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a b s t r a c t

A bilinear Bäcklund transformation is presented for a (3 + 1)-dimensional generalized KP
equation, which consists of six bilinear equations and involves nine arbitrary parameters.
Two classes of exponential and rational traveling wave solutions with arbitrary wave
numbers are computed, based on the proposed bilinear Bäcklund transformation.

Published by Elsevier Ltd

1. Introduction

It is significantly important to search for exact solutions to nonlinear equations of mathematical physics [1,2]. The
transformed rational function method [3] and the multiple exp-function method [4] provide two generic approaches
for constructing traveling wave solutions and multiple wave solutions, respectively. If an equation possesses a Hirota
bilinear form, then a perturbation expansion often generates a specific class of multiple wave solutions including N-soliton
solutions [5]. Moreover, the linear superposition principle may apply to Hirota bilinear equations, and in particular, this
presents linear subspaces of solutions for nonlinear equations [6].

Bäcklund transformations are another powerful approach to solutions of nonlinear equations, and they can be written in
the Hirota bilinear form when an equation under consideration has a bilinear form [7,8]. For example, the KdV equation

ut + 6uux + uxxx = 0, (1.1)

which can be written as

Dx(Dt + D3
x)f · f = 0, (1.2)

under u = 2(ln f )xx,Dr being Hirota’s bilinear operator [2], has the bilinear Bäcklund transformation [7]:
(D2

x − λ)f ′
· f = 0,

(Dt + 3λDx + D3
x)f

′
· f = 0.

(1.3)

This means that f solves the bilinear KdV equation (1.2) if and only if f ′ solves the bilinear KdV equation (1.2). The (2 + 1)-
dimensional generalized KdV equation, i.e., the KP equation

(−4ut + uxxx + 6uux)x + 3uyy = 0, (1.4)

which can be written as

(−4DxDt + 3D2
y + D4

x)f · f = 0, (1.5)
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under u = 2(ln f )xx, has the bilinear Bäcklund transformation [2,9]:
(Dy − D2

x)f
′
· f = 0,

(3DyDx − 4Dt + D3
x)f

′
· f = 0.

(1.6)

Such bilinear Bäcklund transformations also connect with Lax pairs and generate the modified soliton equations [9,10].
In this paper, we would like to study a (3 + 1)-dimensional generalized KP equation

uxxxy + 3(uxuy)x + utx + uty − uzz = 0,

which can be written in the Hirota bilinear form

(D3
xDy + DtDx + DtDy − D2

z )f · f = 0,

under u = 2(ln f )x. This equation was presented for the first time in a study on the linear superposition principle for
exponential waves [6], and it is similar to a generalized (3 + 1)-dimensional BKP equation [3,11]

(3DxDz − 2DyDt − DyD3
x)f · f = 0,

whose bilinear Bäcklund transformation was presented in [12].
Wewould like to construct a bilinear Bäcklund transformation for the above (3+1)-dimensional generalizedKP equation,

which consists of six equations and contains nine arbitrary parameters. The exchange formula for Hirota’s bilinear operators
are the basis for carrying out the necessary interchanges in deriving the bilinear Bäcklund transformation. Exponential and
rational traveling wave solutions with arbitrary wave numbers are computed by applying the proposed bilinear Bäcklund
transformation.

2. Bilinear Bäcklund transformation and traveling wave solutions

We consider the following (3 + 1)-dimensional nonlinear equation:

uxxxy + 3(uxuy)x + utx + uty − uzz = 0. (2.1)

This equation is different from the (3 + 1)-dimensional KP equation [13]; but when y = x, the equation is reduced to
the KP equation, and so it is called a generalized KP equation [6]. The KP equation was also generalized by constructing
decomposition of (2 + 1)-dimensional equations into (1 + 1)-dimensional equations [14].

Under the dependent variable transformation

u = 2(ln f )x, (2.2)

the above (3 + 1)-dimensional generalized KP equation is put into a Hirota bilinear equation

(D3
xDy + DtDx + DtDy − D2

z )f · f = 0, (2.3)

where Dx,Dy,Dz and Dt are Hirota’s bilinear differential operators [2,7]. This is equivalent to

(fxxxy + ftx + fty − fzz)f − 3fxxyfx + 3fxyfxx − fyfxxx − ft fx − ft fy + (fz)2 = 0.

Its Wronskian and Grammian solutions, Pfaffianized generalized KP system, and non-singular and singular soliton solutions
were presented in [15–17], respectively.

2.1. Bilinear Bäcklund transformation

Wewould like to present a bilinear Bäcklund transformation for the (3+1)-dimensional generalized bilinear KP equation
(2.3).

Let us assume that we have another solution f ′ to the generalized bilinear KP equation (2.3):

(D3
xDy + DtDx + DtDy − D2

z )f
′
· f ′

= 0, (2.4)

and introduce a key function

P = [(D3
xDy + DtDx + DtDy − D2

z )f
′
· f ′

]f 2 − [(D3
xDy + DtDx + DtDy − D2

z )f · f ]f ′2. (2.5)

If P = 0, then f solves the generalized bilinear KP equation (2.3) if and only if f ′ solves the generalized bilinear KP equation
(2.3). Therefore, if we can obtain, from P = 0 by interchanging the dependent variables f and f ′, a system of bilinear
equations that guarantees P = 0:

Bi(Dt ,Dx,Dy,Dz)f ′
· f = 0, 1 ≤ i ≤ M,

where the Bi’s are polynomials in the indicated variables and M is a natural number depending on the complexity of the
equation, then this system presents a bilinear Bäcklund transformation for the generalize bilinear KP equation (2.3).
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Let us now start to explore what those bilinear equations could be. First we want to list three exchange identities for
Hirota’s bilinear operators:

(DtDxa · a)b2 − (DtDxb · b)a2 = 2Dx(Dta · b) · ba, (2.6)

(DtDya · a)b2 − (DtDyb · b)a2 = 2Dy(Dta · b) · ba, (2.7)

2(D3
xDya · a)b2 − 2(D3

xDyb · b)a2

= Dx[(3D2
xDya · b) · ba + (3D2

xa · b) · (Dyb · a) + (6DxDya · b) · (Dxb · a)]

+Dy[(D3
xa · b) · ba + (3D3

xa · b) · (Dxb · a)]. (2.8)

The first and second identities can be found in [2], and the third one can be obtained from the coefficient of ε1, while taking
the independent variable transformation Dx → Dx + εDy for

(D4
xa · a)b2 − (D4

xb · b)a2 = 2Dx[(D3
xa · b) · ba + (3D2

xa · b) · (Dxb · a)],

which is the known identity in [2]. All these identities come from the general exchange formula (see [2] for details). Now
from the first identity (2.6) or the second identity (2.7), we can easily obtain

(D2
za · a)b2 − (D2

zb · b)a2 = 2Dz(Dza · b) · ba, (2.9)

Dr(Dsa · b) · ba = Ds(Dra · b) · ba, (2.10)

by taking x = t = z and noting DrDsg · g = DsDrg · g .
Then, it can be proved that P = 0 if we take

B1f ′
· f ≡ (3D2

xDy + 4Dt + λ1Dy + 4λ8Dz + λ2)f ′
· f = 0,

B2f ′
· f ≡ (D3

x + 4Dt − λ1Dx + 4λ9Dz + λ3)f ′
· f = 0,

B3f ′
· f ≡ (3D2

x + λ4Dy + λ6)f ′
· f = 0,

B4f ′
· f ≡ (3D2

x + λ5Dx − λ6)f ′
· f = 0,

B5f ′
· f ≡ (DxDy + λ7Dx)f ′

· f = 0,
B6f ′

· f ≡ (Dz + λ8Dx + λ9Dy)f ′
· f = 0,

(2.11)

where nine arbitrary parameters have been introduced. This system provides a bilinear Bäcklund transformation for the
(3 + 1)-dimensional generalized KP equation (2.3).

Actually, by using the exchange identities (2.6)–(2.9), we can make the following conversion:

2P = [2(D3
xDyf ′

· f ′)f 2 − 2(D3
xDyf · f )f ′2

] + [2(DtDxf ′
· f ′)f 2 − 2(DtDxf · f )f ′2

]

+ [2(DtDyf ′
· f ′)f 2 − 2(DtDyf · f )f ′2

] − [2(D2
z f

′
· f ′)f 2 − 2(D2

z f · f )f ′2
]

=

Dx[(3D2

xDyf ′
· f ) · ff ′

+ (3D2
x f

′
· f ) · (Dyf · f ′) + (6DxDyf ′

· f ) · (Dxf · f ′)]

+Dy[(D3
x f

′
· f ) · ff ′

+ (3D2
x f

′
· f ) · (Dxf · f ′)]


+ 4Dx(Dt f ′

· f ) · ff ′
+ 4Dy(Dt f ′

· f ) · ff ′
− 4Dz(Dz f ′

· f ) · ff ′

= Dx(3D2
xDyf ′

· f + λ1Dyf ′
· f + λ2f ′f ) · ff ′

+Dx(3D2
x f

′
· f + λ4Dyf ′

· f + λ6f ′f ) · (Dyf · f ′)

+Dx(6DxDyf ′
· f + 6λ7Dxf ′

· f ) · (Dxf · f ′)

+Dy(D3
x f

′
· f − λ1Dxf ′

· f + λ3f ′f ) · ff ′

+Dy(3D2
x f

′
· f + λ5Dxf ′

· f − λ6f ′f ) · (Dxf · f ′)

+ 4Dx(Dt f ′
· f ) · ff ′

+ 4Dy(Dt f ′
· f ) · ff ′

− 4Dz(Dz f ′
· f + λ8Dxf ′

· f + λ9Dyf ′
· f ) · ff ′

+ 4Dx(λ8Dz f ′
· f ) · ff ′

+ 4Dy(λ9Dz f ′
· f ) · ff ′

= Dx(B1f ′
· f ) · ff ′

+ Dy(B2f ′
· f ) · ff ′

+ Dx(B3f ′
· f ) · (Dyf · f ′)

+Dy(B4f ′
· f ) · (Dxf · f ′) + 6Dx(B5f ′

· f ) · (Dxf · f ′) − 4Dz(B6f ′
· f ) · ff ′.

In the above deduction, the coefficients of λ2, λ3, λ4, λ5 and λ7 are zero because of Drg · g = 0, and the coefficients of
λ1, λ6, λ8 and λ9 are zero because of (2.10). This shows that (2.11) presents a Bäcklund transformation for the (3 + 1)-
dimensional generalized bilinear KP equation (2.3).
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2.2. Traveling wave solutions

Let us take a simple solution f = 1 to the (3 + 1)-dimensional generalized KP equation (2.3), which is transformed into
the original variable u as u = 2(ln f )x = 0. Noting that

Dn
r g · 1 =

∂n

∂rn
g, n ≥ 1,

the bilinear Bäcklund transformation (2.11) associated with f = 1 becomes a system of linear partial differential equations

3f ′

xxy + 4f ′

t + λ1f ′

y + 4λ8f ′

z + λ2f ′
= 0,

f ′

xxx + 4f ′

t − λ1f ′

x + 4λ9f ′

z + λ3f ′
= 0,

3f ′

xx + λ4f ′

y + λ6f ′
= 0,

3f ′

xx + λ5f ′

x − λ6f ′
= 0,

f ′

xy + λ7f ′

x = 0,

f ′

z + λ8f ′

x + λ9f ′

y = 0.

(2.12)

Let us first consider a class of exponential wave solutions

f ′
= 1 + εekx+ly+mz−ωt , (2.13)

where ε, k, l,m and ω are constants to be determined. Upon selecting

λ2 = 0, λ3 = 0, λ6 = 0, (2.14)

a direct computation tells

m = −(λ8k + λ9l), ω =
k3l − (λ8k + λ9l)2

k + l
, (2.15)

and

λ1 =
k3 − 3k2l + 4λ2

8k − 4λ8λ9(k − l) − 4λ2
9l

k + l
, λ4 = −

3k2

l
, λ5 = −3k, λ7 = −l. (2.16)

Therefore, we obtain a class of exponential wave solutions to the (3+1)-dimensional generalized bilinear KP equation (2.3):

f ′
= 1 + ε exp


kx + ly − (λ8k + λ9l)z −

k3l − (λ8k + λ9l)2

k + l
t


, (2.17)

where ε, k, l, λ8 and λ9 are arbitrary constants; and u = 2(ln f ′)x solves the (3 + 1)-dimensional generalized KP equation
(2.1).

Let us second consider a class of first-order polynomial solutions

f ′
= kx + ly + mz − ωt, (2.18)

where ε, k, l,m and ω are constants to be determined. Similarly upon selecting

λi = 0, 2 ≤ i ≤ 7, (2.19)

a direct computation shows that the system (2.12) becomeslλ1 + 4mλ8 − 4ω = 0,
−kλ1 + 4mλ9 − 4ω = 0,
kλ8 + lλ9 + m = 0.

(2.20)

Obviously, this system requires a necessary but not sufficient (see the last section for a counterexample) condition

(k + l)ω + m2
= 0 (2.21)

for the existence of λ1, λ8 and λ9. Under this condition (2.21), it is direct to check that f ′ defined by (2.18) solves the (3+1)-
dimensional generalized bilinear KP equation (2.3), and so,

u = 2(ln f ′)x =
2k

kx + ly + mz − ωt
(2.22)

produces a class of rational solutions to the (3 + 1)-dimensional generalized KP equation (2.1).
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3. Conclusions and remarks

We have computed a bilinear Bäcklund transformation for the (3 + 1)-dimensional generalized KP equation

uxxxy + 3(uxuy)x + utx + uty − uzz = 0.

The facts used in our construction are the exchange identities for Hirota’s bilinear operators. The obtained bilinear Bäcklund
transformation consists of six bilinear equations and involves nine arbitrary parameters. It is therefore a pretty large system,
which in turn implies that the above (3 + 1)-dimensional generalized KP equation should have diverse solutions. Indeed,
two classes of exponential and rational traveling wave solutions with arbitrary wave numbers have been generated from
the proposed bilinear Bäcklund transformation.

It is interesting to note that the condition (2.21) has a solution

k = l = m = 0, ω ≠ 0,

but this makes it impossible to solve (2.20). Therefore, the corresponding function

f ′
= −ωt

provides a solution for the generalized bilinear KP equation (2.3), but it is not generated from the bilinear Bäcklund
transformation (2.11) associated with f = 1. It is actually a limit solution of the presented polynomial solutions.

We remark that the above (3+ 1)-dimensional generalized KP equation possesses linear subspaces of exponential wave
solutions [6]. This shows a nice integrability property that nonlinear equations normally do not possess. One can also get
some nonlinear superposition formulas of solutions generated from the proposed bilinear Bäcklund transformation [9,18],
but it is hard to prove that the resulting functions are solutions due to a large number of different equations involved in the
Bäcklund transformation. To overcome this complexity, once should find a bilinear Bäcklund transformation consisting of a
small number of bilinear equations. However, it is a very difficult challenge for us to get a bilinear Bäcklund transformation
defined by a system of less than six equations, for example, two or three equations for the above (3 + 1)-dimensional
generalized KP equation. Some new specific exchange identities must be developed for use in merging terms resulted from
P = 0. There might also be other equations different from P = 0 which one can begin with to formulate bilinear Bäcklund
transformations.
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