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Abstract
We present a binary Darboux transformation for multicomponent NLS equations and
their reduced integrable counterparts. The starting point is to apply two pairs of
eigenfunctions and adjoint eigenfunctions, and the resulting binary Darboux trans-
formation can be decomposed into an N -fold Darboux transformation. By taking the
zero potential as a seed solution, soliton solutions are generated from the binary Dar-
boux transformation for multicomponent NLS equations and their reductions.

Keywords Matrix spectral problem · Binary Darboux transformation · Soliton
solution
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1 Introduction

Soliton theory provides various analytical methods to generate exact solutions to non-
linear partial differential equations [1–3]. One of the efficient approaches to soliton
solutions is the Darboux transformation (DT). The key in establishing DTs is to use a
pair of spatial and temporal matrix spectral problems (see, e.g., [4–6]). A binary DT
begins with two pairs of matrix spectral problems and adjoint matrix spectral prob-
lems. We would like to present a binary DT for multicomponent NLS equations and
their reduced integrable counterparts.
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Let u = u(t, x) be a potential vector, with t and x being the independent variables.
We start from a pair of matrix spectral problems:

−iφx = Uφ = U (u, λ)φ, −iφt = Vφ = V (u, λ)φ, (1.1)

where i is the unit imaginary number, λ denotes a spectral parameter, and φ is an
m-dimensional column eigenfunction. Usually, an integrable equation is associated
with the zero curvature equation, i.e., the compatibility condition of the above two
matrix spectral problems,

Ut − Vx + i[U , V ] = 0, (1.2)

where [·, ·] is the matrix commutator [1–3]. The adjoint spectral problems of (1.1) are
defined by

i φ̃x = φ̃U , i φ̃t = φ̃V . (1.3)

Their compatibility condition yields the same zero curvature equation as above. More-
over, we can reduce matrix spectral problems (or Lax pairs) to generate reduced
integrable equations (see, for example, [7]).

A binary DT consists of

φ′ = T+φ, φ̃′ = φ̃T−, u′ = f (u), (1.4)

provided that a new Lax pair is presented by

U ′ = −iT+
x (T+)−1 + T+U (T+)−1, V ′ = −iT+

t (T+)−1 + T+V (T+)−1, (1.5)

where (T+)−1 = T− and U ′ = U |u=u′ and V ′ = V |u=u′ . This implies that φ′ and φ̃′
satisfy

− iφ′
x = U ′φ′, −iφ′

t = V ′φ′, (1.6)

and

i φ̃′
x = φ̃′U ′, i φ̃′

t = φ̃′V ′, (1.7)

respectively. Either (1.6) or (1.7) ensures that the new Lax pair, U ′ and V ′, generates
the same zero curvature equation with u replaced with u′, and hence u′ gives a new
solution to the corresponding integrable equation. There are plenty of examples of
binary DTs for integrable equations of NLS type in the literature (see, for example,
[4,8–11]).

In this paper, we would like to present a binary DT for multicomponent NLS
equations and their reduced integrable counterparts, starting from an arbitrary-order
matrix spectral problem.Upon taking the zero potential as a seed solution, applications
of the resulting binary DT present N -soliton solutions. A few concluding remarks are
finally given in the last section.
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2 Multicomponent NLS equations

2.1 Unreduced case

Let n be an arbitrarily given natural number and In denote the identity matrix of size
n. We consider a pair of matrix spectral problems (see, for example, [12,13]):

{−iφx = Uφ = U (u, λ)φ,

−iφt = Vφ = V (u, λ)φ,
(2.1)

where u = (p, qT )T with p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn)T , and the
Lax pair, U and V , is defined by

U = λ� + P, V = λ2� + Q. (2.2)

The involved four square matrices, �,�, P and Q, are given as follows:

� = diag(α1, α2 In), P = P(u) =
[
0 p
q 0

]
, (2.3)

� = diag(β1, β2 In), Q = Q(u, λ) = β

α
λ

[
0 p
q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
,

(2.4)

where α1, α2 and β1, β2 are two pairs of different numbers, α = α1 − α2 and β =
β1 − β2. Obviously, the matrix Q can be expressed in terms of the potential matrix P
as follows:

Q = Q(P, Px ) = β

α
λP − β

α2

{[
1 0
0 −In

]
P2 +

[
i 0
0 −i In

]
Px

}
. (2.5)

A simplest example of the spatial spectral problem in (2.1) with p j = q j = 0, 2 ≤
j ≤ n, gives the standard AKNS spectral problem [14]. Owing to the existence of a
multiple eigenvalue of�, the multicomponent spatial matrix spectral problem in (2.1)
is degenerate.

The zero curvature equation associated with the matrix spectral problems in (2.1)
leads to the following multicomponent NLS equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p j,t = − β

α2 i[p j,xx + 2(
n∑

l=1

plql)p j ], 1 ≤ j ≤ n,

q j,t = β

α2 i[q j,xx + 2(
n∑

l=1

plql)q j ], 1 ≤ j ≤ n.

(2.6)

When n = 1, we can have

i p1,t = p1,xx + 2p21q1, −iq1,t = q1,xx + 2p1q
2
1 . (2.7)
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When n = 2, we can get

i p j,t = p j,xx + 2(p1q1 + p2q2)p j , −iq j,t = q j,xx + 2(p1q1 + p2q2)q j ,

1 ≤ j ≤ 2. (2.8)

Under a special kind of symmetric reductions, the above multicomponent NLS
equations (2.8) can be reduced to the Manokov system [15], and an integrable decom-
position into finite-dimensional Hamiltonian systems was presented for that reduced
system in [16].

2.2 Reduced case

Let us now conduct reductions (see also [7] for the basic idea). We make a specific
kind of group reductions for the spectral matrix U :

U †(x, t, λ∗) = CU (x, t, λ)C−1, C =
[
1 0
0 �

]
, �† = �. (2.9)

This equivalently requires that

P†(x, t) = CP(x, t)C−1. (2.10)

Henceforth, � is a constant invertible Hermitian matrix, † stands for the Hermitian
transpose, and ∗ denotes the complex conjugate.

Corresponding to the reductions in (2.10), we have the reductions for the potential
vector:

q(x, t) = �−1 p†(x, t), (2.11)

where � is an arbitrary invertible Hermitian matrix. These reductions imply that

V †(x, t, λ∗) = CV (x, t, λ)C−1, Q†(x, t, λ∗) = CQ(x, t, λ)C−1, (2.12)

where V and Q are defined in (2.2) and (2.4), respectively.
It is now direct to see that each reduction in (2.10) (or (2.11)) is compatible with the

zero curvature equation of the reduced spatial and temporal matrix spectral problems
of (2.1). Therefore, under (2.10), the multicomponent NLS equations (2.6) generate
the following reduced multicomponent NLS equations:

i pt = β

α2 [pxx + 2p�−1 p† p], (2.13)

where p = (p1, p2, · · · , pn) and � is an arbitrary invertible Hermitian matrix.
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When n = 1, taking α = β = 1 and� = 1
σ
, we obtain the focusing and defocusing

NLS equations:

i p1,t = p1,xx + 2σ p21 p
∗
1, σ = ∓1, (2.14)

respectively. When n = 2, we can obtain a new system of integrable two-component
NLS equations:

{
i p1,t = p1,x,x + (c1|p1|2 + c2|p2|2)p1,
i p2,t = p2,x,x + (c1|p1|2 + c2|p2|2)p2, (2.15)

where c1 and c2 are arbitrary nonzero real constants.

3 Binary Darboux transformation

3.1 General skeleton ofM-matrices and Darbouxmatrices

Let N be annother arbitrarily given natural number. We start from two sets of eigen-
functions and adjoint eigenfunctions:

− ivk,x = U (u, λk)vk, −ivk,t = V (u, λk)vk, 1 ≤ k ≤ N , (3.1)

and

i v̂k,x = v̂kU (u, λ̂k), i v̂k,t = v̂kV (u, λ̂k), 1 ≤ k ≤ N , (3.2)

where λk and λ̂k , 1 ≤ k ≤ N , are arbitrary eigenvalues and adjoint eigenvalues,
respectively. Let us set

v = (v1, · · · , vN ), v̂ = (v̂T1 , · · · , v̂TN )T , (3.3)

and then we can compactly write the equations for the eigenfunctions as follows:

− ivx = �vA + Pv, i v̂x = Âv̂� + v̂P, (3.4)

and

−ivt = �vA2 + (Q(λ1)v1, · · · , Q(λN )vN ),

i v̂t = Â2v̂� + (v̂1Q(λ̂1), · · · , v̂N Q(λ̂N )), (3.5)

where

A = diag(λ1, · · · , λN ), Â = diag(λ̂1, · · · , λ̂N ). (3.6)
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Now introduce a square M-matrix:

M = (mkl)N×N , mkl =
⎧⎨
⎩

v̂kvl

λl − λ̂k
, if λl �= λ̂k,

0, if λl = λ̂k,

where 1 ≤ k, l ≤ N . (3.7)

This M-matrix incorporates zero entries, if λl = λ̂k , where 1 ≤ k, l ≤ N , and so it
generalizes the traditional soliton case without zero entries (see, for example, [3,17])
and particularly presents soliton solutions to nonlocal integrable equations (see, e.g.,
[18]). Further, if M is invertible, we can introduce two Darboux matrices:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T+ = T+(λ) = In+1 −
N∑

k,l=1

vk(M−1)kl v̂l

λ − λ̂l
,

T− = T−(λ) = In+1 +
N∑

k,l=1

vk(M−1)kl v̂l

λ − λk
,

(3.8)

and define

T±
1 (λ) = lim

λ→∞[λ(T±(λ) − In+1)]. (3.9)

We can easily rewrite

T+ = In+1 − vM−1 R̂v̂, T− = In+1 + vRM−1v̂, (3.10)

where

R = diag(
1

λ − λ1
, · · · ,

1

λ − λN
), R̂ = diag(

1

λ − λ̂1
, · · · ,

1

λ − λ̂N
); (3.11)

and obtain

T+
1 = −vM−1v̂, T−

1 = vM−1v̂, (3.12)

which also implies that

T+
1 = −T−

1 . (3.13)

These two Darboux matrices possess the following properties.
(a) Spectral property:

( N∏
l=1

(λ − λ̂l)T
+)

(λk)vk = 0, v̂k
( N∏
l=1

(λ − λl)T
−)

(λ̂k) = 0, 1 ≤ k ≤ N . (3.14)
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(b) Partial fractional decomposition:

T+ = In+1 −
N∑

k=1

vM
k v̂k

λ − λ̂k
, T− = In+1 +

N∑
k=1

vk v̂
M
k

λ − λk
, (3.15)

where

{
(vM

1 , · · · , vM
N ) = (v1, · · · , vN )M−1,

((v̂M
1 )T , · · · , (v̂M

N )T )T = M−1(v̂T1 , · · · , v̂TN )T .

(c) Binary Darboux characteristic: If an orthogonal condition

v̂kvl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N , (3.16)

is satisfied, then we have

R̂v̂vR = MR − R̂M, T+(λ)T−(λ) = In+1. (3.17)

3.2 Binary DT in the unreduced case

To formulate a DT, we need to compute the derivatives of the M-matrix with respect
to x and t . It is direct to see that if

v̂k�vl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N , (3.18)

then we have

Mx = i v̂�v; (3.19)

and if

v̂k�[k,l]vl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N , (3.20)

with

�[k,l] = (λ̂k + λl)� + β

α
P, 1 ≤ k, l ≤ N , (3.21)

then we have

Mt = i( Âv̂�v + v̂�vA + β

α
v̂Pv). (3.22)

Now, a general binary DT can be formulated (see also [19] for details) as follows.
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Theorem 3.1 (General structure) Let �[k,l] be defined by (3.21). Then, when the con-
ditions:

v̂kvl = v̂k�vl = v̂k�[k,l]vl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N , (3.23)

are satisfied, we have a binary DT:

φ′ = T+φ, φ̃′ = φ̃T−, P ′ = P + [T+
1 ,�], (3.24)

for the multicomponent NLS equations (2.6).

Moreover, if {λk | 1 ≤ k ≤ N } ∩ {λ̂k | 1 ≤ k ≤ N } = ∅, which is the standard case,
we can decompose the above general binary DT into an N -fold binary DT:

T+ = T+[[N ]]T+[[N − 1]] · · · T+[[1]], T− = T−[[1]] · · · T−[[N − 1]]T−[[N ]],
(3.25)

by introducing new eigenfunctions and adjoint eigenfunctions. In the above formulas,
T+[[k]] and T−[[k]], 1 ≤ k ≤ N , are recursively defined as single binary Darboux
matrices:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
T+[[k]] = T+[[k]](λ) = In+1 − λk − λ̂k

λ − λ̂k

v′
k v̂

′
k

v̂′
kv

′
k
, 1 ≤ k ≤ N ,

T−[[k]] = T−[[k]](λ) = In+1 + λk − λ̂k

λ − λk

v′
k v̂

′
k

v̂′
kv

′
k
, 1 ≤ k ≤ N ,

(3.26)

where new eigenfunctions and adjoint eigenfunctions read

v′
k = T+{k − 1}(λk)vk, v̂′

k = v̂kT
−{k − 1}(λ̂k), 1 ≤ k ≤ N , (3.27)

in which we have T+{0} = T−{0} = In+1 and

T+{k} = T+[[k]] · · · T+[[2]]T+[[1]], T−{k} = T−[[1]]T−[[2]] · · · T−[[k]], 1 ≤ k ≤ N .

(3.28)

3.3 Binary DT in the reduced case

To ensure the reduction property for U ′, determined by (2.9), let us take

λ̂k = λ∗
k , 1 ≤ k ≤ N . (3.29)

At this moment, we can find that

(T+
1 (x, t))† = −CT+

1 (x, t)C−1 (3.30)
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will guarantee the reduction property (2.9) forU ′. To satisfy this condition (3.30) , we
then take

v̂k(x, t, λ̂k) = v
†
k (x, t, λk)C, 1 ≤ k ≤ N , (3.31)

and impose the following three conditions:

v
†
kCvl = v

†
kC�vl = v

†
kC�[k,l]vl = 0, if λl = λ̂k, (3.32)

where 1 ≤ k, l ≤ N .

Finally, the binary DT (3.24) is reduced to a binary DT for the reduced multicom-
ponent NLS equations (2.13). We state the result in the following theorem.

Theorem 3.2 Let {λ̂k | 1 ≤ k ≤ N } be determined by (3.29) and {v̂k | 1 ≤ k ≤ N } be
taken as in (3.31) with the orthogonal properties for {vk | 1 ≤ k ≤ N } in (3.32). Then
the binary Darboux transformation (3.24) is reduced to a binary Darboux transfor-
mation for the reduced multicomponent NLS equations (2.13).

4 Soliton solutions

4.1 Unreduced case

We begin with two arbitrary sets of eigenvalues and adjoint eigenvalues: {λk ∈ C| 1 ≤
k ≤ N } and {λ̂k ∈ C| 1 ≤ k ≤ N }, respectively. Upon taking P = 0 as a seed solution,
we can work out the corresponding eigenfunctions and adjoint eigenfunctions

vk(x, t) = eiλk�x+iλ2k�twk, 1 ≤ k ≤ N , (4.1)

v̂k(x, t) = ŵke
−i λ̂k�x−i λ̂2k�t , 1 ≤ k ≤ N , (4.2)

where wk and ŵk , 1 ≤ k ≤ N , are arbitrary constant column and row vectors,
respectively, but need to satisfy three orthogonal conditions:

ŵkwl = ŵk�wl = (λ̂k + λl)ŵk�wl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N , (4.3)

where � is defined as in (2.3).
Now based on the binary DT (3.24), we obtain a new potential matrix:

P ′ = [T+
1 ,�], T+

1 = −vM−1v̂ = −
N∑

k,l=1

vk(M
−1)kl v̂l . (4.4)
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Consequently, this yields a kind of N -soliton solutions to the multicomponent NLS
equations (2.6):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p j = α

N∑
k,l=1

vk,1(M
−1)kl v̂l, j+1, 1 ≤ j ≤ n,

q j = −α

N∑
k,l=1

vk, j+1(M
−1)kl v̂l,1, 1 ≤ j ≤ n,

(4.5)

where we set vk = (vk,1, vk,2, · · · , vk,n+1)
T and v̂k = (v̂k,1, v̂k,2, · · · , v̂k,n+1), 1 ≤

k ≤ N .

4.2 Reduced case

Let us now consider the reduced case. We need to guarantee the involution condition
(3.30) to engender N -soliton solutions to the reduced multicomponent NLS equations
(2.13). This equivalently needs us to check if the newly obtained potential matrix
P ′ through the binary DT satisfies the reduction property (2.10). When this is true,
the N -soliton solution to the multicomponent NLS equations (2.6) is reduced to the
N -soliton solution:

p j = α

N∑
k,l=1

vk,1(M
−1)kl v̂l, j+1, 1 ≤ j ≤ n, (4.6)

for the corresponding reduced multicomponent NLS equations (2.13), where
vk = (vk,1, vk,2, · · · , vk,n+1)

T and v̂k = (v̂k,1, v̂k,2, · · · , v̂k,n+1), 1 ≤ k ≤ N , as
before.

To ensure the involution property (3.30), we then take N eigenvalues λk ∈ C, 1 ≤
k ≤ N , and define {λ̂k | 1 ≤ k ≤ N } as in (3.29). Further, upon taking P = 0, we can
determine the corresponding eigenfunctions vk , 1 ≤ k ≤ N , by

vk(x, t) = vk(x, t, λk) = eiλk�x+iλ2k�twk, 1 ≤ k ≤ N , (4.7)

respectively, where wk, 1 ≤ k ≤ N , are arbitrary column vectors. Now, based on
the previous analysis on the reductions, the corresponding adjoint eigenfunctions v̂k ,
1 ≤ k ≤ N , can be taken as

v̂k(x, t) = v̂k(x, t, λ̂k) = v
†
k (x, t, λk)C = w

†
ke

−i λ̂k�x−i λ̂2k�tC, 1 ≤ k ≤ N , (4.8)

respectively. The three orthogonal properties in (3.32) become the following three new
conditions:

w
†
kCwl = w

†
kC�wl = (λ̂k + λl)w

†
kC�wl = 0, if λl = λ̂k, where 1 ≤ k, l ≤ N ,

(4.9)
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on {wk | 1 ≤ k ≤ N }. It is worth noting that the situation of λk = λ̂k occurs only when
taking λk ∈ R. Obviously, due to α1 �= α2, the two conditions in (4.9) equivalently
require that

w∗
k,1wl,1 = 0, (w∗

k,2, · · · , w∗
k,n+1)�(wl,2, · · · , wl,n+1)

T = 0, if λl = λ̂k, where

1 ≤ k, l ≤ N , (4.10)

in which we set wk = (wk,1, wk,2, · · · , wk,n+1)
T , 1 ≤ k ≤ N .

Finally, we see that the formula (4.6), together with (3.7), (4.7) and (4.8), gives
N -soliton solutions to the reduced multicomponent NLS equations (2.13).

5 Concluding remarks

The paper aims to present a binary Darboux transformation (DT) for a kind of mul-
ticomponent NLS equations and their reduced integrable counterparts. The crucial
step is to utilize pairs of eigenfunctions and adjoint eigenfunctions. The resulting for-
mulation can be applied to construction of soliton solutions to other multicomponent
integrable equations such as the mKdV equations and the Hirota equations.

Our success is to introduce a generalized M-matrix in establishing binary DTs. The
motivation is derived from various recent studies on Riemann-Hilbert problems for
nonlocal integrable equations (see, for example, [18]) . Our general formulation of
binary DTs can be applied to both local and nonlocal integrable equations (see, for
example, [18,20–23] for nonlocal theories).

Further interesting questions include how one can determine other kinds of exact
solutions, for example, lump solutions [24,25], through DTs; and what binary DTs
there exist for integrable couplings, i.e., integrable equations associated with general
Lie algebras (see [26] for DTs for integrable couplings).
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