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In the path integral approach to quantum field
theory, physical valves are derived by certain weighted
integrations over all possible field configurations. These
path integrals are often intractable, and it is common
to expand the integration about the stationary points
of the action. This works because of the way the
action appears in the integrand of the path integral.
Catculations of this type are known as semi-classical
caleulations because they are effectively an expansion
in Planck’s constant, /. This expansion must include
a sum over all possible stationary points, and so, in
Yang-Mills theory, it includes a sum over instanton
configurations. By studying the symmetry properties
of the measure in quanturn chromodynamics (QCD),
the Yang-Mills theory describing the strong nuclear
force, it can be shown that terms in this expansion bresk
the axial U(1) symmetry. This symmetry is unbroken
if the instanton terms are omitted. The symmetry
breaking allows processes that violate baryon and
lepton conservation; however, the amplitudes for these
offects are highly suppressed. One useful approach
is t0 consider these processes as tunneling events
between different vacua, in fact, instanton calculations
in quantum field theory ate very similar to Wentzel-
Kramers-Brillouin (WKB) calculations in quantum
mechanics.

While instantons provide a qualitative explanation
for a host of phenomena in guantum chromodynam-
ics, useful quantitative results are not available within
the semi-classical approach, and even qualitatively, in-
stanton czleulations are not rigorous since they relate
only to the semi-classical approximation, a truncation
of the full quantum theory. The modern approach to
guantumn chromodynarmies is Jattice QUD. It is possi-
ble within lattice QCD to verify the original ideas abowut
the role of instantons in the physics of the strong force;
however, there are limits to the precision with which the
lattice and semi-classical approaches can be compared
{Negele, 1998).

Finite action soliton solutions in other equation
systems are sometimes referred to as instantons.
Examples include the finite action solutions to the
forced Burgers equation, which axises in the study of
turbulence, and the vortex-like solutions in the abelian
Higgs model, which is related to condensed matter
physics. Instantons have many similarities to the lump
solitons found in certain sigma models.

Conor Houckion

See also Burgers equation; Higgs boson; Particles
and antiparticles; Quantum field theory; Solitons;
Yang-Mills theory
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Central problems in the integrability theory for non-
linear ordinery differential equations (ODFs) or partial
differential equations (PDEs) are knowing which 5ys-
tems can be solved analyticaily and developing appro-
priate solution techniques. Although in some comtexts
the term integrability is not well defined, let us begin by
consideting two physically motivated ronlinear ODE
systems that can be analytically solved.

Nonlinear Pendulum

Here, the nonlinear system is

¥ =ax + bx* + ¢x°, a, b, ¢ = constants. (D

Multiplying both sides of this equation by % and -
integrating yields an intermediate integral [ =#2/2 —
ax?{2 — bx* 3 — cx*/4, which is determined by thé
initial conditions: x(z0) and %{to}. In'terms of I, the
solution x (f} can be written fmplicitly as -

* dx

w20+ ax? 4 2bx3)3 & cx3 /2

0= @

where x(to) =xp. The Inversion of this formula is-
expressed in terms of Jacobi elliptic functions (Bryd.,
& Friedman, 1954). Note that this system: has one:
degree of freedom, and one intermediate integral wa
sufficient to obtain a solution. Becanse it is related to &
area, the intermediate integral (7) is sometimes calle
a quadrature, and by extension, Equation (2) is said t
be obtained by the method of quadratures. o
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Calogero-Moser N-Body Problem

In this example, the nonlinear system is
N
Go= 3 28%(ga—am)”’, g =copsiant, (3)

maus ] metn

generalizations of which were studied extensively in
the Iast three decades of the 20th century. Using a Lax
isospectral deformation technique, the solution matrix
diag [g1(t), ..., gn ()] is found to be similar to the
matrix O = [Qnm(?)] defined by

Qnm{t) = Snm[Qn(O) + Gn (0)3]
L1~ Bum)e[an (@) — g (@] 1. @)

Thus, the solution to the initial value (Cauchy) problem
is reduced to the algebraic task of finding the N eigen-
values of the matrix 0, and the solution formuta for
initial data, ¢;(0) and §;(0), can be construcied from
linear functions, through a finite number of algebraic
operations and compositions of*functions (Calogero,
2001). Equations (1) and (3} are completely integrable.
) In the 19th century, Evatiste Galois, Niels Henrik

Abel, Joseph Liouville, and Sophus Lie tried to
rationalize the process of solving differential equations
by quadratures, or failing that, massaging them insuch a
way that useful information might be extracted. Mainly

based on geometry and algebra, these efforts initiated -

much of the mathematics—such as classifications

of differential equations in term of symmetries and

conservation laws—that has dominated the 20th
century. Attempts by Karl Weierstrass and Henri
Poincaré to create a systematic theory of integrability
are based on complex function theory.

An achievement of 19th-century mathematics was
the elaboration of the theory of elliptic and Abelian
functions, particularly the introduction of theta func-
ions. A solution comprising such rapidly convergent
power series is quite efficient computaticnally; thus, a
natural question for 19th-century mathematicians was
this: Which differentizl equations admit solutions as
quotients of power series that converge in large regions,
independent of initial or boundary conditions? The
Cauchy-Kovalevsky theorem gives local existence for
such expressions. This theme traces through the work
of Sophia Kovalevsky and Paul Painlevé for nonlinear
ODFs and through Bernhard Riemann and Immanuel
Fuchs and their successors for linear ODEs (Hermann,
1984).

There are severa} results about local and globai solu-
tions of differential equations that establish existence,
uniqueness, smoothness, stability, approximations, and
so on; yet attempts to find exact solution formulas in the
19th century were largely unsuccessful. This is because
solutions o nonlinear systems may exhibit complex
behaviors—such as blow-up, shocks, chaos, fractais,
and bifurcation—which are obstacles to integrability.
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Poincaré put an end to the search for new integrable
equations by showing that among all dynamical sys-
tems integrable ones are exceptional. Indeed, a small
structural perturbation of an integrable system often
destroys integrability.

Although Poincaré’s results dampened interest in the
search for new integrable equations during the first half
of the 20th century, the situation changed dramatically
with the discovery of the inverse scattering transform as
a method of solving the initial vatue (Cauchy) problem
for the Korteweg—de Vries (KdV) equation {Gardner et
al., 1967). Rapidly extended to several other ponlinear
systems of scientific interest (nonlinear Schrédinger
equation, sine-Gordon equation, Toda lattice, and so
on), this discovery aiso led to the emergence of “soliton
factories” during the 1980s (Zakharov, 1991).

More generally, integrability theory aims to find
global information on solutions and, if possible, to solve
differential equations analyticaily. Integrability itself is
an intrinsic characteristic of differential equations, im-
posing constraints on the way solutions evolve in phase
space and suggesting the following working definition.

Definition A differential equation is completely inte-
grable if all solutions to weli-posed initial or boundary
value problems can be presented beginning with ele-
mentary functions, using finitely many algebraic oper-
ations and compositions of functions, and evaluating
limits.

Algebraic operations include inveriing or diagonal-
izing matrices; compositions of functions inchide in-
verses; and the limits can be integrals, infinite series,
or asymptotes, Thus, this definition holds for cases in
which solutions can be constructed explicitly. It also
generalizes the notion of integrability by quadratures
(Liouville integrability) that only requires computation

of intermediate integrals in addition to algebraic opexr-

ations and compositions of functions.

For ODEs, the Liouville-Arnol’d theorem on finite-
dimensional Hamiltonian systems gives sufficient con-
ditions, called the Liouville conditions, for guarantee-
ing the integrability by quadratures (Armol’d, 1989). For
a Hamiltonian system of N degrees of freedom, these
conditions are:

e the existence of N integrals of motion {F1, F2, ...,
Ful,

o that are functionally independent on the level surface
(F; = ;) containing the initial data, and

» that commute with each other under the associated
Poisson bracket.

i the level surface [Fj==a;} is compact and
connected, then the Liouville-Amol’d theorem says
that the underlying Hamiltonian system can be
expressed as

fi=0, @ =, .. In)s (5)
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in the action-angle coordinate system (i, @) of a
neighborhood of the level surface. Thus, the motion
is conditionally periodic along an N-dimensional torus
with the frequencies w;, and the solution to the Cauchy
problem can be completely determined by the method
of guadratures. The Buler top, the Lagrange top,
Kowalewski’s top, the Stiickel systems, and geodesic
flows on a surface are Liouville-integrable systems
{Perelomov, 1990).

For PDEs, there also exist some results on integra-
bility properties from a Hamiltonian perspective, in-
cluding the bi-Hamiltonian theory {Magri, 1978) from
which infinitely many symmetries and conservation
laws for PDEs can be deduced. Motivated by the
Liouville—-Arnol’d theorem, a notion of integrability for
PDEs is the existence of infinitely many conservation
taws. The KdV equation is integrable in this sense, and
it can also be put into a Hamiltonian form in action-
angle coordinates like integrable ODEs (Zakharov &
Faddeev, 1971).

The existence of infinitely many conservaton
laws can lead to infinitely many finite-dimensional
solution varieties that can be determined analytically
{(Fuchssteiner, 1992), but it is not clear whether these
subvarieties generate the whole infinite-dimensional
solution variety. Indeed, the infinitely many degrees of
freedom of PDEs introduce large diversity, obscuring
their solvability and integrability properties.

The notion of partial integrability arises when sys-
terns of differential equations (both ODEs and PDES)
possess more degrees of freedom than conservation
laws (Conte & Boccara, 1990). Symmetry constraints
developed in soliton theory (Ma & Zhou, 2001} suggest
a way to show partial integrability for PDEs through
relating PDEs to integrable ODEs. The method was
motivated by Moser’s work on Hill's equation (Moser,
1980) and nonlinearization of Lax pairs (Cao, 1990).
The results generalize the theory of finite-dimensional
integrable stationary equations, suggesting the possi-
bility of establishing a Liouville-Arnol’d theorem for
infinite-dimensional Hamiltontan systems.

Since the 1970s, several criteria have arisen
for testing the integrability of nontinear PDEs,
and cortesponding theories include infinitely many
symmetries, infinitely many conservation laws, Lax
structure, bi-Hailtonian structure, the Bicklund
transform, Hirota's bilineax form, the inverse scattering
transform, and the Pairlevé property (Degasperis, 1998;
Gu, 1995).

An ODE or a PDE is said to possess the Painlevé
property, respectively, if the movable singularities of
solutions of the ODE are only poles (Ablowitz &
Clarkson, 1991) or if solutions of the PDE are “single-
valued” in the neighborhood of noncharacteristic,
movable singularity manifolds (Weiss et al., 1983),
suggesting that the Painlevé property is an indication
of complete integrability (Conte, 1999} One advantage
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of the Painlevé property is that it can be a tool for
computing Lax pairs and conservation laws. Lax pairs,
as we have seen in Equation (3), provide linear objects
for solving Cauchy problems of nonlinear equations.
A thorough understanding of the relationship between
Painlevé singularities and integrability may suggest
alternatives to the KAM notion of near-integrability

" (Zakharov, 1991).

The term S-integrability implies integrability of
Canchy problems by the inverse spectral transform
technique (Calogero & Degasperis, 1982) or the inverse
scattesing transform (Ablowitz & Clarkson, 1991;
Fokas, 1997). C-integrability, on the other hand, means
that a differential equation can be transformed into
a linear one by an appropriate change of variables.
Exatples of C-integrable equations are the Burgers
equation and the Calogero-Dagasperis-Ibragimov--
Shabat equation: .

Up = gy — 2MUx, (B}
Wy == Upxy + 3u2uxx 4 9““3 + 3u4ux- (CDIS)

These two equations are, respectively, cast into the
heat equation (v, = vxy) and the linear KdV equation
(v == Uyyy) under appropriate dependent variable
transformations. Calogero and colleagues have made a
systematic study of the construction and classification
of C-integrable equations, both in 1 + 1 dimensions
and N + 1 dimensions (Zakharov, 1991). Although the
property of C-integrability often Jeads to an infinity of
conservation Iaws, the Burgers equation has only one
local conservation law of differential polynomial type.

Wen-X1u Ma

Seealso Burgers equation; Constants of motion and
conservation laws; Hamiltonian systems; Hirota’s
method; Inverse scattering method or transform;
Painlevé analysis; Solitons

Further Reading

Ablowitz, M.} & Clarkson, PA. 1991. Solitons, Nonlinear
Evolution Equations and lnverse Scattering, Cambridge and
New York: Cambridge University Press t

Arnold, VI 1989, Mathematical Methods of Classical
Mechenics, 2nd edition, New York: Springer

Bryd, PE & Friedman, MD. 1954. Handbook of Elliptic
[ntegrats, Mew York: Springer

Calogero, R 2001. Classical Mary-Body Problems Amerndable
to Exact Treatments, Berlin and Heidelberg: Springer

Calogero, B & Degasperis, A. 1982, Spectral Transform and
Solitons, vol. 1. Tools to Solve and Investigate Nonlinear
Evolution Eguations, Amsterdam and New York: North-
Holland

Cagc, C.W. 1990, Nonlinearization of the Lax system for AKNS .
hierarchy, Science in China, Series A: Mathematics, Physics, - -
Astronowy, 33: 528-536 o

Conte, R, (editor). 1999. The Painievé Property, One Century "
Later, New York: Springer o

Conte, R. & Boccara, N, (editors). 1990. Partially Integrabie
Evelution Equations in Physics, Dordrecht: Kluwer




INTEGRABLE CELLULAR AUTOMATA

Degasperis, A. 1998. Resource letter Sol-1: solitons. American
Journal of Physics, 66: 486457

Fokas, A.S. 1997. A unified tansform method for solving
linear and certain nonlinear PDEs. Proceedings of the Rayal
Society of London, Series A: Mathematical, Physical and
Engineering Sciences, 453: 1411-1443

Fuchssteiner, B. 1992, Hamiltonian structure and integrability.

n Nonlinear Equations in the Applied Sciences, Boston, MA:

Academic Press, pp. 211236

Gardner, C.S., Greene, 1.M., Kruskal, M.D. & Miura, R.M. 1967.
Method for solving the Rorteweg-de Vries equation. Physical
Review Letters, 19: 10951097

Gu, C.H. (editor). 1995, Soliton Theory and Its Applications,
Berlin and Heidelberg: Springer and Hangzhou: Zhejiang
Science and Technology Publishing House

Hermann, R. 1984, Topics in the Geometric Theory of Integrable
Mechanical Systems, Brookline, MA: Math Science Press

Ma, W.-X. & Zhou, Z. X.'2001. Binary symmetry constraiats of
N-wave interzction equations in 1 + 1 and 2+ 1 dimensions.
Journal of Mathematical Physics, 42 4345-4382

Magii, B. 1978. A simpte model of the integrable Hamiltonian
equation. Jowrnal af Mathematical Physics, 19: 1156-1162

Moser, J. 1980. Various aspects of integrable Hamiltonian
systems. In Dynamical Sysiems, Boston: Birkh#user, pp. 233~
289 ‘ ¢

Perelomov, - AM. 1990. Jntegrable Systems af Classical
Mechanics and Lie Algebras, vol. 1, Basel: Birkhiuser

Weiss, 1., Tabor, M. & Carnevale, G. 1983.The Painlevé property
for partial differential equations. Journal of Mathematical
Phiysics, 24: 522-526

Fakharov, V. B, (editor). 1991, Whar Is Integrability? Berlin and
Heidelberg: Springer

Zakharov, VE. & Faddeev, L.D. 1971. The Korteweg~de Vries
equation is a fully integrable Hamiltonian system. F unctional
Analysis-and Its Applications, 54 18-27

INTEGRABLE CELLULAR AUTOMATA

Integrable ceflular automata {CAs) are discrete &y~
* namical systers that possess attributes of integrability
including conserved quantities, symmetries, and local-
ized sotutions, They show how to discretize a given in-
tegrable system of differential equations, maintaining
the integrability property, suggesting that integrability
of discrete systems and their coherent structuzes are in-
herently connected with the iterated string processing
performed by automata,

The propagating solutions (or coherent objects) on
certain cellular antomata have been found to exhibit
nondestructive collisions similar to those observed for
soliton systems like the Korteweg-de Viies equation. In
such cases, pulse-like disturbances propagating along
a uniform nonlinear medium are represented Dy strings
of symbols (zero-one palterns), passing through a
one-way structure—the pipeline of identical antomata
M. The analysis of these moving objects reduces
to investigating the repeated automaton action over
strings, also called an iterated automaton map {1AM);
M@y=a Tt t=0,1,....

All known models capable of supporting such dis-
crete localized structures are described by aatomata
(Siwak, 2001, 2002}, and a method (called ultra-
discretization) leads to discrete systems in which so-
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lutions of some familiar soliton equations are pre-
served as soliton-like patterns (Tokihiro et al,, 199%).
Thus, an JAM is a fundamental discrete mechanisim
that supports localized soliton-like periodic structures.
This is why a new term iferons (Siwak, 2001, 2002}
has been proposed for these objects. Note also that
fractals owe their existence to the iterating process of
SOME Maps.

There are two classes of iterons. The first consists
of particles welt known in cellular autormata models
(Delorme & Mazoyer, 1999) where the parallel
processing of strings occurs. The second class is not
widely known and consists of so-called filtrons. The
filtrons are emergent coherent objects occurring in
serial processing of strings (Siwak, 2001).

In parallel processing of a string a' at a given
time ¢ all symbols a/t' of the next string of +1
are updated simultaneously, for example, by the
function &' = flal_,. ..., af. -, afy,)- Whei the
same function f is used for ali positions £, one has a 1-
dimensional CA, with f being called its local function
or rule. The arguments of f are determined by the so-
called neighborhood window Ny = (=7, ..., +r); here
N; designates r neighbots on both sides of position i.

The lsting of consecutive strings al fort=0,1,...
one under another forms what is called a space-time
(ST) diagram. This diagram visualizes the evolutionofa
given string aV—the dynamics of a CA system in phase
space for initial global state a®. Occasionally, some
moving and periodic patterns of symbois or segments
of a string are seen on ST diagrams of CA processing.
These are just particles or signals of CAs (Delorme &
Mazoyer, 1999).

The serial processing of strings is performed by
a computational model called a finite {state) au-
tomaton. The Mealy type automaton is described
by M ={(S, 5,62, 6, B, sp), where S, 5, and € are
nonempty finite sefs of-—respectively—states, inputs,
and outputs; 8: § x T — S is called the next state func-
tion of M, B: § % T ~ 2 is catled the output function
of M, and sp is the initial (extinction) state of the au-
tomaton. The automaton converts, sequences of syIm-
bols, preserving their length. Any input string is read
sequentially from left to right, one symbol at each in-
stant of time (pulse of clock). For all 7=1,2, ... the
automaton:

(i) reads input symbol o (7},
(i) changes its current state s(v) onto the next one
according to 8(s(z), o (r)} =s(r + 1), and
(iit) generates the symbol B(s (), o(r)) = e (r) of the
resulting string.

Thus the complete one step conversion at al -
at*! requires a series of clock pulses T. To
consider TAMs, one has to assume the unified
input-output alphabet A = L = Q e (), 1,...,m. Then
the automaton’s operation can be described by a




