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A METHOD OF ZERO CURVATURE REPRESENTATION FOR
CONSTRUCTING SYMMETRY ALGEBRAS OF INTEGRABLE SYSTEMS

WEN-X1U MA
Institute of Mathematics, Fudan University

Shanghai 200433, P. R. of China

ABSTRACT

By establishing Lax operator algebras related to zero curvature (zc) representation, a gen-
eral skeleton of constructing symmetry algebras of integrable systems is proposed along with
an application to coupled KdV hierarchy. Moreover it is clearly explained why nonisospec-
tral vector fields can become the first order common master symmetries of the hierarchy of
isospectral flows for a given spectral problem.

1. Introduction

In the last two decades, a lot of progress in the investigation of symmetry algebras of
integrable systems has been achieved.! The recursion operator, which was first proposed by
Olver? to provide a mechanism for generating an infinite family of symmetries, plays an im-
portant role in the theory. Moreover this kind of operators usually possesses a fundamental
algebraic-geometrical property called hereditary”® or Nijenhuis®® property, and has a close
relation?~1? to the multi-Hamiltonian formulation. However, by the recursion operator it
can not be exposed why an integrable system possesses a symmetry algebra, particularly
a r-algebra!’ of symmetries which is a semi-product Lie algebra of a Kac-Moody algebra
and a Virasoro algebra. Recently for integrable systems with Lax representations, through
introducing Lax operator algebras we have given a clear explanation for the existence of
r-algebras of symmetries.'? In the present paper for integrable systems with zero curvature
(z¢) representations, we want to display tersely a general skeleton for constructing sym-
metry algebras by establishing analogous Lax operator algebras, and thus also explain the
same problem, that is, why nonisospectral vector fields can become the first order master
symmetries of isospectral flows,

2. The Algebraic Structure Related to ZC Representation

Assume that the spectral operator U = U(u, ) has an injective Gateaux derivative
operator U’'. Let us discuss the spectral problem

¢z =U¢= U(’ll,/\)(/s, At = f(/\)’ fe Cooy 91
b= Vo =V(u,A), u:(ul,uz,---,uq)T. (2.1)

Noticing that U"t = U'[uy] + X Ux;we-can see that the equation u; = K = K(z,t,u) has a
z¢ Tepresentation Uy — Vz + [U, V] = 0, which is the compatibility condition of (2.1), iff

U'K] + F(\)Uy = Ve + [U, V] = 0. (2.2)
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This equality provides a connection between the equation u, = K and the spectral problem
(2.1) and plays a crucial role in our deduction. For two groups of (V, K, ) (W,5,9)
satisfying (2.2), we introduce
L£,91(3) = fF/(XN)g(A) = F(N)g' (), (2.3)
[V,W] = V'[8) - W[K]+[V,W] + gV» — fFW). (2.4)
We may verify the following by a direct computation.

Theorem 2.1. We generally have the equality
Ul 81+ [, 61NN = [V, W + [U, [V, W]] = 0, (2.5)

namely, the equation u; = [K,8] is the compatibility condition of the spectral problem
¢ = Us, A = [f,g](N), and the auxiliary problem ¢, = [V,W]¢ provided that (2.2) holds
for two groups of (V, K, f), (W, S, g).

By the above theorem, we easily show an important fact that the eigenvector fields (K )
corresponding to a given evolution function (f) are certain to possess exactly the same
algebraic structure as their Lax operators (V') because of the injective property of U'. This
may give rise to a way to construct symmetry algebras, which will be discussed in the
following sects. 3 and 4.

3. ZC Representations of Hierarchies

Let ® be a hereditary symmetry associated with the spectral problem ¢, = U.!3 For a
given vector field X, we construct an operator equation of Q:

[, U] + Qg = U[8X] - \U'[X] (3.1)

and call it the characteristic equation of U at X. Assume that (3.1) has solution for any
X and = Q(X) is a solution at X.

Theorem 3.1. Suppose k > 0 and there exist starting Lax operators Ag, By and vector
fields fy, g0 such that the equalities

U'[fol = Aoz + [U, Ao] = 0, U'[go] + AU — By + [U, Bo] = 0 (3:2)

hold. Let K., = 8™ fy, 0y = ®"gy, m,n > 0, and further let

Vi = ) AT A =AM Ao+ ) APTIO(KLy), (3.3a)
i=0 =1

Wa= 3 A"9B; = \Bo+ Y A"iQ(0;1). (3.3b)
i=0 i=1

Then Vi, W, are respectively Lax operators associated with K,,,o,, i.e. we have

U'lK ] — Ving + [U, Vi) = 0, m > 0, (3.4a)
U'lon] + AU\ = Wi + [U,Wo] = 0, n 2> 0. (3.4b)
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This theorem implies that two hierarchies of equations v, = K,,, m > 0, and u; =
o, 1 > 0, possess zc representations U; — Ving + [U, V] = 0, m > 0, and Uy — Wy +
[U,W,] = 0, n > 0, respectively. It also tells us that a starting master symmetry go may
be worked out by solving an equation of go, Bg in (3.2).

4. Lax Operator Algebras

The aim of this section is to explain why the vector fields K,,,on, m,n > 0, defined in
the previous section, possess a semi-product Lie algebraic structure.
Theorem 4.1. Let k' > 0. Suppose that (1) folu=o =0, op|uzo = 0; (2) if U'[T] — Oy +
[U,0] = 0 and Olu=g¢ = 0, then O = 0; (3) the equality [Volu=0, W' |u=0] = YVrrsr-1lu=0,
v =const. holds if k' > 0 or the equality

[%IlL:OyWOquo] = 07 [V0|u=07W1!u=0} = Tvklu=07 [Vllll=07WO|tL=O] = (1 -+ 7)Vk[u=0,

where v is a constant, holds if k' = 0. Then we have a semi-product Lie algebra of Lax
operators

t{vmv ‘/71] = 01 m,n Z 01 (41&)
Evmy Wn] - (m + 'Y)Vm-i-n—i-k—-l, V-l = 0, m Z 0, n Z k’, (41b)
[[Wm;Wn]] = (m - n)Wm+n+k—1’ W-—l = 0, m,n 2 kl, (41(:)

where [, ] is determined by (2.4).

We refer to the above algebra (4.1) as a Lax operator algebra. From a Lax operator
algebra (4.1), we can readily deduce the same semi-product algebraic structure of the vector
fields K, 0n, m,n > 0, by noticing the explanation in Sec. 2 or directly using (2.5), and
thus may obtain the following at once.

Theorem 4.2 (r-algebra). Under the assumption of Theorem 4.1, every integrable sys-
tems wy = K, (s > 0) possess the following symmetry algebra:

[Km, Ku] =0, myn >0,

[I(m;TT(,,s)} = (771 + 7)I(m+'n.+k-—-1, I(—l = 07 ™m Z 0) n Z k,1

[71(7:),7_7(13)] ={m-— 7L)T1(rf—)l-n+k—1’ T(_’l) =0, m,n >k,

(s)

where T-syminetries T, ' read as T,(f) = i[Ks,00] + 00y, n 2 0.

Summarizing, we can state that symmetry algebras may be generated by computing Lax
operator algebras, which is a kind of new trick.

5. Application: An Illustrative Example

4

In terms of the above theory, we consider the coupled KdV case!® as a particular example.

The spectral proﬁlem in this case can be rewritten as

g—1
‘pr = U(uv)‘)(/’ = I:’“OQ (:;:I d’y Q - Q('U")‘) = )‘_lzvi/\i - /\q_lv 0< { < q- 1

=0
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with u = (v9,v1, -+ ,v-1)7. The corresponding isospectral hierarchy is u; = K, =
®™ugz, m > 0, in which @ is the common hereditary recursion operator

0 0 - 0 R
10 - 0 R 1 1

=10 1 - 0 R2 ‘ ,R:-‘::Zﬁuaz+v;+~2-v,-z(?“1,0§i5q—l.
0 0 - 1 R

The characteristic eq. (3.1) has a special solution for any X = (X1,---,X,)T:

~lx 1s-1y
Q= QX) = [ 1 2 q}

—%QB“IX‘, - %er %Xq

and Eq. (3.2) with k = 1 has two pairs of solutions: fy = uy, Ag = U and
1 1 T
go = (quo + 5(a = Davow, -+ -1+ 5(0 = Dwvgere )",

B [ D) %(Q~1)x}
0 = .
~Ha-D2Q (-1
According to Theorem 4.1 with &' = 0, for coupled KdV hierarchy we can present a
Lax operator algebra determined by (4.1) with ¥ = 1 and 7 = %(q — 1), and thus the
same structure admitted by the symmetry algebra of the hierarchy can be formulated by

Theorem 4.2. The effectiveness of our method may be also demonstrated by applications
to the other typical integrable hierarchies, which will be reported elsewhere.
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