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1. Introduction

It is significantly important to search for exact solutions to nonlinear equations of mathematical physics [1,2]. The
transformed rational function method [3] and the multiple exp-function method [4] provide two generic approaches
for constructing traveling wave solutions and multiple wave solutions, respectively. If an equation possesses a Hirota
bilinear form, then a perturbation expansion often generates a specific class of multiple wave solutions including N-soliton
solutions [5]. Moreover, the linear superposition principle may apply to Hirota bilinear equations, and in particular, this
presents linear subspaces of solutions for nonlinear equations [6].

Bdcklund transformations are another powerful approach to solutions of nonlinear equations, and they can be written in
the Hirota bilinear form when an equation under consideration has a bilinear form [7,8]. For example, the KdV equation

Ue + 6Uly + Uy = 0, (1.1)
which can be written as
Dy(D; +D))f -f =0, (1.2)

under u = 2(Inf)y, D, being Hirota’s bilinear operator [2], has the bilinear Bicklund transformation [7]:
D —1f - f =0,
(D; +3AD, + D)f - f = 0.

This means that f solves the bilinear KdV equation (1.2) if and only if f” solves the bilinear KdV equation (1.2). The (2 + 1)-
dimensional generalized KdV equation, i.e., the KP equation

(1.3)

(_4U[ + Uyxx + Gqu)X + BUyy - O, (1.4)
which can be written as
(—4D,D; 4 3D} + Dy)f - f =0, (1.5)
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under u = 2(In f )y, has the bilinear Backlund transformation [2,9]:
(Dy — DYf'-f =0, (16)
(3D,Dy — 4D, + D2)f' - f = 0. ‘

Such bilinear Backlund transformations also connect with Lax pairs and generate the modified soliton equations [9,10].
In this paper, we would like to study a (3 4+ 1)-dimensional generalized KP equation

Uxxxy + 3(uxuy)x + Uy + Uy — Uy = 0,
which can be written in the Hirota bilinear form
(DD, + DDy + D;D, — D3)f - f =0,

under u = 2(Inf),. This equation was presented for the first time in a study on the linear superposition principle for
exponential waves [6], and it is similar to a generalized (3 + 1)-dimensional BKP equation [3,11]

(3D,D, — 2D,D; — D,D3)f - f = 0,

whose bilinear Biacklund transformation was presented in [12].

We would like to construct a bilinear Backlund transformation for the above (34 1)-dimensional generalized KP equation,
which consists of six equations and contains nine arbitrary parameters. The exchange formula for Hirota’s bilinear operators
are the basis for carrying out the necessary interchanges in deriving the bilinear Backlund transformation. Exponential and
rational traveling wave solutions with arbitrary wave numbers are computed by applying the proposed bilinear Backlund
transformation.

2. Bilinear Biacklund transformation and traveling wave solutions

We consider the following (3 4+ 1)-dimensional nonlinear equation:
Uyxxy + 3(uxuy)x + U + Uy — U, = 0. (2.1)

This equation is different from the (3 + 1)-dimensional KP equation [13]; but when y = x, the equation is reduced to
the KP equation, and so it is called a generalized KP equation [6]. The KP equation was also generalized by constructing
decomposition of (2 4+ 1)-dimensional equations into (1 + 1)-dimensional equations [14].

Under the dependent variable transformation

u=2(nf)y (22)
the above (3 + 1)-dimensional generalized KP equation is put into a Hirota bilinear equation

(D;Dy + DDy + D:Dy — D2)f - f =0, (2.3)
where Dy, Dy, D, and D; are Hirota’s bilinear differential operators [2,7]. This is equivalent to

(fxxxy +ftx +fly _fzz)f - 3fxxyf;< + 3ﬂcyfxx _fyfxxx _ftfx _ftfy + (fz)z =0.
Its Wronskian and Grammian solutions, Pfaffianized generalized KP system, and non-singular and singular soliton solutions

were presented in [15-17], respectively.

2.1. Bilinear Bdcklund transformation

We would like to present a bilinear Backlund transformation for the (3+ 1)-dimensional generalized bilinear KP equation
(2.3).
Let us assume that we have another solution f’ to the generalized bilinear KP equation (2.3):
(D;Dy + D;Dx + D:D, — D2)f' - f' =0, (24)

and introduce a key function

P = [(D?Dy + D;Dy + DD, — D2)f' - f'If* — [(D2Dy + DDy + DD, — D2)f - f1f"*. (2.5)

If P = 0, then f solves the generalized bilinear KP equation (2.3) if and only if f” solves the generalized bilinear KP equation
(2.3). Therefore, if we can obtain, from P = 0 by interchanging the dependent variables f and f’, a system of bilinear
equations that guarantees P = 0:

Bi(D¢, Dy, Dy, D)f" - f =0, 1<i<M,

where the B;’s are polynomials in the indicated variables and M is a natural number depending on the complexity of the
equation, then this system presents a bilinear Backlund transformation for the generalize bilinear KP equation (2.3).
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Let us now start to explore what those bilinear equations could be. First we want to list three exchange identities for
Hirota’s bilinear operators:
(D¢Dya - a)b* — (D;Dxb - b)a® = 2Dy(D.a - b) - ba, (2.6)
(D:Dya - a)b* — (D;Dyb - bya* = 2D, (D;a - b) - ba, (2.7)
2(D}Dya - a)b* — 2(D;Dyb - b)a*
= D,[(3D?Dya - b) - ba + (3D%a - b) - (Dyb - @) + (6DxDya - b) - (D,b - a)]
+D,[(Dla-b) - ba+ (3D3a - b) - (Dsb - @)]. (2.8)
The first and second identities can be found in [2], and the third one can be obtained from the coefficient of ¢!, while taking
the independent variable transformation Dy — Dy + €D, for
(Dia - a)b® — (Dib - bya* = 2D,[(D}a - b) - ba + (3D2a - b) - (Db - a)],
which is the known identity in [2]. All these identities come from the general exchange formula (see [2] for details). Now
from the first identity (2.6) or the second identity (2.7), we can easily obtain
(DZa - a)b* — (D2b - bya* = 2D,(D,a - b) - ba, (2.9)
D, (Dsa - b) - ba = Dg(D;a - b) - ba, (2.10)
by taking x = t = z and noting D,D;g - g = DD, g - g.
Then, it can be proved that P = 0 if we take
Bif' - f = (3D;Dy +4D; + MDy +4AsD; + A)f - f =0,
Bof - f = (D] + 4D, — 21Dy + 43D, + 23)f - f =0,
Bof - f = (3D; + AaDy + Ae)f - f =0,
Bof'-f = (3D} + AsDx — ko) -f =0,
Bsf/ f= (Dny + )\7Dx)f/ -f=0,
Bsf'-f = (D, + AsDx + AoD))f - f = 0,

(2.11)

where nine arbitrary parameters have been introduced. This system provides a bilinear Bicklund transformation for the
(3 4+ 1)-dimensional generalized KP equation (2.3).
Actually, by using the exchange identities (2.6)-(2.9), we can make the following conversion:
2P = [2(D;Dyf - ff? = 2(DDyf - NI *1 + 2D Df" - f)f? = 2(DDf - )f?]
+2DDyf - fOf? = 2DeDyf - HIF?] = [2(D2f - fOf? = 2(D3f - ))f?]
= {Du[BDIDyf" - f) - ff' + BDYf" - f) - (Dyf - f') + (6DDyf" - f) - (DS - f1)]
+Dy(Df" - ) - ff + 3D ) - (O - 1]
+4Dy(Def" - f) - ff" + 4Dy (Def" - f) - ff* — 4D, (D,f" - f) - ff’
= DyBD;Dyf" - f + MDyf - f + hof ) - ff
+ D (D" - f 4+ 1aDyf - f + 1ef') - (Dyf - f)
+ Dy(6DxDyf - f + 6A7Dxf" - f) - (Dof - f')
+Dy(Df" - f =MD" f 4 2af ') - ff
+Dy3D3f - f +asDuf - f — hef'f) - (DS - )
+4Dx(Def" - f) - ff" + 4Dy (Df" - f) - ff
— 4D, (D.f" - f + AsDuf" - f + AoDyf" - ) - f’
+4Dx(AsD.f" - ) - ff" + 4Dy (AoD.f" - ) - ff’
= Dx(Bif' - f) - ff' + Dy(Bof - f) - ff" + Du(Bsf" - f) - (Dyf - f')
+Dy(Baf" - f) - (Duf - f') + 6Dx(Bsf" - f) - (Dxf - f') — 4D, (Bf" - f) - ff".
In the above deduction, the coefficients of A,, A3, A4, A5 and X\, are zero because of D,g - g = 0, and the coefficients of

A1, Ag, Ag and Ag are zero because of (2.10). This shows that (2.11) presents a Backlund transformation for the (3 4 1)-
dimensional generalized bilinear KP equation (2.3).
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2.2. Traveling wave solutions

Let us take a simple solution f = 1 to the (3 + 1)-dimensional generalized KP equation (2.3), which is transformed into
the original variable u as u = 2(Inf), = 0. Noting that

n

D'g-1= > 1,

-8 n=
8r"g

the bilinear Backlund transformation (2.11) associated with f = 1 becomes a system of linear partial differential equations
3y +Af + Aify + dhsf] + dof =0,
Faux + AL — 21, + 4hof] + A5f =0,
3 + Aafy +2ef =0,

/ ) , (2.12)
3fe + Asfy — Asf =0,
fy +2afy =0,
£, + Asfy + Aof) = 0.
Let us first consider a class of exponential wave solutions
f, =14+ gekx+ly+mszt’ (2‘13)
where ¢, k, [, m and w are constants to be determined. Upon selecting
A =0, A3 =0, A =0, (2.14)
a direct computation tells
31— (hgk + Agl)?
m = —(Agk + Aol), =, 215
(Agk + Agl) 0} K+ ( )
and
k3 — 3K 4 42k — 4rgho(k — 1) — 4221 3k?
Ay = +4r5 gho(k —1) S ga=—r,  ds=-3k A =—L (2.16)

k+1
Therefore, we obtain a class of exponential wave solutions to the (3+ 1)-dimensional generalized bilinear KP equation (2.3):

, 131 — (Agk + Agl)?
ff=14¢cexp|kx+1ly — (Agk + Agl)z — l—-i—l , (2.17)
k
where ¢, k, I, Ag and Ag are arbitrary constants; and u = 2(Inf"), solves the (3 + 1)-dimensional generalized KP equation
(2.1).
Let us second consider a class of first-order polynomial solutions
f'=kx+1ly +mz — ot, (2.18)
where ¢, k, [, m and w are constants to be determined. Similarly upon selecting
A=0, 2<i<7, (2.19)

a direct computation shows that the system (2.12) becomes

l}\l + 4m)\.g — 4w =0,
—k\1 +4mlg — 4w =0, (2.20)
kkg+lkg+m:O

Obviously, this system requires a necessary but not sufficient (see the last section for a counterexample) condition

(k+Dw+m>=0 (2.21)

for the existence of A1, Ag and Ag. Under this condition (2.21), it is direct to check that f” defined by (2.18) solves the (3 + 1)-
dimensional generalized bilinear KP equation (2.3), and so,

2k
—2(nf)yy= — 2.22
. (nf5) kx +ly + mz — wt ( )

produces a class of rational solutions to the (3 4+ 1)-dimensional generalized KP equation (2.1).
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3. Conclusions and remarks

We have computed a bilinear Bdacklund transformation for the (3 4+ 1)-dimensional generalized KP equation
Ugxy + 3(uxuy)x + Uy + Uy — Uy = 0.

The facts used in our construction are the exchange identities for Hirota’s bilinear operators. The obtained bilinear Backlund
transformation consists of six bilinear equations and involves nine arbitrary parameters. It is therefore a pretty large system,
which in turn implies that the above (3 + 1)-dimensional generalized KP equation should have diverse solutions. Indeed,
two classes of exponential and rational traveling wave solutions with arbitrary wave numbers have been generated from
the proposed bilinear Biacklund transformation.

It is interesting to note that the condition (2.21) has a solution

k=l=m=0, w #0,
but this makes it impossible to solve (2.20). Therefore, the corresponding function
f = —ot

provides a solution for the generalized bilinear KP equation (2.3), but it is not generated from the bilinear Backlund
transformation (2.11) associated with f = 1. It is actually a limit solution of the presented polynomial solutions.

We remark that the above (3 + 1)-dimensional generalized KP equation possesses linear subspaces of exponential wave
solutions [6]. This shows a nice integrability property that nonlinear equations normally do not possess. One can also get
some nonlinear superposition formulas of solutions generated from the proposed bilinear Backlund transformation [9,18],
but it is hard to prove that the resulting functions are solutions due to a large number of different equations involved in the
Backlund transformation. To overcome this complexity, once should find a bilinear Backlund transformation consisting of a
small number of bilinear equations. However, it is a very difficult challenge for us to get a bilinear Backlund transformation
defined by a system of less than six equations, for example, two or three equations for the above (3 + 1)-dimensional
generalized KP equation. Some new specific exchange identities must be developed for use in merging terms resulted from
P = 0. There might also be other equations different from P = 0 which one can begin with to formulate bilinear Backlund
transformations.
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