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Abstract We aim at seeking nonlinearity-managed lump waves in a spatial symmetric HSI
model. Nonlinear terms play an important role in formulating such lump waves with the dis-
persion terms in the nonlinear model. Based on an associated Hirota bilinear form, an ansatz
on quadratic function solutions is adopted for the corresponding Hirota bilinear equation,
and symbolic computation with Maple is made to construct the required lump waves. A few
of characteristic properties of the obtained lump waves are determined and some concluding
remarks are given.

1 Introduction

It is known that nonlinear waves usually change while propagating in physical media. Soli-
tons are a particular kind of nonlinear waves that keep the amplitudes and widths during
propagation. Such wave motions were first observed in water waves [1,2] and then in optical
fibers [3,4]. The effects of nonlinearity and dispersion play important roles in formulating
such permanent and localized waves.

Soliton theory provides us with a few powerful approaches to compute solitons in non-
linear dispersive wave models, among which are the inverse scattering transform [5] and the
Hirota bilinear method [6]. The inverse scattering transform is a nonlinear analogue and a
generalization of the Fourier transform. It is aimed to solve Cauchy problems of nonlinear
integrable models [7] and obtain long-time asymptoticis of solitonless waves [8]. We will
focus our analysis on the Hirota bilinear method to seek lump waves in (2+1)-dimensions
below.

Let P be a polynomial in two space variables x, y and time ¢. A Hirota bilinear differential
equation in (2+1)-dimensions is defined by

P(Dy,Dy,D)f - f =0, (1.1)
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where Dy, Dy and D; are Hirota bilinear derivatives [6]:

0 d 0 il il

4 q 9 \" ,
DfoviD,rf f= (a - g) <@ - 37y’) (5 - g) Fey. 0 f& Yy, |x’:x,y’:y.r’:t,

P, g, r being nonnegative integers. An associated partial differential equation with a depen-
dent variable u is often determined by one logarithmic derivative transformation of

u=2(nf)y, u=2(nf)xe, u=2(nf)y. (1.2)

Within the Hirota bilinear formulation, an N-soliton solution (see, e.g., [9,10]) is presented
through

N
f= 0 exp | Dok + ) pinjai |- (13)
u=0,1 i=1 i<j

where ) 1=0.1 denotes the sum over all possibilities for w1, po, - -+, un taking either O or
1, and the wave variables &; and the phase shifts g;; are defined by

& =kix +1Liy—wit+&p 1=<i=<N, (1.4)

and

eaij— P(kl-—kj,l,-—lj,wj—a),-)

= — , <i<j<N, (1.5)
Plki +kj,l;i +1j, 0j + ;)

respectively. In this N-soliton solution, the wave numbers k;, /; and the frequencies w; need
to satisfy the associated dispersion relations

P(ki,li, —wi) =0, 1<i=<N, (1.6)

but the constant phase shifts &; o are arbitrary.

Recent studies show that lump waves (and rogue waves) in integrable models are remark-
ably rich, and they describe various nonlinear phenomena [11]. Such waves are determined
through rational functions localized in all directions in space (see, e.g., [11,12]). Long wave
limits of soliton solutions can also produce lump wave solutions (see, e.g., [13]). The KPI
equation has a large class of lump wave solutions (see, e.g., [14]), and its special lump waves
can be generated from its soliton solutions, indeed [15]. Other integrable models which
possess lump waves include the three-wave resonant interaction [16], the BKP equation
[17,18], the Davey—Stewartson II equation [13], the Ishimori-I equation [19], and the KP
equation with a self-consistent source [20]. Furthermore, nonintegrable models can possess
lump waves, among which are several generalized KP, BKP and KP-Boussinesq equations
in (2+1)-dimensions [21-23], and there also exist lump waves in linear models (see, e.g.,
[24,25]) and even with higher-order dispersion relations [26]. An important step in seeking
lump waves is to first compute positive quadratic function solutions to bilinear equations,
and then the logarithmic derivative transformations produce lump waves for nonlinear model
equations [11].

In this paper, we would like to seek lump waves in a spatial symmetric HSI model. We
will use the Hirota bilinear form in the solution process (see, e.g., [11,27]). The introduced
spatial symmetric HSI model contains two sets of nonlinear terms and second-order linear
terms. The nonlinearity terms balance the linear terms to generate lump waves. Symbolic
computation with Maple will be made to determine nonlinearity-managed lump waves and
a few of characteristic behaviors will be explored for the presented lump waves. Concluding
remarks will be given in the last section.
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2 A spatial symmetric HSI Model
Let o be a non-zero constant. We consider a spatial symmetric HSI model equation:

P(u) =aGBuyx pr + 3uy prx + 3upxv + 3 vy + Upxxx) + Uy + Ugy
+ aBuyyqr + 3uyqry + 3uyw + 3uwy + Upyyy) + ity + Uy =0, 2.1)
where vy = uy, wy = uy, px = v, gy = w, to explore nonlinearity-managed lump waves.
The first half or the second half of this nonlinear model gives the HSI model equation in

(2+1)-dimensions exactly [28].
We can directly check that under the logarithmic derivative transformations

u=2(nflry, v=20n flrx, w=2(nf)yy, p=20nf)r, g =2(nf),, (2.2)

the above spatial symmetric HSI model equation (2.1) is put into the Hirota bilinear equation:

B(f) =(@DiD; + DyD; + D} +aD3D; + Dy Dy + D) f - f
:z[a(ftxxxf - 3ftxxfx + 3ftxfxx - ftfxxx) + (ftyf - ftfy) + (fxxf - fx2)
+alfryyy f =3 fiyy fy +3fiy fyy — frfyyy) + ax f = fi fo) + Fyy f — fyz)] =0,
(2.3)

where Dy, Dy and D, are three Hirota bilinear derivatives. In fact, the connection between
the nonlinear model equation and the bilinear equation is given by

B(f ))
P(u) = ,
(u) ( =)

where u, v, w, p, g are determined by f in (2.2). It is now clear that if f solves the bilinear
equation (2.3), then u, v, w, p, g defined by (2.2) solve the spatial symmetric HSI model
equation (2.1). We will exploret abundant lump waves in our model equation (2.1) in the next
section.

3 Nonlinearity-managed lump waves

We would now like to construct lump wave solutions to the spatial symmetric HSI model
equation (2.1), with the help of symbolic computation by Maple. It is easy to check that the
above nonlinear model equation does not pass the three-soliton test (see, e.g., [10] for the
three-soliton test).

Using a general ansatz on lump waves in (2+1)-dimensions [14], we begin with looking
for positive quadratic function solutions

f=E+E& +ao, & =aix + @y +ast +as, & =asx +agy +art +ag,  (3.1)
to the corresponding Hirota bilinear equation (2.3), where the parameters a; are real constants
to be determined. It is known that this is a general form for lump wave solutions of lower order

in (2+1)-dimensions [11]. A crucial task is now to make symbolic computation to determine
the involved constant parameters a; .
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A standard computation with Maple tells a set of solutions for the parameters:

L (a1 + ag)(al2 + a%) + aj (ag + 2asaq — aé) — az(ag — 2asa¢ — aé)

a (a1 +.a2)? + (as + ap)?

(as + ae)(a? + a?) + as(a? + 2a1a; — a?) — ag(a? — 2a1a; — a3)
a7 = — (3.2)

(a1 + a2)? + (as + ae)? ’
b,

3@ + a? + a? + a2
ag = (aj 2 5 6)a

2(a1a¢ — azas)?

and all other parameters are arbitrary. In the above solution set, the polynomial b is given by

b = b(a1, az, as, ag) = aj + a5 + ajaz(ai + a3) + 2(af — a3) (a2 — a?)

+aiax(as + a)* + asas(ay + a2)* + (a3 — asas + ag)(as + ag)*,  (3.3)
which satisfies a symmetric property
b(ai, az, as, ag) = b(az, ai, ae, as). (3.4)

The expressions for a3, a7 and ag by (3.2) also satisfy this symmetric property, which reflects
the spatial symmetric character of the nonlinear model equation (2.1). The above solutions
for a3 and a7 represent a kind of dispersion relations in (2+1)-dimensional dispersive waves,
and the solution for ag determines a complicated coefficient in quadratic function solutions
to Hirota bilinear equations. Higher-order dispersion relations in lump waves have also been
exhibited for the second member in the integrable KP hierarchy [26].

All the above expressions for the wave frequencies and the constant term in (3.2) with
(3.3) were simplified through applying Maple. Obviously,

ay+ay =as+ag =0 3.5)

yields
A = ajag — aras = 0. 3.6)

Therefore, to formulate lump wave solutions by means of the logarithmic derivative trans-
formations, we require two basic conditions:

A =ajag —aras =20, ab > 0, 3.7

where b is the polynomial determined by (3.3). Those two conditions guarantee the charac-
teristic properties of lump waves: the analyticity of the rational solutions and the localization
of the solutions in all spatial directions.

The condition ab > 0 involves the coefficient « of the nonlinear terms. When b > 0, we
can have lump waves for the spatial symmetric HSI model with « > 0, and when b < 0, we
can have lump waves for the spatial symmetric HSI model with @ < 0. In other words, the
nonlinear terms with different signs determine different lump waves for the model equation
(2.1).

4 Characteristic behaviors
In order to obtain critical points of the function f, let us solve the system

Je(x (@), y(0), 1) =0, fy(x(0), (1), 1) = 0. 4.1
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Since f is quadratic, it equivalently gives
aiér +asér =0, ax§ +asbr =0, (4.2)
which exactly requires
S l=aix+ayy+tast+as=0, & =asx+agy+art+ag=0, 4.3)

under the first condition in (3.7). Solving this system for x and y, we get all critical points

of f:

2 2 2 2
ay +2a1a; — a5 + az + 2asag — a arag — d4dg
x=x(1) =1 — S+

(a1 + a2)? + (as + ap)? ajag — axas’ 4.4
) = a%—2a1a2—a§+a§—2a5a6—a§ aiag — asas @4)
Y= (a1 + a2)? + (as + ap)? ayag — axas’

where 7 is an arbitrary time parameter. Those critical points represent two characteristic lines
traveling with constant velocities. Since the sum of two squares, namely, the function f — ao,
vanishes at all those critical points, we can see that f > 0 if and only if ag > 0. It then
follows that u, v, w defined by (2.2) are analytical in R3 if and only if ag > 0, i.e., ab > 0,
which is the second condition in (3.7).

For any fixed time ¢, we can directly show that each point (x(¢), y(¢)) defined by (4.4)
is also a critical point of the functions u, v and w defined by (2.2). By the second partial
derivative test, we know that the solutions v and w have a peak at the point (x(¢), y(t)),

because
32(a? + a?)*(ayas — azas)*

U el 9
” 3[a(a? + a2 + a2 + a2)b)? @.5)
, 1024(a? + a2)*(ara — azas)'® '
UxxV — v = )
TR 27a(@d + a3 + a2 + a2)b)
and
o — _ 32[3(a1a2 + asag)* + (a1a6 — azas)*|(arag — azas)* -0
o 9a(a? + al + a2 + a2)b)? ’ “6)
, 1024(a3 + ad)X(ara — aras)" '
WxxWyy — =

w =
Y 27a(at + a3 + a2 +ad)b]*

But the solution u has a peak (or valley) at the point (x(t), y(¢)), if ajaz + asag > 0 (or
ajay + asag < 0) and ¢ > 0; u has a saddle point (x(¢), y(¢)), if ¢ < 0; and the second
partial derivative test is inconclusive, if ¢ = 0; where

¢ = 3(a1az + asag)’ — (a1a6 — azas)*. (4.7)

All this follows from

y 32(af + a2)(a1as — azas)*(a1az + asae)
xx — T

3la(af + a3 + a3 + ag)b)?
2 _ 1024c(ajag — a2a5)10
Y 8l[a(al + aj + a2 + a})b1*’

)

(4.8)

UyxUyy — U

@ Springer



240 Page 6 of 8 Eur. Phys. J. Plus (2021) 136:240

where c is given by (4.7). The extreme values of v, w and u at the critical points (x (), y())
are as follows:

8(a? + a?)(aja6 — aras)?
305(5112 + a% + ag + aé)b ’
8(a3 + a?)(aras — azas)*
Wmaximum = ) ) 3 N (4.10)

3a(ay +ay + a5 +ag)b
8(aias — aras)*(aiaz + asas)
3a(a% + a% + "52 + aé)b

4.9)

Umaximum =

Uextremum = 4.11)
Observing those three extreme values, we can know that the lump waves may not decay,
when A = ajag — apas tends to zero.

5 Concluding remarks

With Maple symbolic computation, we have shown that there exist nonlinearity-managed
lump waves in a spatial symmetric HSI model, and the nonlinear terms play an essential role
in the formulation of the indicated lump waves. The resulting lump waves were explicitly
presented, through computing the frequencies a3, a7 and the constant term ag, by means of
the wave numbers in the quadratic function solutions. A few of characteristic behaviors were
explored, along with the discussion on the role that the nonlinear terms play.

We remark that extensive studies show the striking richness of lump wave solutions to
both linear wave equations [24,25], and nonlinear wave equations in (2+1)-dimensions (see,
e.g., [29-32]) and (3+1)-dimensions (see, e.g., [33,34]). Based on the Hirota bilinear forms
and the generalized bilinear forms, a few more generic solution formulations have been
established for lump waves [11,35]. Other kinds of homoclinic and heteroclinic solutions,
including interaction solutions between lump waves and other nonlinear waves (see, e.g.,
[22,36]), have also been generated for integrable models in (2+1)-dimensions.

We also point out that the adopted ansatz on lump wave solutions is increasingly being
adopted in computations of exact solutions to nonlinear wave equations (see, e.g., [37-39]). It
will be interesting to explore connections with other solution methods in soliton theory, such
as Darboux transformations (see, e.g., [40]), the Wronskian technique (see, e.g., [41]), the
multiple-wave expansion approach (see, e.g., [25,42-44]), the Riemann-Hilbert technique
(see, e.g., [45]), the generalized bilinear approach (see, e.g., [46]), symmetry reductions
(see, e.g., [47]), and symmetry constraints (see, e.g., [48] and [49] for the continuous and
discrete cases, respectively). We hope that the studies of lump solutions will enhance our
understanding of nonlinear dispersive wave propagation and interaction.
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