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MIXED RATIONAL-SOLITON SOLUTIONS
7O THE TODA LATTICE FQUATION

WEN-XIU MA

We present a way to solve the Toda lattice equation using the Casoratian technique, and
construct its mixed rational-soliton solutions. Examples of the resulting exact solutions

are computed and plotted.

Copyright © 2006 Wen-Xiu Ma. This is an open access article distributed under the Cre-
ative Commons Attribution License, which perinits unrestricted use, distribution, and
reproduction in any medium, provided the original work is propely cited.

1, Introduction

Differential and/or difference equations serve as mathematical models for various phe-
nomena in the real world. The study of differential and/or difference equations enhances
our understanding of the phenomena they describe. One of important fundamental gues-
tions in the subject is how to solve differential and/or difference equations.

There are mathematical theories on existence and representations of solutions of linear
differential and/or difference equations, especially constant-coefficient ones. Soliton the-
ory opens the way to studies of nonlinear differential and/or difference equations. There
are different solution methods for different situations in soliton theory, for example, the
inverse scattering transforms for the Cauchy problems, Bicklund transformations for ge-
ometrical equations, Darboux transformations for compatibility equations of spectral
probléms, Hirota direct method for bilinear equations, and truncated series expansion
methods (including Painlevé series, and sech and tanh function expansion methods) for
Riccati-type equations.

Among the existing methods in soliton theory, Hirota bilinear forms are on¢ of the

most powerfuf tools for solving soliton equations, a kind of nonlinear differential and/or

difference equations. In this paper, we would like to construct mixed rational-soliton so-

Jutions to the Toda lattice equation:

dn zan(bnwi '—bn): é’n:an“anﬁs {3-1)

where @, = dan/dt and b, = db,/dt. The approach we will adopt to solve this equation

is the Casoratian technique. Its key 15 to transform bilinear forms into linear systems
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712 Mixed rational-soliton solutions to the Toda lattice

of solvable differential-difference equations. For the Toda lattice equation (1.1), we will

present the general solutions to the corresponding linear systems and further generate
mixed rational-soliton solutions.

2. Constructing solutions using the Casoratian technique

Let us start from the Toda bilinear form. Under the transformation

ay =1+ ;?;wlogfn = Eﬂ%ﬂ, by = %Mg;}:’: = fnr"z;:j’f"ﬂ, 2.1)
the Toda lattice equation (1.1} becomes
[Dz — 4sink? (%—)]T Ty =0, (2.2)
where D; and D, are Hirota’s operators. That is,
Folyy = (i“,,)zwr,mrn“l +12 = 0, (2.3)
In the Casoratian formulation, we use the Casorati determinant
$1(m)  Pi(n+1) $r(n+N 1)
¢a{n)  da(n+1) ga(n+N-1)
Ty = Cas (¢1, ¢, Py) = : : . (2.4)
on(n) gu(n+1) $u(n+N~1)

to construct exact solutions, and we call such sohitions Casora‘s@an solutions. Tt is known
[7] that such 2 v-function 7, solves the bilinear Toda lattice equation (2.3) if

$i(n+1) + ¢i(n ~ 1) = 2¢;{ cosh ;) ;(n), (¢lm), = ¢i(n+1), (2.5)

where &; = =+ 1, o; are nonzero constants and (@i(m))r = Oei(n) = Br¢hi(m,£). The tesulting
solutions are negatons, that is, a kind of solutions only involving exponential functions
of the space variable .

There are other type solutions such as rational solutions {3], positons [5, 8], and com-

plexitons [2]. Similar to [2, 3}, we can prove that 7, is a solution to the bilinear Toda
lattice equation (2.3} if

N
$iln+D+di(n—1)= 3 Xyigi(n),  (alm)), = {piln+8), (2.6)
‘ j=1

where { = +1,8 = x1 (ie, |{] = |8] = 1, {,8 € R}, and Aij are arbitrary constants, Un-
der the transformation t — —t, the bilinear Toda lattice equation (2.3) is invariant, and
(¢:(n))s = ¢i(n + 8) becornes {¢:i(n)r = —¢s(n +6). Therefore, we only need to consider
one of the cases { = +1 while constructing solutions, since the replacement of ¢ with —¢
generates solutions from one case to the other. We will only consider the case of { = 1
below.

Let us no
{=1.Thea

‘DN(?’!
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Let us now begin to analyze the system of differential-difference equations (2.6} with
{ = 1. The corresponding system can be compactly written as

Ouln+ LD+ Onln—1,1) = ADy{n ), (On(m 1)), = On(n+6,t), (2.7

where Oy = On(n, 1) 1= (¢1{m,1),... ,g[w(n,t))T and A = (Aij)nxy. Note that a constant
similar transformation for the coefficient matrix A does not change the resulting Caso-
ratian solution. Actually, if we have M = P~' AP for an invertible constant matrix P, then
Dy = POy satisfies

Ou(n+ 1L, +Bu(n~1,0) = MBy(nt),  (Bu(nt), = Onln+8,0). (2.8)

Obviously, the Casorati determinants generated from Oy and $y have just a constant-
factor difference, and thus the transformation (2.1) leads to the same Casoratian solutions
from ®y and (T)N. Therefore, as in the KdV case [4], we can focus on the following two
types of Jordan blocks of A:

A 0 A; 0
i Ai L A & -ﬁi
0 RPN 1 A’i kisck 0 I 12 A:' sl

where Aj, o; and f; > 0 are all real constants, I; is the identity matrix of order 2, and k;
and ; are positive integers. A Jordan block of the first type has the real eigenvalue A; with
algebraic multiplicity k;, and a Jordan block of the second type has the pair of complex
eigenvalues A; . = a; + f$;+/—1 with algebraic multiplicity I;.

Case k; = 1 of type 1. The representative systems read as follows:

di(n+ 1)+ diln— 1) = hihi(n), {¢:(n)), = $i(n+8), (2.10)
where § = =1 and 4; = consts. Their eigenfunctions are classified as

@i = Cljﬁ?esir + C;g,'(n + E,’@f)&?f:&"r, Ai =28, &= 1,

¢ = C1ie"**% cos (an + Stsina; )

. . 2.11
+ Cyie' % sin (am -+ Stsine;), A= 2cosq;, o;F mn, meZ, (2.11)

Bay

;= Gyl et te | O ghomamtnte” Ai = 2g;coshey, o #0,

where Cy; and Cy; are arbitrary constants. The above three sets of eigenfunctzons generate
rational solutions, positon solutions, and negaton solutions, respectively.

Generally, the following two results provide ways to solve the linear system (2.6}. The
detailed proof will be published elsewhere.
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TusoreMm 2.1 (A; = +2). Lete=xland § = x1 (ie, (gl=18l =188 R)IF(f(n): =
f(n+8,t), then the nonhomogeneous system

dln+ L) +dln—- L) = 2ed(m,t) + f(m,£), ((n,8)), = p(n+8,t), (2.12)

has the general solution

d{nf) = [a(n)t + fB{n) + J; J; fln+8,r)e™dr ds] e, (2.13)

where o{n) and B(n) are determined by
a(n+8) —eafn) = f{n+8,0), Bn+8) —ef(n) = g{n). (2.14)

Taporem 2.2 (4 # +2). Let A # 22 and § == 1.
(a) The homogeneous system

dlnt+ 1,6 +¢(n~1,t) = Ag{n, 1), (¢p(n, 1)}, = p{n+8,1), (2.15)
has its general solution
dlhic,d)(n) = cwe® 4 dwre {2.16)
where ¢ and d are arbitrary constants, and
A=w+ol (2.17)
that is,
@ —Aw+1=0. (2.18)

{b) Define fi = ¢pAscrdi), 1= k < k;, where ¢ and dy are arbitrary constanis. The
northotrogeneous systen:

¢k{f’l+ 17t) + Qbk(” - 1:t) = /\'iﬁbk(”af) + ff?kml(n:t): (¢k(ﬂ, t))t = ¢k(” +6:t)3
{2.19)

where 1 < k < k; and ¢o = 0, has its general solution

k-1 k-1
of fi P B{ i3 Chm s k-
‘ﬁkﬁleka*Z}“ Pty kp), 1sk=k (2.20)

eV Gy 4 oA
Remark 2.3. The soliton case of 4; = 2cosha; {a; 4 0) corresponds to w; = e in (a). The
nonhomogeneous system in (b) is associated with one Jordan block of type 1.

Begin with

, k-arbitrary consts.,

*  2¢ sl
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where € = 1. By the general solution formula in Theorem 2.1, we can have
Pi(mt) = e y{n,t), l<i<N, (2.22)

where yi(n,t) are polynomials in # and . Thus,

Ty = Cas (y1,...,¥n) (2.23)

presents polynomial solutions to the bilinear Toda lattice equation (2.3) and thus rational
solutions to the Toda lattice equation (1.1) through (2.1).

THEOREM 2.4, The Jordan block of type 1 with A; = +2 leads to rational solutions to the
Toda lattice equation (1.1).

This adds one case of A = -2 to the result in {3]. A few examples of rational solutions
associated with one Jordan block case with A = 2 were presented in {3]

3. Mixed rational-soliton solutions

Let us now show a way to construct mixed rational-soliton solutions. We use the following
procedure.

Step 1. Solve the triangular systems whose coefficient matrices possess Jordan blocks of
type 1 with A; = £2 or A; = 2coshe (a; # 0) to form a set of eigenfunctions (1. )

Step 2. Evaluate the 7-function 1, = Cas(¢y,...,dn).

Step 3. Bvaluate a, and b, by the transformation (2.1), to obtain mixed rational-soliton
solutions to the Toda lattice equation (1.1).

The 7-functions generated above are quite general. In what follows, we would like to
present two sets of special eigenfunctions required in forming such r-functions.

Special eigenfunctions yielding rational salutions. We take two specific Taylor expansions
asin [9]:

G (1) = ehntet 1 prknetet Eag+;(n,t)k2i,
f=0
’ (3.1)

oo
d_(nt) = ghttef o —knatet _ Zafqul(?’l)t)kZi'!-i,
i)

the coefficients of which satisfy

le(?’l + 1>t) +(1,‘(?’l - i)t) = i za%.')'l'ahjﬁ(n’t}r (af{n?t))f = ﬂj{ﬂ + 1}t): {32)
j=o V21

where i 2 1. These two sets of functions are given by

2 znZi_j 2i+1
iy (n, 1) = etz (i-‘*‘f‘fﬁj“): aizy (1, £) = € Z
jm=p LB J)' =0

2pliti-j

GirTo i (63
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respectively. The functions §;(t) above are defined by‘

Zﬁ;{t -y e (Z 1 kq)P. (5.4)

p*ﬂp‘ q= 14"

This is a rational solution case, since Ay = 2,1 =i s N.

Special eigenfunctions yielding solitons. - We start from the same eigenfunctions

Pu(mt) = gkttt 4 o-knrte™ _ ggteoshk cogh (ki + sinh k),

i ) (3.5)
¢ (n,t} = ghrtiet L gmkntte™  patsinhk coch (kn + tsinh k),

which solve
¢(n+1,1) +¢(n—1,1) = 2(cosh k)p(m, 1), (¢(n,1)), = d(n+6,t). (3.6)

Computing derivatives of the above system with the parameter k leads to a set of eigen-
functions as follows:

bilnt) = 3 (me), 1=isN, (3.7)

which satisfies

biln+1,0)+b(n—-1,t) = Zlijbj{n,t), (b,‘(?’l,f))t = bi{n+8,t), (3.8)
j=1

where 1 i< Nand A = 2{‘ 11(3 cosnk ). This is a soliton case if k # 0, since A =
2coshk, 1 <i<N.

Examples of mixed rational-soliton solutions. Mixed rational-soliton solutions can now
be computed, for example, by

mCas(e*’a;,...,e*‘ap,bl,...,bep}. {3.9)
In particular {in the case of ¢.), we have

= Cas{e"'as, b)) = 4¢"N{ cosh [k(n + 1) + tsinh k] — cosh{kn + tsinh k)},

= Cas (e a;, e ag, )
4etohE 20+ t+ 1) cosh [k(n +2) + tsinh k] (3.10)

~ 4(2n+ 2t + 1) cosh{k{n + 1) + tsinh k]

+ (2n 2t + 3) cosh(kn + £sinh k) }.

The
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(3.4)
15

(3.5)
5. (3.6)

set of eigen-

(3.7)
h (3.8)
since /1,’,' =
i = ey
18 can now ; p ’“'*W 2 T s
15 ] !t s STE
g 1 e = ey !
emne. I R e i
(3.9) Z- 0.5 o 05 ] ST |
e 0 e o
-4 -3 -2 - ~5 4 -3 -2 ]
n n !
I3 ; (a) (b) :
Figuze 3.3. Contour plots of {a) a, and {b} b,,.
(3.10)

The solution from 7, = Cas{ea;, by} with k =1 is depicted in Figures 3.1, 3.2, and 3.3,
and the solution from 7, = Cas(e tay,e~'ay, by) withk = ~1in Figures 3.4, 3.5, and 3.6.
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X107

Figure 3.6. Contour plots of (a) ax and (b} b,

4. Discussions

A careful analysis based on Theorems 2.1 and 2.2 can prove that the Jordan blocks of type
Pwith d; = +2, {4;] > 2, and |\ <2 generate rational solutions, negatons, and positons,
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respectively; and that the Jordan blocks of type 2, which possess complex eigenvalues,
generate complexitons. Moreover, we can have another case of conditions on eigenfunc-
tions:

N
piln+)+dn-1) = Zl;’jﬁb}'(ﬂ},
J= (4.1)

(B D)), = S0+ 1,8) = i~ 1,1),

where { = =1 and A;; are arbitrary constants. An analysis is left for future publication, on
this case of conditions and its representative system

dn+ L +o(n—1,1) = Ap(n,t) + fin 1),

{4.2)
($r.0); = S6(n+1,6) = 29(n—L1),

where (f(n, 1)}y = 1/2f(n+ Lt) - (1/2) f{n — 1,£), which will lead to different mixed
rational-soliton solutions to the Toda lattice equation {1.1).

The above construction of mixed rational-solitorn solutions is direct and much easier
than the existing approach by computing long-wave limits of soliton solutions [1, 6].
The basic idea can also be applied to other integrable lattice equations, for example, the
Volterra lattice equation:

Uy = Uy {urﬂ-i - un—l)- (4.3)

The transformation of u, = TpaaTu-1/Tns17n puts the Volterra lattice equation into the
following bilinear form:

Toi1Tn ™ Tnel T~ TneaTnod T Tae1 Tn = 0. (4.4)

The Casorati determinant 7, = Cas(¢s,. .., ¢n} soives this equation if

N
(;bi(ﬂ'f“ lat) + Gf’i{n "'"‘17t) = Z/‘ll)qb)(r%t): (¢f(n> f))t = ¢;‘(7’i +2: t): (45)

=1

where 1 i< N and A;; are arbitrary constants. Therefore, this allows us to construct
i Casoratian solutions to the Volterra lattice equation in a simple and direct way. The details
: of constructing Casoratian selutions will be published elsewhere,
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