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 A B S T R A C T

Starting from the matrix AKNS spectral problem, we construct a Lax pair featuring a first-order 
non-zero pole in the spectral parameter and derive a matrix generalization of the Kuralay-II 
equation. The associated Darboux transformation is developed within the AKNS framework. By 
applying this transformation to a non-zero seed solution, we obtain a class of exact and explicit 
solutions.

. Introduction

In soliton theory, numerous powerful methods have been developed to construct solutions of integrable models. Among them, 
he Darboux transformation stands out as an effective algebraic technique for generating new solutions from known ones, typically 
hrough the use of Lax pairs [1].
Fundamentally, the Darboux transformation modifies the potential of a given integrable model by applying a specific transforma-

ion to its associated Lax pair. This process preserves the integrability of the original model and enables the iterative construction of 
ulti-soliton solutions, rational solutions, rogue waves, and other intricate structures. The Lax pair formalism lies at the core of this 
ramework and has been extended to encompass matrix-valued systems, higher-dimensional models, noncommutative geometries, 
nd supersymmetric cases (see, e.g., [2,3]).
Let us consider the zero-curvature formulation and the associated Darboux transformations for integrable models [2,4]. We begin 

ith the matrix spectral problems 
𝜙𝑥 = 𝑈𝜙 = 𝑈 (𝑢, 𝜆)𝜙, 𝜙𝑡 = 𝑉 𝜙 = 𝑉 (𝑢, 𝜆)𝜙, (1)

here 𝜆 is the spectral parameter and 𝜙 is the vector eigenfunction. The compatibility condition of this overdetermined linear system 
eads to the zero-curvature equation: 

𝑈𝑡 − 𝑉𝑥 + [𝑈, 𝑉 ] = 0, (2)

hich often yields an integrable model of the form: 
𝑢𝑡 = 𝐾(𝑢) = 𝐾(𝑥, 𝑡, 𝑢, 𝑢𝑥,…). (3)
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W.-X. Ma Wave Motion 140 (2026) 103644 
In recent developments, Lax matrices 𝑉  featuring negative powers of the spectral parameter have been employed to study associated 
integrable models, referred to as negative-order flows.

A key objective in the theory of integrable systems is to construct Darboux transformations for such models from the zero-
curvature representation. A Darboux transformation consists of a gauge transformation 𝜙′ = 𝐷𝜙 along with a new potential 𝑢′ = 𝑢′(𝑢), 
where 𝐷 = 𝐷(𝑢, 𝜆) is a matrix function of the potential and the spectral parameter. The transformed eigenfunction 𝜙′ is required to 
satisfy the same type of spectral problems: 

𝜙′
𝑥 = 𝑈 ′𝜙′ = 𝑈 (𝑢′, 𝜆)𝜙′, 𝜙′

𝑡 = 𝑉 ′𝜙′ = 𝑉 (𝑢′, 𝜆)𝜙′, (4)

with 𝑈 ′ and 𝑉 ′preserving the structure of the original Lax pair (see, e.g., [4,5]). The matrix 𝐷 is called a Darboux matrix, and it 
must satisfy the compatibility conditions: 

𝑈 ′𝐷 = 𝐷𝑈 +𝐷𝑥, 𝑉 ′𝐷 = 𝐷𝑉 +𝐷𝑡. (5)

Assume the matrices 𝑈 and 𝑉  are of order 𝑁 . A commonly used first-order Darboux matrix takes the form:
𝐷(𝜆) = 𝜆𝐼𝑁 − 𝑆, (6)

where 𝐼𝑁  is the 𝑁 ×𝑁 identity matrix, and 𝑆 is an 𝑁 ×𝑁 matrix independent of 𝜆. Let 𝜆1, 𝜆2,… , 𝜆𝑁  be distinct eigenvalues, with 
corresponding eigenfunctions 𝜙[𝑗] satisfying: 

𝜙[𝑗]
𝑥 𝑈 (𝑢, 𝜆𝑗 )𝜙[𝑗], 𝜙[𝑗]

𝑡 = 𝑉 (𝑢, 𝜆𝑗 )𝜙[𝑗], 1 ≤ 𝑗 ≤ 𝑁, (7)

where 𝑢 is a known solution to (3). Define the matrix 
𝐻 = (𝜙[1],… , 𝜙[𝑁]), 𝐴 = diag(𝜆1,… , 𝜆𝑁 ), (8)

and then the matrix 𝑆 is given by [2,4]: 
𝑆 = 𝐻𝐴𝐻−1. (9)

The transformed potential 𝑢′ = 𝑢′(𝑢) defines a new solution to the integrable model (3). This Darboux framework applies effectively 
to general AKNS-type flows in both lower- and higher-dimensional cases [4].

In this paper, we start from the matrix AKNS spectral problem, formulate a Lax matrix 𝑉  featuring a first-order non-zero pole in 
the spectral parameter, and derive a matrix generalization of the Kuralay-II equation. Based on the proposed Lax pair, we construct 
the corresponding Darboux transformation within the AKNS framework. Using a non-zero constant seed solution, we apply the 
transformation to obtain a class of exact and explicit solutions to the new matrix model.

2. Lax pair and matrix Kuralay-II equation

Let 𝑚 and 𝑛 be natural numbers, and let 𝛼1 and 𝛼2 be two distinct constants. Consider the AKNS spectral matrix [6] given by 

𝑈 = 𝑖𝜆𝛬 +𝑄, 𝛬 =
[

𝛼1𝐼𝑚 0
0 𝛼2𝐼𝑛

]

, 𝑄 =
[

0 𝑞
𝑟 0

]

, (10)

where 𝐼𝑘 denotes the 𝑘 × 𝑘 identity matrix, and 𝑞 and 𝑟 are the potential matrices of sizes 𝑚 × 𝑛 and 𝑛 × 𝑚, respectively. We define 
the associated Lax matrix as: 

𝑉 = 1
1 − 𝛼𝜆

𝑊 , (11)

where 

𝛼 = 𝛼1 − 𝛼2, 𝑊 = 𝑊1 +𝑊2, 𝑊1 = −𝑖
[

𝑣 0
0 𝑤

]

, 𝑊2 = 𝑖
[

0 −𝑞𝑡
𝑟𝑡 0

]

, (12)

with 𝑣 and 𝑤 being two square potential matrices of orders 𝑚 and 𝑛, respectively.
The zero-curvature equation 

𝑈𝑡 − 𝑉𝑥 + [𝑈, 𝑉 ] = 0 (13)

is equivalent to 
(1 − 𝛼𝜆)𝑈𝑡 −𝑊𝑥 + [𝑈,𝑊 ] = 0. (14)

By equating powers of 𝜆, this gives:
{

−𝛼𝑄𝑡 + 𝑖[𝛬,𝑊 ] = 0,
𝑄𝑡 −𝑊𝑥 + [𝑄,𝑊 ] = 0.

The first equation is satisfied automatically, since
[𝛬,𝑊 ] = 0, [𝛬,𝑊 ] = −𝑖𝛼𝑄 .
1 2 𝑡

2 
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To verify the second equation, we compute

[𝑄,𝑊1] = −𝑖
[

0 𝑞𝑤 − 𝑣𝑞
𝑟𝑣 −𝑤𝑟 0

]

, [𝑄,𝑊2] = 𝑖
[

(𝑞𝑟)𝑡 0
0 −(𝑟𝑞)𝑡

]

.

Hence, we obtain the following system: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑖𝑞𝑡 − 𝑞𝑡𝑥 + 𝑞𝑤 − 𝑣𝑞 = 0,
𝑖𝑟𝑡 + 𝑟𝑡𝑥 + 𝑟𝑣 −𝑤𝑟 = 0,
𝑣𝑥 + (𝑞𝑟)𝑡 = 0,
𝑤𝑥 − (𝑟𝑞)𝑡 = 0.

(15)

This is the matrix form of the Kuralay-II equation, which also extends integrable models arising from dual group reductions (see, 
e.g., [7–10]). Remarkably, the resulting equation is independent of the specific values of 𝛼1 and 𝛼2, and it remains valid even when 
𝛼 = 0.

In the scalar case 𝑚 = 𝑛 = 1, setting 𝑤 = −𝑣, we recover 
⎧

⎪

⎨

⎪

⎩

𝑖𝑞𝑡 − 𝑞𝑡𝑥 − 2𝑣𝑞 = 0,
𝑖𝑟𝑡 + 𝑟𝑡𝑥 + 2𝑣𝑟 = 0,
𝑣𝑥 + (𝑞𝑟)𝑡 = 0.

(16)

This reduces, via the scaling 𝑣 → 1
2𝑣, 𝑞 → 𝑑𝑞, 𝑟 → 𝑑𝑟, to the standard Kuralay-II equation [11]: 

⎧

⎪

⎨

⎪

⎩

𝑖𝑞𝑡 − 𝑞𝑡𝑥 − 𝑣𝑞 = 0,
𝑖𝑟𝑡 + 𝑟𝑡𝑥 + 𝑣𝑟 = 0,
𝑣𝑥 + 2𝑑2(𝑞𝑟)𝑡 = 0,

(17)

where 𝑑 is a non-zero constant. Many other negative-order AKNS flows have been studied in the scalar case (see, e.g., [12–16]).
For the case 𝑚 = 1 and 𝑛 = 2, if we set 

𝑞 = (𝑞1, 𝑞2), 𝑟 = (𝑟1, 𝑟2)𝑇 , 𝑣 = (𝑣11), 𝑤 =
[

𝑤11 𝑤12
𝑤21 𝑤22

]

, (18)

then the system of equations becomes: 
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑖𝑞1,𝑡 − 𝑞1,𝑡𝑥 + 𝑞1𝑤11 + 𝑞2𝑤21 − 𝑣11𝑞1 = 0,
𝑖𝑞2,𝑡 − 𝑞2,𝑡𝑥 + 𝑞1𝑤12 + 𝑞2𝑤22 − 𝑣11𝑞2 = 0,
𝑖𝑟1,𝑡 + 𝑟1,𝑡𝑥 + 𝑟1𝑣11 −𝑤11𝑟1 −𝑤12𝑟2 = 0,
𝑖𝑟2,𝑡 + 𝑟2,𝑡𝑥 + 𝑟2𝑣11 −𝑤21𝑟1 −𝑤22𝑟2 = 0,
𝑣11,𝑥 + (𝑞1𝑟1 + 𝑞2𝑟2)𝑡 = 0,
𝑤11,𝑥 − (𝑟1𝑞1)𝑡 = 0, 𝑤12,𝑥 − (𝑟1𝑞2)𝑡 = 0,
𝑤21,𝑥 − (𝑟2𝑞1)𝑡 = 0, 𝑤22,𝑥 − (𝑟2𝑞2)𝑡 = 0.

(19)

In general, the resulting system comprises (𝑚+𝑛)2 equations, corresponding to all possible components of the dependent variables. 
It is also a special case of the system proposed in [4], associated with the following parameter and spectral matrix choices:

𝑛 = 2, 𝑝1 = 𝑥, 𝑥2 = 𝑡, 𝐴1 = −𝑈, 𝑎2 = (1 − 𝛼𝜆), 𝐴2 = 𝑊 .

3. The Darboux transformation and its application

3.1. Compatibility conditions

We assume that the Darboux matrix takes a linear form in 𝜆: 
𝐷(𝜆) = 𝜆𝐼𝑚+𝑛 − 𝑆, (20)

where 𝑆 is an auxiliary matrix to be determined. The spatial compatibility condition
𝑈 ′𝐷 = 𝐷𝑈 +𝐷𝑥,

with 𝑈 being given by (10) and 

𝑈 ′ = 𝑖𝜆𝛬 +𝑄′, (21)

leads to
(𝑖𝜆𝛬 +𝑄′)(𝜆𝐼 − 𝑆) = (𝜆𝐼 − 𝑆)(𝑖𝜆𝛬 +𝑄) − 𝑆 .
𝑚+𝑛 𝑚+𝑛 𝑥

3 
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By comparing the powers of 𝜆, we find 
𝑄′ = 𝑄 + 𝑖[𝛬,𝑆], (22)

and 
𝑆𝑥 = 𝑄′𝑆 − 𝑆𝑄 = [𝑄 + 𝑖𝛬𝑆, 𝑆]. (23)

The temporal compatibility condition:
𝑉 ′𝐷 = 𝐷𝑉 +𝐷𝑡,

with 
𝑉 ′ = 1

1 − 𝛼𝜆
𝑊 ′, (24)

yields

𝑊 ′(𝜆𝐼𝑚+𝑛 − 𝑆) = (𝜆𝐼𝑚+𝑛 − 𝑆)𝑊 − (1 − 𝛼𝜆)𝑆𝑡.

It then follows that 
𝑊 ′ = 𝑊 + 𝛼𝑆𝑡, (25)

and 
𝑆𝑡 = 𝑊 ′𝑆 − 𝑆𝑊 = (𝑊 + 𝛼𝑆𝑡)𝑆 − 𝑆𝑊 = [𝑊 ,𝑆] + 𝛼𝑆𝑡𝑆. (26)

3.2. Construction of the Darboux matrix

Following the general AKNS framework (see, e.g., [4]), the matrix 𝑆 can be constructed as 
𝑆 = 𝐻𝐴𝐻−1, (27)

where 
𝐻 = (𝜙[1],… , 𝜙[𝑚+𝑛]), 𝐴 = diag(𝜆1,… , 𝜆𝑚+𝑛), (28)

and each column 𝜙[𝑗] satisfies the Lax pair equations: 
𝜙[𝑗]
𝑥 = 𝑈 (𝑢, 𝜆𝑗 )𝜙[𝑗], 𝜙[𝑗]

𝑡 = 𝑉 (𝑢, 𝜆𝑗 )𝜙[𝑗], 1 ≤ 𝑗 ≤ 𝑚 + 𝑛. (29)

To verify compatibility, we compute the derivatives of 𝑆 using the identities 
𝐻𝑥 = 𝑖𝛬𝐻𝐴 +𝑄𝐻, 𝐻𝑡 = 𝑊𝐻𝐵, (30)

where 
𝐵 = diag( 1

1 − 𝛼𝜆1
,… , 1

1 − 𝛼𝜆𝑚+𝑛
). (31)

Differentiating 𝑆 with respect to 𝑥, we obtain
𝑆𝑥 = 𝐻𝑥𝐴𝐻−1 −𝐻𝐴(𝐻−1𝐻𝑥𝐻−1)

= 𝑖𝛬𝐻𝐴2𝐻−1 +𝑄𝐻𝐴𝐻−1 −𝐻𝐴𝐻−1(𝑖𝛬𝐻𝐴 +𝑄𝐻)𝐻−1

= 𝑖𝛬𝐻𝐴2𝐻−1 +𝑄𝐻𝐴𝐻−1 − 𝑖𝐻𝐴𝐻−1𝛬𝐻𝐴𝐻−1 −𝐻𝐴𝐻−1𝑄
= 𝑄𝑆 − 𝑆𝑄 + 𝑖𝛬𝑆2 − 𝑖𝑆𝛬𝑆,

which verifies the spatial compatibility condition (23).
Similarly, differentiating 𝑆 with respect to 𝑡, we compute

𝑆𝑡 = 𝐻𝑡𝐴𝐻
−1 −𝐻𝐴(𝐻−1𝐻𝑡𝐻

−1) = 𝑊𝐻𝐵𝐴𝐻−1 −𝐻𝐴(𝐻−1𝑊𝐻𝐵𝐻−1).

Using the identity 
𝐵 = 𝛼𝐵𝐴 + 𝐼𝑚+𝑛, (32)

we obtain
𝑆𝑡 = 𝑊𝐻(𝐴 + 𝛼𝐵𝐴2)𝐻−1 −𝐻𝐴𝐻−1𝑊𝐻(𝛼𝐵𝐴 + 𝐼𝑚+𝑛)𝐻−1

= 𝑊𝐻𝐴𝐻−1 + 𝛼(𝑊𝐻𝐵𝐴𝐻−1 −𝐻𝐴𝐻−1𝑊𝐻𝐵𝐻−1)𝐻𝐴𝐻−1 −𝐻𝐴𝐻−1𝑊
= 𝑊𝑆 + 𝛼𝑆𝑡𝑆 − 𝑆𝑊 ,

which confirms the temporal compatibility condition (26).
4 
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Fig. 1. 3D plots of |𝑞| (left) and |𝑟| (right).

3.3. The Darboux transformation

From the above construction, we obtain the Darboux transformation: 

𝜙′ = (𝜆𝐼𝑚+𝑛 − 𝑆)𝜙, 𝑄′ = 𝑄 + 𝑖[𝛬,𝑆], 𝑊 ′ = 𝑊 + 𝛼𝑆𝑡. (33)

Using the structures of 𝑈 and 𝑊  given in (10) and (12), respectively, the transformed potentials are explicitly given by: 

𝑞′ = 𝑞 + 𝑖[𝛬,𝑆]12, 𝑟′ = 𝑟 + 𝑖[𝛬,𝑆]21, 𝑣′ = 𝑣 + 𝑖𝛼𝑆11,𝑡, 𝑤′ = 𝑤 + 𝑖𝛼𝑆22,𝑡, (34)

where 𝑆 is defined by (27), and the subscript notation 𝑀𝑗𝑘 denotes the (𝑗, 𝑘)-block component of the matrix 𝑀 under the partitioning 
determined by the spectral matrix 𝑈 .

3.4. An application: explicit solutions

We illustrate the procedure by considering a non-zero constant seed solution: 

𝑞 = 𝑟 = 0, 𝑣 = 𝑣0, 𝑤 = 𝑤0, (35)

where 𝑣0 and 𝑤0 are arbitrary constant matrices. For each spectral parameter 𝜆𝑗 , the associated eigenfunction 

𝜙[𝑗] = (𝜙[𝑗]𝑇
1 , 𝜙[𝑗]𝑇

2 )𝑇 (36)

is given explicitly by 
⎧

⎪

⎨

⎪

⎩

𝜙[𝑗]
1 = exp(𝑖𝛼1𝜆𝑗𝐼𝑚𝑥 − 𝑖

1−𝛼𝜆𝑗
𝑣0𝑡)𝜇

[𝑗]
1 ,

𝜙[𝑗]
2 = exp(𝑖𝛼2𝜆𝑗𝐼𝑛𝑥 − 𝑖

1−𝛼𝜆𝑗
𝑤0𝑡)𝜇

[𝑗]
2 ,

1 ≤ 𝑗 ≤ 𝑚 + 𝑛, (37)

where 𝜇[𝑗]
1 ∈ C𝑚 and 𝜇[𝑗]

2 ∈ C𝑛 are arbitrary constant vectors. Substituting these into the Darboux framework, the transformed 
solution is explicitly given by: 

𝑞′ = 𝑖[𝛬,𝑆]12, 𝑟′ = 𝑖[𝛬,𝑆]21, 𝑣′ = 𝑣0 + 𝑖𝛼𝑆11,𝑡, 𝑤′ = 𝑤0 + 𝑖𝛼𝑆22,𝑡, (38)

where 𝑆 = 𝐻𝐴𝐻−1 is constructed from the explicit eigenfunctions determined above, as defined in (27) and (28). The block 
components are taken with respect to the partitioning induced by the spectral matrix 𝑈 .

For the case 𝑚 = 𝑛 = 1, the four pictures in Figs.  1 and 2 exhibit 3D plots of the solution (𝑞, 𝑟, 𝑣, 𝑤), derived based on the 
parameter choices and initial solution given below:

𝛼1 = 1, 𝛼2 = −1, 𝜆1 = 1, 𝜆2 = 2, 𝜇[1]
1 = 𝜇[1]

2 = −1, 𝜇[2]
1 = 𝜇[2]

2 = −2,

and

(𝑞, 𝑟, 𝑣, 𝑤) = (𝑞0, 𝑟0, 𝑣0, 𝑤0) = (0, 0, 1,−1).
5 
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Fig. 2. 3D plots of |𝑣| (left) and |𝑤| (right).

4. Conclusions

Based on the matrix AKNS spectral problem, we have constructed a matrix generalization of the Kuralay-II equation and its 
associated Darboux transformation, along with a class of exact and explicit solutions. A key feature of the construction is the presence 
of a non-zero pole in the spectral parameter. Related developments on Darboux transformations for negative-order flows can be found 
in the literature (see, e.g., [17–21]).

It is well known that reduced Lax pairs often yield novel integrable models, and group reductions play a central role in 
implementing consistent constraints on the general spectral matrix (see, e.g., [22,23]). These reductions also give rise to nonlocal 
integrable models [24,25]. A key open question is how to construct Darboux transformations for such constrained matrix systems.

A broader generalization involves Lax operators with higher-order poles in the spectral parameter, although this direction 
presents considerable difficulty. It introduces new types of constraints and significantly increases the complexity of both the Lax 
pair structure and the associated Darboux transformations. Determining the form of Darboux transformations in this more singular 
framework remains a challenging and compelling problem, particularly since the structure given in (27) and (28) may no longer be 
applicable. Progress in this direction would contribute to the classification of integrable systems and enhance our understanding of 
their underlying nonlinear dynamics.
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