. The point (x(t), y(t))

is a saddle point of u, when 3(a1a2 + a5a6)
2 < (a1a6 − a2a5)

2. The second derivative test

will be inconclusive, when 3(a1a2 + a5a6)
2 = (a1a6 − a2a5)

2. All this is because we have
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The extreme values of u, v and w at the critical points (x(t), y(t)) read
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Those three extreme values do not depend on time t, and they can tend to either zero or

nonzero, when ∆ = a1a6 − a2a5 goes to zero.

5. Dispersion Effect

The two negative second-order linear dispersion terms in the spatial symmetric KP

model (2.1) are essential to guarantee the existence of lump waves.

Taking two second-order linear dispersion terms with the positive sign, we have another

spatial symmetric KP model

P(u, v, w) = ux t + 6ux vx + 6ux x v + ux x x x + uy y

+ uy t + 6uy w y + 6uy y w+ uy y y y + ux x = 0, (5.1)

where vy = ux and wx = uy . This spatial symmetric model equation has the following

Hirota bilinear form:
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�
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y

�

f · f

= 2

�

�

fx x x x f − 4 fx x x fx + 3 f 2
x x

�

+
�

f y y y y f − 4 f y y y f y + 3 f 2
y y

�

+ ( fx t f − fx ft) + ( f y t f − f y ft) +
�

fx x f − f 2
x

�

+
�

f y y f − f 2
y

�

�
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In fact, this equation (5.2) connects (5.1) as in (2.4), under (2.2). The model equation

(5.1) possesses a singular rational solution through (3.1) with

a3 = −
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The singularity of the resulting solution is caused by the negative value of the constant

term a9. This phenomenon is completely similar to the one in the standard KP model [19].

Moreover, we have the spatial symmetric KP model without second-order linear disper-

sion terms

P(u, v, w) = ux t + 6ux vx + 6ux x v + ux x x x

+ uy t + 6uy w y + 6uy y w+ uy y y y = 0, (5.3)

where vy = ux and wx = uy . This model equation possesses a Hirota bilinear form

B( f ) =
�

D4
x
+ D4

y
+ Dx Dt + Dy Dt

�

f · f = 0 (5.4)

under (2.2). The link between (5.3) and (5.4) is the same as (2.4). However, we fail to

find any lump waves to this dispersionless KP model by symbolic computation with Maple.

The model equation (5.3) is similar to the spatial symmetric (2+1)-dimensional KdV model

P(u, v, w) = uy t + 3(uv)x y + ux x x y + ux t + 3(uw)x y + uy y y x = 0, (5.5)

where vy = ux and wx = uy . It is transformed into

B( f ) =
�

D3
x Dy + Dy Dt + D3

y Dx + Dx Dt

�

f · f

= 2

�

( fx x x y f − fx x x f y − 3 fx x y fx + 3 fx x fx y) + ( f y t f − f y ft)

+ ( f y y y x f − f y y y fx − 3 f y y x f y x + 3 f y y f y x ) + ( fx t f − fx ft)

�

= 0 (5.6)

under (2.2). The link between (5.5) and (5.6) is the same as (2.4), again. There is no lump

wave found for this nonlinear (2+1)-dimensional model, either.

6. Concluding Remarks

By conducting Maple symbolic computation, we have shown that there are lump waves

in a spatial symmetric KP model with negative second-order linear dispersion terms, and
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the second-order linear dispersion terms are absolutely essential to achieving lump wave

solutions. The proposed lump wave solutions were explicitly worked out, through present-

ing the frequencies a3, a7 and the constant term a9, in terms of the wave numbers in the

quadratic function solutions. Characteristic properties were also explored, together with

an analysis on the role that the second-order linear dispersion terms play.

We remark that the adopted ansatz on lump waves is increasingly being used in com-

putations of exact and explicit solutions to nonlinear dispersive wave equations [4, 9, 57],

and all such presented solutions provide insights about lump wave generation. Links to

other solution methods in soliton theory should be interesting, including Darboux trans-

formations [58], the Wronskian technique [41,56], the multiple-wave expansion approach

[15, 22], the generalized bilinear approach [16], auto-Bäcklund transformations [11, 48],

the Riemann-Hilbert technique [21,29–34,36], symmetry reductions [5,55], and symmetry

constraints — cf. [14,38] and [35] for the continuous and discrete cases, respectively.

We also point out that various recent studies exhibit the striking richness of lump wave

solutions to both linear PDEs [22, 24], and nonlinear PDEs in (2+1)-dimensions [46, 49,

62] and (3+1)-dimensions [20, 53, 65]. With the help of the Hirota bilinear forms and

the generalized bilinear forms, some more general formulations have been presented for

lump wave solutions [3, 43, 44]. Other classes of homoclinic and heteroclinic interaction

solutions between lump wave solutions and other dispersive wave solutions have also been

constructed for various integrable models [13,40,60].
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