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NONLOCALITY, INTEGRABILITY, AND SOLITONS

Wen-Xiu Ma*T189

We explore integrable equations that involve involution points, along with the solution phenomena for
Cauchy problems associated with nonlocal differential equations. By applying group reductions to clas-
sical Lax pairs, we generate nonlocal integrable equations. Soliton solutions of these models are derived
using binary Darboux transformations or reflectionless Riemann—Hilbert problems in the nonlocal context.

Further discussion on the well-posedness of nonlocal differential equations is also presented.
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1. Introduction

Differential equations are fundamental in describing dynamical systems in Nature. They are primarily
classified into two categories: ordinary differential equations (ODEs) and partial differential equations
(PDEs). Integrable equations are among the most elegant examples of differential equations [1]-[3]. One
of their hallmark features is the existence of sufficiently many conserved quantities, which always commute
with each other under a specific form of Poisson brackets [4]-[6]. Integrable ODEs have a finite number of
conserved quantities, whereas integrable PDEs require infinitely many [7], [8].

In modern mathematical physics, nonlocal differential equations have emerged as an important field of
study. Examples of such equations include nonlocal ODEs

uy = u(t — a), uy = u(At), up = u(—t), (1.1)
where @ > 0 and 0 < A < 1, as well as nonlocal PDEs
Ut = Ugg(—2, —1), up = u(—x, —t)Ug. (1.2)

Nonlocal differential equations pose significant challenges in formulating well-posed problems and deter-
mining their solutions.
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Motivated by non-Hermitian quantum mechanics, many nonlocal integrable equations have been stud-
ied recently (see, e.g., [9]-[12]). We introduced nonlocal integrable equations through group reductions
of matrix spectral problems [13], [14]. In particular, novel nonlocal integrable nonlinear Schrodinger-type
equations have been derived through pairs of group reductions (see, e.g., [15]-[18]). These nonlocal models
give rise to new questions, prompting us to explore innovative ideas and techniques to address them.

In this paper, we discuss the concept of group reduction and its applications to the AKNS integrable
nonlinear Schrédinger (NLS) equations and modified Korteweg—de Vries (mKdV) equations, employing the
Lax pair formulation as the primary tool. Soliton solutions for these models are derived by formulating
binary Darboux transformations, which are equivalent to reflectionless Riemann—Hilbert problems in the
nonlocal setting. We present a classification of the resulting nonlocal integrable equations and explore some
novel solution phenomena in the nonlocal context. The final section concludes with a summary, including
our future work on further applications and soliton structures in the nonlocal setting, as well as a discussion
of the well-posedness of nonlocal differential equations.

2. Solution phenomena in the nonlocal setting
In this section, we explore some solutions in the nonlocal setting. They are quite different from those
in the local setting.

2.1. A Cauchy problem. We consider the Cauchy (i.e., initial-value) problem for a nonlocal heat
equation
Ut = Ugg(—, —1), u(z,0) = f(z). (2.1)

The method of separation of variables, along with Fourier series theory, can be used to find a solution of
this problem

u(z,t) = Z {an sin(nz) cos (th - W) + by, cos(nx) sin (th - Wﬂ , (2.2)
o 4 4
where the constants a,, and b,, are given by the Fourier coefficients of the initial wave:
V2
f(z) = Z[an sin(nz) + by, cos(nz)]. (2.3)
2 n=0

However, the uniqueness and stability of the problem remain open. This PDE does not possess the maximum
principle, unlike the standard local heat equation u; = ugg.

2.2. Well-posedness. We consider a linear nonlocal first-order differential equation
z'(t) = —z(t) — z(—t), t>0. (2.4)
We can easily see that the general solution is
x(t) = c(—2t+ 1), (2.5)

where ¢ is an arbitrary constant [19].
It follows that the Cauchy problem

—z(t) — x(—t), t>0,
0 (2.6)

a:’(tl) =
-

has infinitely many solutions given by (2.5). Therefore, the uniqueness property of Cauchy problems in the
nonlocal setting is not always guaranteed. This feature is different from the local case.
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Moreover, the Cauchy problem

z'(t) = —x(t) — x(—t), t >0,

x(;):xo#o, (2.7)

has no solution at all, since all solutions are given by (2.5), for which we always have x(1/2) = 0. Therefore,
the existence of a solution of the Cauchy problem depends on specific conditions.

2.3. Independence of solutions from coefficients. We consider a specific example of the second
order,
2" (t) = Az (t) — Ma(—t) + pa'(t) — pa' (—t), (2.8)

where A and p are real constants. By the same argument as presented in [19], we know that the general
solution of this linear differential equation is

x(t) = c1 + caot (2.9)
A =0,
z(t) = ¢ + co sinh(V2)\t) (2.10)
if A > 0, and
z(t) = ¢1 + cosin(v/—2Xt) (2.11)

if A < 0. Interestingly, we find that the solution is independent of the coefficient p.

2.4. Stability. We consider a set of restricted Cauchy problems with to # 1/2:

x’(it)): —z(t) —z(-t), t=0, (2.12)
T lg) = X9.

The solution of this Cauchy problem is

—2t+1

o) =0 gy 41

(2.13)

This is not bounded, and hence the solution of the above nonlocal equation with ¢y # 1/2 is unstable.

2.5. General solution. An approach using the decomposition of functions into sums of even and
odd functions was used in [19] to solve linear nonlocal differential equations. Below are two examples.
Let f be continuous, and let A and u be constants. The general solution of

z'(t) = Mx(t) + pz(—t) + f(¢) (2.14)

is given by four formulas for the four distinct cases of the coefficients [19]. Similarly, the second-order
equation
2" (t) = Ax(t) + pa(—t) + f(1) (2.15)

has nine solution cases [20].
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3. Lax pair formulation
To discuss integrable equations, we begin with introducing a Lax pair of matrix spectral problems
—i¢y = U9, —igr = Vo, (3.1)

where 7 is the imaginary unit, U = U(u, A) and V = V(u, \) are two given square matrices, and ¢ is a matrix
eigenfunction. Nonlinear integrable equations are generated from the zero-curvature equation

U —Vp + iU, V] =0. (3.2)
3.1. AKNS NLS and mKdV equations. We take arbitrary constants ay, as, 51, and B2 and define
a=ar—a  B=p1—pa (3.3)
To generalize the AKNS integrable equations [7], we consider the matrix potentials
u=u(p,q), p=pt)=@ik)ii<mick<n, ¢=9@1) = (qkj)1<r<n,1<<m- (3.4)
The Lax pair takes the form [21]
U=M+P), VIT=Xx0+Q" (u,\), (3.5)

where r € N, A = diag(a1 1, azl,), Q = diag(B11,, f21,), P and Q") are traceless, and deg, Q"1 <7 — 1.
The matrix PT-symmetric NLS equations correspond to the potential matrix

pP= lO p] (3.6)
q 0
and the matrix
0 Des
Q[z]:ﬁ/\l p]_ﬁzlpq zpl' (3.7)
a g 0] o |—igz —qp
The matrix NLS equations are derived from the zero-curvature equation
U, — VA iU, v =0 (3.8)
and are given by
Ny B .
pr== o iPes +2pap), G =, i(des +29p0). (3.9)

This includes the case m = 1 and n = 2, which was studied in [22]. Similarly, the matrix PT-symmetric
mKdV equations arise from the zero-curvature equation

U, — VB 4 [U, VBl =0, (3.10)
where QP is defined by
B

«

B

a2

B

QP NP — "N, (P2 +iP,) — 3 (i[P, Py] + Pys +2P%), (3.11)

with I, , = diag(l,, —Ip). The matrix mKdV equations are given by

B
(Pawz + 3PqP + 3p2qp), @ = — . (Qooe + 342pq + 3qp4y)- (3.12)

Pt = —
a’

a3
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3.2. Other spectral matrices. Other examples of successful spectral matrices associated

with sl(2,R) are
A p A2 Ap A A
U= U=
q —/\1 ’ [)\q —/\2] ’ l/\q A

where pg + r? = 1. They lead to the respective AKNS, Kaup-Newell, Wadati-Konno-Ichikawa, and
Heisenberg soliton hierarchies

U =

Ar Ap
U= 3.13
N

Generalized spectral matrices associated with sl(2,R) include (see, e.g., [23]-[27])

7= A+ apq P U— N+ apgq Ap
¢  —A-oapq|’ g =N —apg|
(3.14)
U= A+ ayvpg+1 Ap
Aq ~A—ay/pg+1|’
where « is a constant. They give rise to generalized soliton hierarchies.
Examples of successful spectral matrices associated with so(3,R) (see, e.g., [28]-[31]) include
[0 —¢ =\ [0 —Xg -2
U=|gq 0 —-pl, U= |X\ 0 —Mpl,
A p 0 A2 0
- - (3.15)
0 —A¢ —A 0 —A¢ —\r
U=\ 0 =Xp|, U= |\ 0 —-Ap|,
i A Ap 0 _/\r Ap 0

where p? 4+ ¢?> + r? = 1. They yield the respective AKNS, Kaup-Newell, Wadati-Konno-Ichikawa, and
Heisenberg-type soliton hierarchies.
To derive four-component generalizations, we proposed a novel 4 x 4 spectral matrix [32]

3P 01Ul U 0

d1us Qs 0 Uy

U=U(u,\) = (3.16)

5152U4 0 g\ —51U3
0 0102us  —O01uq oA

where v = (u1,u2,u3,us)T, and a1, ag, 81, and dy are arbitrary constants, but a; # ao. This spectral
matrix generates a combined soliton hierarchy that includes the combined nonlinear Schréodinger equations:

1
uLe = o [618U1 2z + G27U2 w0 — 201 (61 Buz — oyua)(S1u] — d2u3) —

— 46355 (yus + Bug)uyus),

1
Uzt = o [~ 01711 2z + 61 BU2 20 + 207 (Yus + Bua) (10T — dau3) —

— 463 (81 Buz — Soyua)urusl, (317)
) )
ust == o [018U3 5 — O2yUa gz — 201 (01 Bur + dayusz)(61u3 — dauf) +

+ 40269 (yu1 — Busa)uzugl,

1

Uat == o [017U3 20 + 61 BUs ze — 207 (yur — Buz)(61u3 — Sou3) —

— 4(5% (51511,1 + 52"/U2)’U,3U4],

where « is still defined to be @ = a3 — 2. More examples can be found in the literature (see, e.g., [33]).
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4. Nonlocal integrable equations

We aim to discuss the classification of nonlocal integrable equations, derived either from single nonlocal
group reductions or from pairs of group reductions containing nonlocal ones, in relation to the matrix AKNS
spectral problem described above.

There are three cases for replacing the eigenvalue \: A — —A*, =\, A, where A* is the complex conjugate
of A. Each of these cases generates nonlocal integrable NLS equations. Moreover, there are two cases for
replacing A\: A — —X* A, each of which generates nonlocal integrable mKdV equations. The replacement
A — —) yields only local reduced integrable mKdV equations [34], while the replacement A — \* yields
only local reduced NLS and mKdV integrable equations (see, e.g., [35]).

4.1. Single group reduction. By taking single group reduction, we can formulate nice types of the
corresponding group reductions,

Ul(z,1,-\*) = =XU (2, t, )87},
UY(z,t,-\) = =XU(x,t, )27}, (4.1)

where (Z,t) = (—x,t), (x, —t), (—z, —t), and

1 0
0 X5

1, D=3 o 5] =%, j=12 (4.2)

where WT (or WT) denotes the Hermitian conjugate (or transpose) of a matrix W.
Based on the specific form of Q| we obtain three types of nonlocal integrable NLS reductions: reverse-
space, reverse-time, and reverse-spacetime reductions,

Ul(—z,t,—\") = =XU(z,t, )21,
UT(z,—t,—\) = =XU (z,t, )27}, (4.3)
UT(—z,—t,\) = ZU (z,t, )21,

which preserve the integrability conditions, ensuring the invariance of the zero-curvature equations. The
corresponding potential reductions are given by

q(z,t) = =35 'p! (—a, 1)1,
q(z,t) = =25 T (2, —1)%, (4.4)
q(x,t) = 25 pT (—x, —t)%;.
They respectively generate the nonlocal reverse-space integrable NLS equations
pr = —fgi(pm —2p%5 'pl (=, 1) 1p), (4.5)
the nonlocal reverse-time integrable NLS equations
Pt = —fzi(pm —2p%5 T (z, —t)S1p) (4.6)
and the nonlocal reverse-spacetime integrable NLS equations
P = —fgi(pm +2p%5 p" (—a, —t)Tip). (4.7)

In (4.5), ¥; and Yo are arbitrary invertible Hermitian matrices, while in (4.6) and (4.7), £; and X, are
arbitrary invertible symmetric matrices. It is easy to see that all three types of nonlocal integrable NLS
equations are PT-symmetric.
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Based on the specific form of Q[!, we derive two types of complex and real reverse-spacetime integrable
reductions,
Ul(—z, —t,=\*) = =XU (2,t,\) 8! (4.8)

and
UN =z, —t,\) = 2U (2, t, )21, (4.9)

which maintain the integrability conditions and guarantee the invariance of the zero-curvature equations.
The respective potential reductions are presented by

q(z,t) = —EglpT(—x, —t)3¥ (4.10)

and
q(z,t) =35 'p"(—z, —1)%. (4.11)

The two reductions respectively lead to nonlocal complex reverse-spacetime integrable mKdV equations

B _ _
pe== 3 (Pree = 3955 P! (=2, —)T1ps = 3p. 5 'p! (—2, )1p) (4.12)

and nonlocal real reverse-spacetime integrable mKdV equations

B

o3 (Prza + 3055 pT (=2, =) Zpe + 3p. %5 'p" (=7, —)Tap), (4.13)

bt = —
In (4.12), ¥; and X5 are arbitrary invertible Hermitian matrices, while in (4.13), 3 and X are arbitrary
invertible symmetric matrices. It is also easy to see that both types of nonlocal integrable mKdV equations
are PT-symmetric.

4.2. Pairs of group reductions. For the NLS equations, we note that we have one type of local
reduction in the case of replacing \: A — A*, and three types of nonlocal reductions in the cases of
replacing A\: A — —A, —A*, A\, Clearly, we can formulate six types of nonlocal reductions: three pairs
of local and nonlocal reductions and three pairs of nonlocal and nonlocal reductions. These are classified
as follows:

types (A", =A), (A", =A%), (A, N), (=X, =A%), (=A,A) and (—A*, \). (4.14)

For the mKdV equations, we note that there are two types of local reductions when replacing A:
A — A", =), and two types of nonlocal reductions when replacing A\: A — —A\*, \. It follows that we can
formulate one type of local reduction (A\*, —\) and five types of nonlocal reductions:

Types (A*, =A%), (A", A), (=X, =A%), (=A,A) and (=", \). (4.15)

The pair of local reductions (A*, —\) gives rise to Sasa—Satsuma-type integrable mKdV equations [21].
We specify pairs of group reductions for the spectral matrix

Ul(z,t,£X*) or UT(Z,1,4\) = XU (z,t, )27},

. T L (4.16)
Ut &, 1, 2X") or UY(&,1,4\) = AU (z,t, )AL,
where 3 and A are two Hermitian, or symmetric, matrices, defined by
231 0 131 0
Y= , = . 4.17
0 X9 0 Ay ( )
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In what follows, we consider two specific cases where m = 2 and n = 1:

o 0 -1 0 o 1
1 0 o 3 2 B 1 5 0 ) 2 ) ( )
and _ i - -
0 o -1 (5 0 —1
1 o 0 3 2 B 1 0 5 ) 2 ) ( )

where o and § are real and satisfy 02 = §2 = 1. These two group reductions generate scalar nonlocal
integrable NLS and mKdV equations, which are listed as follows (see also [15]-[18]).

Six classes of nonlocal integrable NLS equations (where p; = p1; is assumed):
Class 1: Type (A\*, —\) equations

B . . .
P = _azl[pl,ww + 20 (p1py + p1(z, —t)pi (x, —1))p1],

: (4.20)
D1t = —azi[Pl,m —20(p1p1(w, —t) + pipi(z, —t))p1].
Class 2: Type (A\*, —\*) equations
_ B . «
Pt =— Li[P1ax + 20(p1p] + p1(—z,t)p] (—2,1))p1],
Oé (4.21)
P = _azi[pl,ww —20(p1pi (=, t) + pip1(—x,t))p1].
Class 3: Type (A*, \) equations
B, . .
Pt =— Li[P1es +20(p1p] + p1(—z, —t)pi(—z, —t))p1],
Oé (4.22)
Pit = _a2i[p1,rm + 25(p1p1(_m5 _t) + prT(_xv _t))pl]
Class 4: Type (—\, —\*) equations
B . ,
Pt = — gz[pl,zz - 2U(p1p1 (—33, t) —|—p1($, _t)pl(_xv _t))pl]’
o% (4.23)
P1t = _agi[pl,zz - 26(p1p1($5 _t) +p>1k(—$,7f)pyf(—$, _t))pl]
Class 5: Type (—A, A) equations
prs=— 2 ilp1 ae — 20(prp (@, —1) + pr(—2, Opr (—2, —1))pal,
Oé (4.24)
Pt = _QQi[pl,ww + 20(p1p1(—=,t) + p1(x, —t)p1 (—z, —1t))p1).
Class 6: Type (—A*, \) equations
Pt = — 2Z[pl,zz - 20'(p1p1(—33, t) +p1(_$a _t)pl(xv _t))pl]’
a (4.25)

B . . .
b1t = _Oé2 Z[pl,zz + 25(p1p1(_$7 _t) + pl(_ma t)pl (33, _t))pl]
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Five classes of nonlocal integrable mKdV equations (where p; = p11 is again assumed):
Class 1: Type(\*, —\*) equations

B "
PLe=— s [P1,22z + 60(p1*p1,a + 30p} (=2, —t) (P11 (—2, —1))a),

3 (4.26)
Pt = — 013 [Pmex - 65?1?1‘(_55; _t)pl,w - 35pT (plpl(_xa _t))w]
Class 2: Type (A*, \) equations
__B 2 \
D1t =— 4 [P1,2ex + 60[p1]"p1e + 3opi(—z, —t)(P1p] (=, 1))z,
Oé (4.27)
Pt = — 0[3 [pl,rrr + 65p1p1(_$7 _t)pl,m + 35PT (plpslﬁ(_xa _t))r]
Class 3: Type (—\, —\*) equations
_ B 2 * %
Pt =— 4 [Plaze — 60pIP1 2 — 30p] (=2, —t)(p1p] (—2, —1))a],
Oé (4.28)
Pt = — 0[3 [pl,rrr - 65p1p>f(—33; _t)pl,z - 35p1 (plpT(_xa _t))r]
Class 4: Type (—A, \) equations
__h >
Pt =— [Plase — 60p1P1e — 3op1(—x, —t)(p1p1(—2, —1))a],
Oé (4.29)
PLt="_3 [P1,222 + 60p1p1 (=2, —t)p1,2 + 36(P1p1 (=, —t))2p1].
Class 5: Type (—A*, \) equations
— B * 2
Pt = — 4[Prace — 6op1pi (=2, —t)p1,e — 3opi(—z, —t)(Ip1]*)],
a (4.30)

B .
Pt = — 0[3 [pl,rrr + 65p1p1(_$7 _t)pl,m + 35]71(_1;7 _t)(|pl|2)r]

5. Soliton solutions

We construct soliton solutions using the Darboux transformation (DT) method [36]-[38], which is
equivalent to the reflectionless Riemann—Hilbert problem. The resulting Darboux matrices encompass the
most general situation, including the so-called generalized Darboux matrices (see, e.g., [39], [40]).

5.1. General framework of binary DTs. We assume that a binary Darboux transformation is

given by ) ) )
¢ =T ¢=T"(u,\g, ¢ =T~ = ¢T ™ (u, ), u' = f(u), (5.1)
such that
—i¢l, =U'¢, —igy=V'¢/ and i, =¢U’, i¢, =V, (5.2)
where
U =U@,\N), V' =V (u',\) (5.3)

The conditions for Tt and T~ are
—iT;rTf +TYUT- =U', —iTt+T7 +TYVT =V". (5.4)
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5.2. Darboux matrices. To construct Darboux matrices, we choose two sets of arbitrary numbers
{Ars A € C}Y_,, where N € N. Then we define the Darboux matrices

N N
’U'(M_l)'lf}l _ ’U'(M_l)'lﬁl
T =Inin — J 7 T =Inin J J 5.5
+ Z ) — /\l ) + + Z A\ — A] ’ ( )
Jil=1 Jil=1
where the eigenvectors and adjoint eigenvectors are defined by

— iUk = U(u, Ag)vg, —ivpy = VI (u, Ao,
k, ( kz k kot ( k% k k<N, (5.6)

0.0 = 0pU (u, A), it = 0V (u, M),

with r = 2, 3 corresponding to the respective NLS and mKdV equations.

5.3. M-matrices. To satisfy the corresponding spectral problems, we introduce the square
matrix M as R
A SV v
M = (mjl)NxN, mj = Al — /\j R 1< 7,1 <N, (5.7)
m$; (x,t), i XN =),

where we require the orthogonality condition
v = 0, (5.8)
and the two ODE evolution properties

c
jlw

UG 1) — VIR,
:%UW)QW%h m%:@v(m VE), (5.9)
A=A A=A

m

if Ay = Xj, 1 < 4,1 < N, where r = 2,3. It is straightforward to see that T+ and (T~)~! are inverse to
each other. These conditions are both necessary and sufficient to guarantee the correctness of the binary
Darboux transformations.

We note that the case \; = 5\j, 1 < 4,1 < N, can yield the so-called generalized Darboux matrices.
Furthermore, an iterated sequence of these Darboux matrices in the standard case (i.e., without the afore-
mentioned condition) can be linked to the study of the algebraic properties of n-simplex maps, such as the
local Yang-Baxter equation [41]. A decomposition of these Darboux matrices has also been explored in the
literature (see, e.g., [42]).

5.4. Solitons by asymptotic expansions. We now expand 7" at A = oo as

1 1
T (z,\) = Ipyn + )\Tfr(x)—l—O()\z), A — 00, (5.10)
to obtain the potential matrix
P:—mfﬂzgmAﬁﬂnA} (5.11)
— 00

In other words, we obtain the so-called soliton solutions as

where 77" = ((T7")jk) (m-+n)x (m+n)- The reduction properties for the new potential matrices are inherited
from the original group reduction properties.
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6. Conclusions, future work, and open questions

In this paper, we have discussed a method of group reductions for matrix spectral problems to generate
nonlocal integrable equations within the Lax pair formulation. A comprehensive classification of nonlocal
NLS and mKdV integrable equations generated both by single group reduction and by pairs of group
reductions from the AKNS matrix spectral problems has been provided. Moreover, we have presented
a general framework for binary Darboux transformations to derive soliton solutions for the resulting nonlocal
reduced integrable equations, alongside novel solution phenomena in the nonlocal setting.

Regarding nonlocal differential equations (DEs), there are several directions that we are particularly
interested in exploring. Below are two of these directions.

Other applications of group reductions. It is one of our future problems to explore how to
apply the group reduction idea to other matrix spectral problems. For instance, we can consider many
4 x 4 matrix spectral problems that generate four-component Hamiltonian integrable equations. One of the
involved spectral matrices is

al/\ (751 u 0

us 012)\ 0 Uy
U=U(u,\) = , 6.1
(U ) U4 0 042)\ —Uus ( )

0 U9 —U1 Ozl)\

where u = (u1,u2, us,us)T, X\ is the spectral parameter, and a; and as are two distinct constants.

Solution structures of nonlocal linear DEs. Another very interesting problem is how to find
solutions of nth-order nonlocal linear DEs. For example, how to systematically derive the solution formulas
for the equation

™ (1) = N’ (8) + pa’ (—t) + va(t) + dz(—t) + f(t), (6.2)

where n is a natural number, 2™ denotes the nth-order derivative of x, A, u,v,d are real constants,
and f is a continuous function.

Additionally, there are open questions regarding the determination of the well-posedness of
nonlocal DEs.

Existence and uniqueness of nonlocal DEs. What conditions must be satisfied for the existence
of a unique solution of nonlocal DEs of the types

' (t) = f(t,2(t), x(~1)) (6.3)

2 (t) = f(t,x(t),x(i)), (6.4)

and how do these properties depend on the structure of the nonlocal terms and on the initial and boundary

and

conditions?

Stability of nonlocal DEs. Under what conditions can we guarantee the stability properties of non-
local DEs? How are the stability properties affected by the nonlocal structure and the solution conditions?
Specifically, how can we establish uniform or asymptotic stability for the solutions of nonlocal equations of
the types described above?
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Well-posedness for nonlocal integrable equations. How can we establish the existence, unique-
ness, and stability (spectral, orbital, and asymptotic) for the nonlocal integrable equations we have pre-
sented? This includes the well-posedness of the Cauchy problems for the nonlocal integrable NLS equations
of the following types.

Type (—\, —A\*):
P1,t = —i[p1,ea — 20(p1p] (=2, 1) + p1(x, —t)pI(—x, —1))p1], (6.5)
P1,t = —i[p1,ea — 20(p1p1(z, —t) + pI (=2, t)pi (—x, —t))p1];
type (—A, \):
P1,t = —i[P1,ex — 20(p1p1(x, —t) + p1(—2,t)p1(—x, —t))p1], (6.6)
1t = —i[p1,zz + 20(p1p1(—2,t) + pi(z, —t)p1 (—z, —t))p1); '
type (—A*, A):
P1,t = —i[p1,ea — 20(p1p] (=2, 1) + p1(—x, —t)p] (=, —1t))p1], 6.7)

1t = —i[p1,aa + 20(p1p1(—z, —t) + pi(—z, t)pi(z, —t))p1];

where ¢ and § are both taken to be +1. The solution can exhibit either rarefaction waves or compression
waves, depending on the initial conditions and the governing equations. Any contribution to these equa-
tions would introduce new ideas and techniques for tackling nonlocal DEs and determining their solution
properties.

Funding. This work was supported in part by the National Natural Science Foundation of China
(grant Nos. 12271488 and 11975145) and the Ministry of Science and Technology of China (grant
Nos. G2021016032L and G2023016011L).

Conflict of interest. The author of this work declares that he has no conflicts of interest.

REFERENCES

1. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Commun. Pure Appl. Math., 21,
467-490 (1968).

2. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, STAM Studies in Applied Mathe-
matics, Vol. 4, STAM, Philadelphia, PA (1981).

3. A. Das, Integrable Models (Lecture Notes in Physics), Vol. 30, World Sci., Teaneck, NJ (1989).

4. G. Z. Tu, “On Liouville integrability of zero-curvature equations and the Yang hierarchy,” J. Phys. A: Math.
Gen., 22, 2375-2392 (1989).

5. W. X. Ma, “A new family of Liouville integrable generalized Hamiltonian equations and its reduction,” Chinese
Ann. Math. Ser. A, 13, 115-123 (1992).

6. W. X. Ma and M. Chen, “Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of
Lie algebras,” J. Phys. A: Math. Gen., 39, 10787-10801 (2006).

7. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for
nonlinear problems,” Stud. Appl. Math., 53, 249-315 (1974).

8. V. Drinfel’d and V. V. Sokolov, “Lie algebras and equations of Korteweg—de Vries type,” J. Math. Sci., 30,
1975-2036 (1985).

9. M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear Schrédinger equation,” Phys. Rev. Lett.,
110, 064105, 5 pp. (2013).

10. M. J. Ablowitz and Z. H. Musslimani, “Integrable nonlocal nonlinear equations,” Stud. Appl. Math., 139, 7-59
(2017).

11. M. Giirses and A. Pekcan, “Nonlocal nonlinear Schrédinger equations and their soliton solutions,” J. Math.
Phys., 59, 051501, 17 pp. (2018).

1231



12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

. J. Yang, “General N-solitons and their dynamics in several nonlocal nonlinear Schrédinger equations,” Phys.
Lett. A, 383, 328-337 (2019).

W. X. Ma, “Inverse scattering for nonlocal reverse-time nonlinear Schrodinger equations,” Appl. Math. Lett.,
102, 106161, 7 pp. (2020).

W. X. Ma, Y. H. Huang, and F. D. Wang, “Inverse scattering transforms and soliton solutions of nonlocal
reverse-space nonlinear Schrodinger hierarchies,” Stud. Appl. Math., 145, 563-585 (2020).

W. X. Ma, “Integrable nonlocal nonlinear Schrodinger hierarchies of type (—A*, ) and soliton solutions,” Rep.
Math. Phys., 92, 19-36 (2023).

W. X. Ma, “Soliton solutions to constrained nonlocal integrable nonlinear Schrédinger hierarchies of type (—A,
A),” Int. J. Geom. Methods Mod. Phys., 20, 2350098, 16 pp. (2023).

W. X. Ma, “Soliton hierarchies and soliton solutions of type (—A*, —A) reduced nonlocal nonlinear Schrédinger
equations of arbitrary even order,” Partial Differ. Equ. Appl. Math., 7, 100515, 6 pp. (2023).

W. X. Ma, “Nonlocal integrable equations in soliton theory,” in: Nonlinear and Modern Mathematical Physics,
Springer Proceedings in Mathematics and Statistics, Vol. 459 (S. Manukure and W. X. Ma, eds.), Springer,
Cham (2024), pp. 251-266.

W. X. Ma, “General solution to a nonlocal linear differential equation of first-order,” Qual. Theory Dyn. Syst.,
23, 177, 11 pp. (2024).

W. X. Ma, “Solving a non-local linear differential equation model of the Newtonian-type,” Pramana J. Phys.,
98, 68, 5 pp. (2024).

W. X. Ma, “Sasa—Satsuma type matrix integrable hierarchies and their Riemann—Hilbert problems and soliton
solutions,” Phys. D, 446, 133672, 11 pp. (2023).

S. V. Manakov, “On the theory of two-dimensional stationary self-focusing of electromagnetic waves,” Sov. Phys.
JETP, 38, 248-253 (1974).

X. G. Geng and W. X. Ma, “A generalized Kaup—Newell spectral problem, soliton equations and finite-
dimensional integrable system,” Nuovo Cimento A, 108, 477-486 (1995).

E. G. Fan and H. Q. Zhang, “A hierarchy of nonlinear evolution equations, its bi-Hamiltonian structure, and
finite-dimensional integrable systems,” J. Math. Phys., 41, 2058-2065 (2000).

Z.Y. Yan and H. Q. Zhang, “A hierarchy of generalized AKNS equations, N-Hamiltonian structures and finite-
dimensional involutive systems and integrable systems,” J. Math. Phys., 42, 330-339 (2001).

W. X. Ma, C. G. Shi, E. A. Appiah, C. X. Li, and S. F. Shen, “An integrable generalization of the Kaup—Newell
soliton hierarchy,” Phys. Scr., 89, 085203, 8 pp. (2014).

H.Y. Zhu, S. M. Yu, S. F. Shen, and W. X. Ma, “New integrable sl(2, R)-generalization of the classical Wadati—
Konno-Ichikawa hierarchy,” Commun. Nonlinear Sci. Numer. Simul., 22, 1341-1349 (2015).

W. X. Ma, “A soliton hierarchy associated with so(3,R),” Appl. Math. Comput., 220, 117-122 (2013).

W. X. Ma, “A spectral problem based on so(3,R) and its associated commuting soliton equations,” J. Math.
Phys., 54, 103509, 8 pp. (2013).

W. X. Ma, S. Manukure, and H. C. Zheng, “A counterpart of the Wadati-Konno-Ichikawa soliton hierarchy
associated with so(3,R),” Z. Naturforsch. A, 69, 411-419 (2014).

W. X. Ma, S. F. Shen, S. M. Yu, H. Q. Zhang, and W. Y. Zhang, “An integrable so(3, R)-counterpart of the
Heisenberg soliton hierarchy,” Rep. Math. Phys., T4, 283-299 (2014).

W. X. Ma, “A four-component hierarchy of combined integrable equations with bi-Hamiltonian formulations,”
Appl. Math. Lett., 153, 109025, 6 pp. (2024).

W. X. Ma, “A combined generalized Kaup—Newell soliton hierarchy and its hereditary recursion operator and
bi-Hamiltonian structure,” Theoret. and Math. Phys., 221, 1603-1614 (2024).

W. X. Ma, “A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transforma-
tions,” Modern Phys. Lett. B, 36, 2250094, 13 pp. (2022).

W. X. Ma, “Application of the Riemann—Hilbert approach to the multicomponent AKNS integrable hierarchies,”
Nonlinear Anal.: Real World Appl., 47, 1-17 (2019).

R. S. Ye and Y. Zhang, “General soliton solutions to a reverse-time nonlocal nonlinear Schrodinger equation,”
Stud. Appl. Math., 145, 197-216 (2020).

1232



37.

38.

39.

40.

41.
42.

X. P. Xin, Y. T. Liu, Y. R. Xia, and H. Z. Liu, “Integrability, Darboux transformation and exact solutions for
nonlocal couplings of AKNS equations,” Appl. Math. Lett., 119, 107209, 8 pp. (2021).

L. Cheng, Y. Zhang, and W. X. Ma, “An extended (2 + 1)-dimensional modified Korteweg—de Vries—Calogero—
Bogoyavlenskii—Schiff equation: Lax pair and Darboux transformation,” Commun. Theor. Phys., 77, 035002,
9 pp. (2025).

W. X. Ma, “Binary Darboux transformation of vector nonlocal reverse-time integrable NLS equations,” Chaos
Solitons Fractals, 180, 114539, 7 pp. (2024).

W. X. Ma, Y. H. Huang, F. D. Wang, Y. Zhang, and L. Y. Ding, “Binary Darboux transformation of vector
nonlocal reverse-space nonlinear Schrédinger equations,” Int. J. Geom. Methods Mod. Phys., 21, 2450182, 18 pp.
(2024).

S. Konstantinou-Rizos, “Electric network and Hirota type 4-simplex maps,” JHEP, 2024, 94, 15 pp. (2024).
W. X. Ma, “Soliton solutions to Sasa—Satsuma-type modified Korteweg—de Vries equations by binary Darboux
transformations,” Mathematics, 12, 3643, 16 pp. (2024).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations. AI tools may have been used in the translation or editing of this

article.

1233



	1 Introduction
	2 Solution phenomena in the nonlocal setting
	2.1 A Cauchy problem
	2.2 Well-posedness
	2.3 Independence of solutions from coefficients
	2.4 Stability
	2.5 General solution

	3 Lax pair formulation
	3.1 AKNS NLS and mKdV equations
	3.2 Other spectral matrices

	4 Nonlocal integrable equations
	4.1 Single group reduction
	4.2 Pairs of group reductions

	5 Soliton solutions
	5.1 General framework of binary DTs
	5.2 Darboux matrices
	5.3 $M$-matrices
	5.4 Solitons by asymptotic expansions

	6 Conclusions, future work, and open questions
	References

