

Letter

Matrix extension of the Kuralay-II Equation and its associated Darboux transformation

Wen-Xiu Ma ^{*}*Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China**Research Center of Astrophysics and Cosmology, Khazar University, 41 Mehseti Street, Baku 1096, Azerbaijan**Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA**School of Mathematics, South China University of Technology, Guangzhou 510640, China**Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa*

ARTICLE INFO

Keywords:

Lax pair

Zero-curvature equation

Darboux transformation

ABSTRACT

Starting from the matrix AKNS spectral problem, we construct a Lax pair featuring a first-order non-zero pole in the spectral parameter and derive a matrix generalization of the Kuralay-II equation. The associated Darboux transformation is developed within the AKNS framework. By applying this transformation to a non-zero seed solution, we obtain a class of exact and explicit solutions.

1. Introduction

In soliton theory, numerous powerful methods have been developed to construct solutions of integrable models. Among them, the Darboux transformation stands out as an effective algebraic technique for generating new solutions from known ones, typically through the use of Lax pairs [1].

Fundamentally, the Darboux transformation modifies the potential of a given integrable model by applying a specific transformation to its associated Lax pair. This process preserves the integrability of the original model and enables the iterative construction of multi-soliton solutions, rational solutions, rogue waves, and other intricate structures. The Lax pair formalism lies at the core of this framework and has been extended to encompass matrix-valued systems, higher-dimensional models, noncommutative geometries, and supersymmetric cases (see, e.g., [2,3]).

Let us consider the zero-curvature formulation and the associated Darboux transformations for integrable models [2,4]. We begin with the matrix spectral problems

$$\phi_x = U\phi = U(u, \lambda)\phi, \quad \phi_t = V\phi = V(u, \lambda)\phi, \quad (1)$$

where λ is the spectral parameter and ϕ is the vector eigenfunction. The compatibility condition of this overdetermined linear system leads to the zero-curvature equation:

$$U_t - V_x + [U, V] = 0, \quad (2)$$

which often yields an integrable model of the form:

$$u_t = K(u) = K(x, t, u, u_x, \dots). \quad (3)$$

* Corresponding author at: Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA.
E-mail address: mawx@cas.usf.edu.

In recent developments, Lax matrices V featuring negative powers of the spectral parameter have been employed to study associated integrable models, referred to as negative-order flows.

A key objective in the theory of integrable systems is to construct Darboux transformations for such models from the zero-curvature representation. A Darboux transformation consists of a gauge transformation $\phi' = D\phi$ along with a new potential $u' = u'(u)$, where $D = D(u, \lambda)$ is a matrix function of the potential and the spectral parameter. The transformed eigenfunction ϕ' is required to satisfy the same type of spectral problems:

$$\phi'_x = U'\phi' = U(u', \lambda)\phi', \quad \phi'_t = V'\phi' = V(u', \lambda)\phi', \quad (4)$$

with U' and V' preserving the structure of the original Lax pair (see, e.g., [4,5]). The matrix D is called a Darboux matrix, and it must satisfy the compatibility conditions:

$$U'D = DU + D_x, \quad V'D = DV + D_t. \quad (5)$$

Assume the matrices U and V are of order N . A commonly used first-order Darboux matrix takes the form:

$$D(\lambda) = \lambda I_N - S, \quad (6)$$

where I_N is the $N \times N$ identity matrix, and S is an $N \times N$ matrix independent of λ . Let $\lambda_1, \lambda_2, \dots, \lambda_N$ be distinct eigenvalues, with corresponding eigenfunctions $\phi^{[j]}$ satisfying:

$$\phi_x^{[j]} U(u, \lambda_j) \phi^{[j]}, \quad \phi_t^{[j]} = V(u, \lambda_j) \phi^{[j]}, \quad 1 \leq j \leq N, \quad (7)$$

where u is a known solution to (3). Define the matrix

$$H = (\phi^{[1]}, \dots, \phi^{[N]}), \quad A = \text{diag}(\lambda_1, \dots, \lambda_N), \quad (8)$$

and then the matrix S is given by [2,4]:

$$S = HAH^{-1}. \quad (9)$$

The transformed potential $u' = u'(u)$ defines a new solution to the integrable model (3). This Darboux framework applies effectively to general AKNS-type flows in both lower- and higher-dimensional cases [4].

In this paper, we start from the matrix AKNS spectral problem, formulate a Lax matrix V featuring a first-order non-zero pole in the spectral parameter, and derive a matrix generalization of the Kuralay-II equation. Based on the proposed Lax pair, we construct the corresponding Darboux transformation within the AKNS framework. Using a non-zero constant seed solution, we apply the transformation to obtain a class of exact and explicit solutions to the new matrix model.

2. Lax pair and matrix Kuralay-II equation

Let m and n be natural numbers, and let α_1 and α_2 be two distinct constants. Consider the AKNS spectral matrix [6] given by

$$U = i\lambda\Lambda + Q, \quad \Lambda = \begin{bmatrix} \alpha_1 I_m & 0 \\ 0 & \alpha_2 I_n \end{bmatrix}, \quad Q = \begin{bmatrix} 0 & q \\ r & 0 \end{bmatrix}, \quad (10)$$

where I_k denotes the $k \times k$ identity matrix, and q and r are the potential matrices of sizes $m \times n$ and $n \times m$, respectively. We define the associated Lax matrix as:

$$V = \frac{1}{1 - \alpha\lambda} W, \quad (11)$$

where

$$\alpha = \alpha_1 - \alpha_2, \quad W = W_1 + W_2, \quad W_1 = -i \begin{bmatrix} v & 0 \\ 0 & w \end{bmatrix}, \quad W_2 = i \begin{bmatrix} 0 & -q_t \\ r_t & 0 \end{bmatrix}, \quad (12)$$

with v and w being two square potential matrices of orders m and n , respectively.

The zero-curvature equation

$$U_t - V_x + [U, V] = 0 \quad (13)$$

is equivalent to

$$(1 - \alpha\lambda)U_t - W_x + [U, W] = 0. \quad (14)$$

By equating powers of λ , this gives:

$$\begin{cases} -\alpha Q_t + i[\Lambda, W] = 0, \\ Q_t - W_x + [Q, W] = 0. \end{cases}$$

The first equation is satisfied automatically, since

$$[\Lambda, W_1] = 0, \quad [\Lambda, W_2] = -i\alpha Q_t.$$

To verify the second equation, we compute

$$[Q, W_1] = -i \begin{bmatrix} 0 & qw - vq \\ rv - wr & 0 \end{bmatrix}, \quad [Q, W_2] = i \begin{bmatrix} (qr)_t & 0 \\ 0 & -(rq)_t \end{bmatrix}.$$

Hence, we obtain the following system:

$$\begin{cases} iq_t - q_{tx} + qw - vq = 0, \\ ir_t + r_{tx} + rv - wr = 0, \\ v_x + (qr)_t = 0, \\ w_x - (rq)_t = 0. \end{cases} \quad (15)$$

This is the matrix form of the Kuralay-II equation, which also extends integrable models arising from dual group reductions (see, e.g., [7–10]). Remarkably, the resulting equation is independent of the specific values of α_1 and α_2 , and it remains valid even when $\alpha = 0$.

In the scalar case $m = n = 1$, setting $w = -v$, we recover

$$\begin{cases} iq_t - q_{tx} - 2vq = 0, \\ ir_t + r_{tx} + 2vr = 0, \\ v_x + (qr)_t = 0. \end{cases} \quad (16)$$

This reduces, via the scaling $v \rightarrow \frac{1}{2}v$, $q \rightarrow dq$, $r \rightarrow dr$, to the standard Kuralay-II equation [11]:

$$\begin{cases} iq_t - q_{tx} - vq = 0, \\ ir_t + r_{tx} + vr = 0, \\ v_x + 2d^2(qr)_t = 0, \end{cases} \quad (17)$$

where d is a non-zero constant. Many other negative-order AKNS flows have been studied in the scalar case (see, e.g., [12–16]).

For the case $m = 1$ and $n = 2$, if we set

$$q = (q_1, q_2), \quad r = (r_1, r_2)^T, \quad v = (v_{11}), \quad w = \begin{bmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{bmatrix}, \quad (18)$$

then the system of equations becomes:

$$\begin{cases} iq_{1,t} - q_{1,tx} + q_1 w_{11} + q_2 w_{21} - v_{11} q_1 = 0, \\ iq_{2,t} - q_{2,tx} + q_1 w_{12} + q_2 w_{22} - v_{11} q_2 = 0, \\ ir_{1,t} + r_{1,tx} + r_1 v_{11} - w_{11} r_1 - w_{12} r_2 = 0, \\ ir_{2,t} + r_{2,tx} + r_2 v_{11} - w_{21} r_1 - w_{22} r_2 = 0, \\ v_{11,x} + (q_1 r_1 + q_2 r_2)_t = 0, \\ w_{11,x} - (r_1 q_1)_t = 0, \quad w_{12,x} - (r_1 q_2)_t = 0, \\ w_{21,x} - (r_2 q_1)_t = 0, \quad w_{22,x} - (r_2 q_2)_t = 0. \end{cases} \quad (19)$$

In general, the resulting system comprises $(m+n)^2$ equations, corresponding to all possible components of the dependent variables. It is also a special case of the system proposed in [4], associated with the following parameter and spectral matrix choices:

$$n = 2, \quad p_1 = x, \quad x_2 = t, \quad A_1 = -U, \quad a_2 = (1 - \alpha\lambda), \quad A_2 = W.$$

3. The Darboux transformation and its application

3.1. Compatibility conditions

We assume that the Darboux matrix takes a linear form in λ :

$$D(\lambda) = \lambda I_{m+n} - S, \quad (20)$$

where S is an auxiliary matrix to be determined. The spatial compatibility condition

$$U' D = D U + D_x,$$

with U being given by (10) and

$$U' = i\lambda\Lambda + Q', \quad (21)$$

leads to

$$(i\lambda\Lambda + Q')(\lambda I_{m+n} - S) = (\lambda I_{m+n} - S)(i\lambda\Lambda + Q) - S_x.$$

By comparing the powers of λ , we find

$$Q' = Q + i[\Lambda, S], \quad (22)$$

and

$$S_x = Q' S - S Q = [Q + i\Lambda S, S]. \quad (23)$$

The temporal compatibility condition:

$$V' D = DV + D_t,$$

with

$$V' = \frac{1}{1 - \alpha\lambda} W', \quad (24)$$

yields

$$W'(\lambda I_{m+n} - S) = (\lambda I_{m+n} - S)W - (1 - \alpha\lambda)S_t.$$

It then follows that

$$W' = W + \alpha S_t, \quad (25)$$

and

$$S_t = W' S - SW = (W + \alpha S_t)S - SW = [W, S] + \alpha S_t S. \quad (26)$$

3.2. Construction of the Darboux matrix

Following the general AKNS framework (see, e.g., [4]), the matrix S can be constructed as

$$S = HAH^{-1}, \quad (27)$$

where

$$H = (\phi^{[1]}, \dots, \phi^{[m+n]}), \quad A = \text{diag}(\lambda_1, \dots, \lambda_{m+n}), \quad (28)$$

and each column $\phi^{[j]}$ satisfies the Lax pair equations:

$$\phi_x^{[j]} = U(u, \lambda_j)\phi^{[j]}, \quad \phi_t^{[j]} = V(u, \lambda_j)\phi^{[j]}, \quad 1 \leq j \leq m+n. \quad (29)$$

To verify compatibility, we compute the derivatives of S using the identities

$$H_x = i\Lambda H A + Q H, \quad H_t = W H B, \quad (30)$$

where

$$B = \text{diag}\left(\frac{1}{1 - \alpha\lambda_1}, \dots, \frac{1}{1 - \alpha\lambda_{m+n}}\right). \quad (31)$$

Differentiating S with respect to x , we obtain

$$\begin{aligned} S_x &= H_x A H^{-1} - H A (H^{-1} H_x H^{-1}) \\ &= i\Lambda H A^2 H^{-1} + Q H A H^{-1} - H A H^{-1} (i\Lambda H A + Q H) H^{-1} \\ &= i\Lambda H A^2 H^{-1} + Q H A H^{-1} - i H A H^{-1} \Lambda H A H^{-1} - H A H^{-1} Q \\ &= Q S - S Q + i\Lambda S^2 - i S \Lambda S, \end{aligned}$$

which verifies the spatial compatibility condition (23).

Similarly, differentiating S with respect to t , we compute

$$S_t = H_t A H^{-1} - H A (H^{-1} H_t H^{-1}) = W H B A H^{-1} - H A (H^{-1} W H B H^{-1}).$$

Using the identity

$$B = \alpha B A + I_{m+n}, \quad (32)$$

we obtain

$$\begin{aligned} S_t &= W H (A + \alpha B A^2) H^{-1} - H A H^{-1} W H (\alpha B A + I_{m+n}) H^{-1} \\ &= W H A H^{-1} + \alpha (W H B A H^{-1} - H A H^{-1} W H B H^{-1}) H A H^{-1} - H A H^{-1} W \\ &= W S + \alpha S_t S - S W, \end{aligned}$$

which confirms the temporal compatibility condition (26).

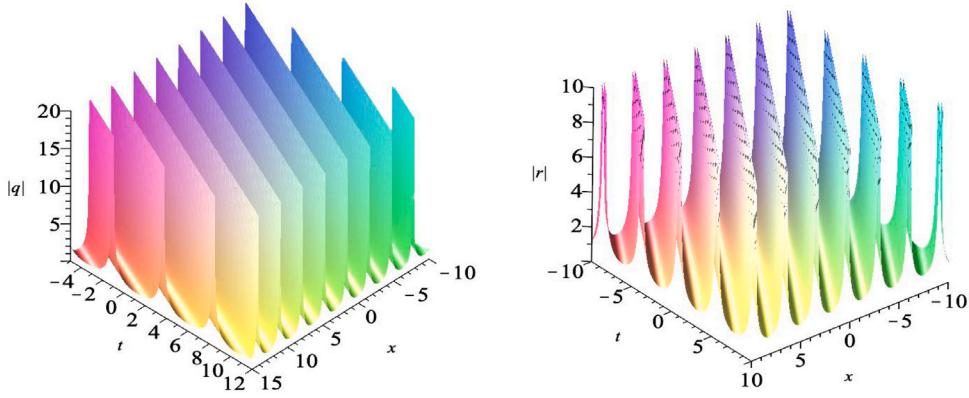


Fig. 1. 3D plots of $|q|$ (left) and $|r|$ (right).

3.3. The Darboux transformation

From the above construction, we obtain the Darboux transformation:

$$\phi' = (\lambda I_{m+n} - S)\phi, \quad Q' = Q + i[\Lambda, S], \quad W' = W + \alpha S_t. \quad (33)$$

Using the structures of U and W given in (10) and (12), respectively, the transformed potentials are explicitly given by:

$$q' = q + i[\Lambda, S]_{12}, \quad r' = r + i[\Lambda, S]_{21}, \quad v' = v + i\alpha S_{11,t}, \quad w' = w + i\alpha S_{22,t}, \quad (34)$$

where S is defined by (27), and the subscript notation M_{jk} denotes the (j, k) -block component of the matrix M under the partitioning determined by the spectral matrix U .

3.4. An application: explicit solutions

We illustrate the procedure by considering a non-zero constant seed solution:

$$q = r = 0, \quad v = v_0, \quad w = w_0, \quad (35)$$

where v_0 and w_0 are arbitrary constant matrices. For each spectral parameter λ_j , the associated eigenfunction

$$\phi^{[j]} = (\phi_1^{[j]T}, \phi_2^{[j]T})^T \quad (36)$$

is given explicitly by

$$\begin{cases} \phi_1^{[j]} = \exp(i\alpha_1 \lambda_j I_m x - \frac{i}{1-\alpha\lambda_j} v_0 t) \mu_1^{[j]}, \\ \phi_2^{[j]} = \exp(i\alpha_2 \lambda_j I_n x - \frac{i}{1-\alpha\lambda_j} w_0 t) \mu_2^{[j]}, \end{cases} \quad 1 \leq j \leq m+n, \quad (37)$$

where $\mu_1^{[j]} \in \mathbb{C}^m$ and $\mu_2^{[j]} \in \mathbb{C}^n$ are arbitrary constant vectors. Substituting these into the Darboux framework, the transformed solution is explicitly given by:

$$q' = i[\Lambda, S]_{12}, \quad r' = i[\Lambda, S]_{21}, \quad v' = v_0 + i\alpha S_{11,t}, \quad w' = w_0 + i\alpha S_{22,t}, \quad (38)$$

where $S = HAH^{-1}$ is constructed from the explicit eigenfunctions determined above, as defined in (27) and (28). The block components are taken with respect to the partitioning induced by the spectral matrix U .

For the case $m = n = 1$, the four pictures in Figs. 1 and 2 exhibit 3D plots of the solution (q, r, v, w) , derived based on the parameter choices and initial solution given below:

$$\alpha_1 = 1, \quad \alpha_2 = -1, \quad \lambda_1 = 1, \quad \lambda_2 = 2, \quad \mu_1^{[1]} = \mu_2^{[1]} = -1, \quad \mu_1^{[2]} = \mu_2^{[2]} = -2,$$

and

$$(q, r, v, w) = (q_0, r_0, v_0, w_0) = (0, 0, 1, -1).$$

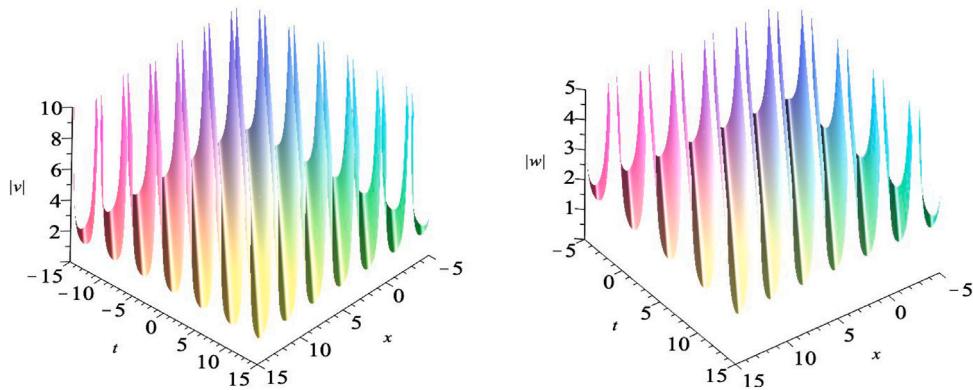


Fig. 2. 3D plots of $|v|$ (left) and $|w|$ (right).

4. Conclusions

Based on the matrix AKNS spectral problem, we have constructed a matrix generalization of the Kuralay-II equation and its associated Darboux transformation, along with a class of exact and explicit solutions. A key feature of the construction is the presence of a non-zero pole in the spectral parameter. Related developments on Darboux transformations for negative-order flows can be found in the literature (see, e.g., [17–21]).

It is well known that reduced Lax pairs often yield novel integrable models, and group reductions play a central role in implementing consistent constraints on the general spectral matrix (see, e.g., [22,23]). These reductions also give rise to nonlocal integrable models [24,25]. A key open question is how to construct Darboux transformations for such constrained matrix systems.

A broader generalization involves Lax operators with higher-order poles in the spectral parameter, although this direction presents considerable difficulty. It introduces new types of constraints and significantly increases the complexity of both the Lax pair structure and the associated Darboux transformations. Determining the form of Darboux transformations in this more singular framework remains a challenging and compelling problem, particularly since the structure given in (27) and (28) may no longer be applicable. Progress in this direction would contribute to the classification of integrable systems and enhance our understanding of their underlying nonlinear dynamics.

CRediT authorship contribution statement

Wen-Xiu Ma: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The author declares that there are no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Acknowledgements

The work was supported in part by the Ministry of Science and Technology of China (G2021016032L and G2023016011L) and the National Natural Science Foundation of China (12271488 and 11975145). The author would also like to thank Dr. Zeeshan Amjad, Dr. Asifa Ashraf, Dr. Aamir Farooq, Dr. Saira Hameed and Dr. Melike Kaplan Yalçın for their valuable discussions and helpful suggestions.

Data availability

No new data were created or analysed in this study.

References

- [1] V.B. Matveev, M.A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991, <http://dx.doi.org/10.1007/978-3-662-00922-2>.
- [2] C.H. Gu, H.S. Hu, Z.X. Zhou, Darboux Transformations in Integrable Systems, Springer, Dordrecht, 2005, <http://dx.doi.org/10.1007/1-4020-3088-6>.
- [3] E.V. Doktorov, S.B. Leble, A Dressing Method in Mathematical Physics, Springer, Dordrecht, 2007, <http://dx.doi.org/10.1007/1-4020-6140-4>.
- [4] W.X. Ma, Darboux transformations for a Lax integrable system in $2n$ -dimensions, *Lett. Math. Phys.* 39 (1997) 33–49, <http://dx.doi.org/10.1007/s11005-997-3049-3>.
- [5] W.X. Ma, Y.J. Zhang, Darboux transformations of integrable couplings and applications, *Rev. Math. Phys.* 30 (2018) 1850003, <http://dx.doi.org/10.1142/S0129055X18500034>.
- [6] M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, *Stud. Appl. Math.* 53 (1974) 249–315, <http://dx.doi.org/10.1002/sapm1974534249>.
- [7] W.X. Ma, Integrable matrix nonlinear Schrödinger equations with reduced Lax pairs of AKNS type, *Appl. Math. Lett.* 168 (2025) 109574, <http://dx.doi.org/10.1016/j.aml.2025.109574>.
- [8] W.X. Ma, Reducing Lax pairs to obtain integrable matrix modified Korteweg-de Vries models, *Pramana - J. Phys.* 99 (2025) 109, <http://dx.doi.org/10.1007/s12043-025-02968-7>.
- [9] W.X. Ma, Dual similarity transformations and integrable reductions of matrix mKdV models, *Phys. Lett. A* 554 (2025) 130727, <http://dx.doi.org/10.1016/j.physleta.2025.130727>.
- [10] W.X. Ma, An application of dual group reductions to the AKNS integrable mKdV model, *Modern Phys. Lett. B* 39 (2025) 2550233, <http://dx.doi.org/10.1142/S0217984925502331>.
- [11] Z. Sagidullayeva, G. Nugmanova, R. Myrzakulov, N. Serikbayev, Integrable Kuralay equations: geometry, solutions and generalizations, [arXiv:2206.05348v2](https://arxiv.org/abs/2206.05348v2), <http://dx.doi.org/10.48550/arXiv.2206.05348>.
- [12] D.J. Zhang, J. Ji, S.L. Zhao, Soliton scattering with amplitude changes of a negative order AKNS equation, *Phys. D* 238 (2009) 2361–2367, <http://dx.doi.org/10.1016/j.physd.2009.09.018>.
- [13] J. Ji, J.B. Zhang, D.J. Zhang, Soliton solutions for a negative order AKNS equation hierarchy, *Commun. Theor. Phys. (Beijing)* 52 (2009) 395–397, <http://dx.doi.org/10.1088/0253-6102/52/3/03>.
- [14] Y.Q. Yao, Y.B. Zeng, Coupled short pulse hierarchy and its Hamiltonian structure, *J. Phys. Soc. Japan* 80 (2011) 064004, <http://dx.doi.org/10.1143/JPSJ.80.064004>.
- [15] G.F. Yu, D. Lao, Complex and coupled complex negative order AKNS equation, *Commun. Nonlinear Sci. Numer. Simul.* 30 (2016) 196–206, <http://dx.doi.org/10.1016/j.cnsns.2015.06.023>.
- [16] Z. Amjad, D. Khan, Binary darboux transformation for a negative-order AKNS equation, *Theoret. Math. Phys.* 206 (2021) 128–141, <http://dx.doi.org/10.1134/S0040577921020021>.
- [17] C. Chen, Z.X. Zhou, Darboux transformation and exact solutions of the Myrzakulov-I equation, *Chin. Phys. Lett.* 26 (2009) 080504, <http://dx.doi.org/10.1088/0256-307X/26/8/080504>.
- [18] H. Riaz, A. Wajahat, M. ul Hassan, Noncommutative negative order AKNS equation and its soliton solutions, *Modern Phys. Lett. A* 33 (2018) 1850209, <http://dx.doi.org/10.1142/S0217732318502097>.
- [19] H. Wajahat, A. Riaz, Darboux transformation for a negative order AKNS equation, *Commun. Theor. Phys. (Beijing)* 71 (2019) 912–920, <http://dx.doi.org/10.1088/0253-6102/71/8/912>.
- [20] W.X. Ma, The first negative-order matrix AKNS flow and its Darboux transformation, *Internat. J. Theoret. Phys.* 64 (2025) 241, <http://dx.doi.org/10.1007/s10773-025-06102-6>.
- [21] Z. Amjad, B. Haider, W.X. Ma, Integrable discretization and multi-soliton solutions of negative order AKNS equation, *Qual. Theory Dyn. Syst.* 23 (2024) 280, <http://dx.doi.org/10.1007/s12346-024-01140-7>.
- [22] W.X. Ma, Matrix mKdV integrable hierarchies via two identical group reductions, *Mathematics* 13 (2025) 1438, <http://dx.doi.org/10.3390/math13091438>.
- [23] W.X. Ma, Reduced matrix integrable hierarchies via group reduction involving off-diagonal block matrices, *Commun. Theor. Phys. (Beijing)* 78 (2026) 015001, <http://dx.doi.org/10.1088/1572-9494/adf42a>.
- [24] W.X. Ma, Y.H. Huang, F.D. Wang, Y. Zhang, L.Y. Ding, Binary Darboux transformation of vector nonlocal reverse-space nonlinear Schrödinger equations, *Int. J. Geom. Methods Mod. Phys.* 21 (2024) 2450182, <http://dx.doi.org/10.1142/S0219887824501822>.
- [25] W.X. Ma, Nonlocal integrable equations in soliton theory, in: S. Manukure, W.X. Ma (Eds.), Nonlinear and Modern Mathematical Physics, Springer, Cham, Switzerland, 2024, pp. 251–266, http://dx.doi.org/10.1007/978-3-031-59539-4_11.