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NONLOCALITY, INTEGRABILITY, AND SOLITONS

Wen-Xiu Ma∗†‡§¶

We explore integrable equations that involve involution points, along with the solution phenomena for

Cauchy problems associated with nonlocal differential equations. By applying group reductions to clas-

sical Lax pairs, we generate nonlocal integrable equations. Soliton solutions of these models are derived

using binary Darboux transformations or reflectionless Riemann–Hilbert problems in the nonlocal context.

Further discussion on the well-posedness of nonlocal differential equations is also presented.
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1. Introduction

Differential equations are fundamental in describing dynamical systems in Nature. They are primarily

classified into two categories: ordinary differential equations (ODEs) and partial differential equations

(PDEs). Integrable equations are among the most elegant examples of differential equations [1]–[3]. One

of their hallmark features is the existence of sufficiently many conserved quantities, which always commute

with each other under a specific form of Poisson brackets [4]–[6]. Integrable ODEs have a finite number of

conserved quantities, whereas integrable PDEs require infinitely many [7], [8].

In modern mathematical physics, nonlocal differential equations have emerged as an important field of

study. Examples of such equations include nonlocal ODEs

ut = u(t− a), ut = u(λt), ut = u(−t), (1.1)

where a > 0 and 0 < λ < 1, as well as nonlocal PDEs

ut = uxx(−x,−t), ut = u(−x,−t)ux. (1.2)

Nonlocal differential equations pose significant challenges in formulating well-posed problems and deter-

mining their solutions.
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Motivated by non-Hermitian quantum mechanics, many nonlocal integrable equations have been stud-

ied recently (see, e.g., [9]–[12]). We introduced nonlocal integrable equations through group reductions

of matrix spectral problems [13], [14]. In particular, novel nonlocal integrable nonlinear Schrödinger-type

equations have been derived through pairs of group reductions (see, e.g., [15]–[18]). These nonlocal models

give rise to new questions, prompting us to explore innovative ideas and techniques to address them.

In this paper, we discuss the concept of group reduction and its applications to the AKNS integrable

nonlinear Schrödinger (NLS) equations and modified Korteweg–de Vries (mKdV) equations, employing the

Lax pair formulation as the primary tool. Soliton solutions for these models are derived by formulating

binary Darboux transformations, which are equivalent to reflectionless Riemann–Hilbert problems in the

nonlocal setting. We present a classification of the resulting nonlocal integrable equations and explore some

novel solution phenomena in the nonlocal context. The final section concludes with a summary, including

our future work on further applications and soliton structures in the nonlocal setting, as well as a discussion

of the well-posedness of nonlocal differential equations.

2. Solution phenomena in the nonlocal setting

In this section, we explore some solutions in the nonlocal setting. They are quite different from those

in the local setting.

2.1. A Cauchy problem. We consider the Cauchy (i.e., initial-value) problem for a nonlocal heat

equation

ut = uxx(−x,−t), u(x, 0) = f(x). (2.1)

The method of separation of variables, along with Fourier series theory, can be used to find a solution of

this problem

u(x, t) =
∞∑

n=0

[
an sin(nx) cos

(
n2t− π

4

)
+ bn cos(nx) sin

(
n2t− π

4

)]
, (2.2)

where the constants an and bn are given by the Fourier coefficients of the initial wave:

f(x) =

√
2

2

∞∑

n=0

[an sin(nx) + bn cos(nx)]. (2.3)

However, the uniqueness and stability of the problem remain open. This PDE does not possess the maximum

principle, unlike the standard local heat equation ut = uxx.

2.2. Well-posedness. We consider a linear nonlocal first-order differential equation

x′(t) = −x(t)− x(−t), t � 0. (2.4)

We can easily see that the general solution is

x(t) = c(−2t+ 1), (2.5)

where c is an arbitrary constant [19].

It follows that the Cauchy problem
⎧
⎪⎨

⎪⎩

x′(t) = −x(t)− x(−t), t � 0,

x

(
1

2

)
= 0,

(2.6)

has infinitely many solutions given by (2.5). Therefore, the uniqueness property of Cauchy problems in the

nonlocal setting is not always guaranteed. This feature is different from the local case.
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Moreover, the Cauchy problem

⎧
⎪⎨

⎪⎩

x′(t) = −x(t)− x(−t), t � 0,

x

(
1

2

)
= x0 �= 0,

(2.7)

has no solution at all, since all solutions are given by (2.5), for which we always have x(1/2) = 0. Therefore,

the existence of a solution of the Cauchy problem depends on specific conditions.

2.3. Independence of solutions from coefficients. We consider a specific example of the second

order,

x′′(t) = λx(t) − λx(−t) + μx′(t)− μx′(−t), (2.8)

where λ and μ are real constants. By the same argument as presented in [19], we know that the general

solution of this linear differential equation is

x(t) = c1 + c2t (2.9)

if λ = 0,

x(t) = c1 + c2 sinh(
√
2λt) (2.10)

if λ > 0, and

x(t) = c1 + c2 sin(
√−2λt) (2.11)

if λ < 0. Interestingly, we find that the solution is independent of the coefficient μ.

2.4. Stability. We consider a set of restricted Cauchy problems with t0 �= 1/2:

⎧
⎨

⎩
x′(t) = −x(t)− x(−t), t � 0,

x(t0) = x0.
(2.12)

The solution of this Cauchy problem is

x(t) = x0
−2t+ 1

−2t0 + 1
. (2.13)

This is not bounded, and hence the solution of the above nonlocal equation with t0 �= 1/2 is unstable.

2.5. General solution. An approach using the decomposition of functions into sums of even and

odd functions was used in [19] to solve linear nonlocal differential equations. Below are two examples.

Let f be continuous, and let λ and μ be constants. The general solution of

x′(t) = λx(t) + μx(−t) + f(t) (2.14)

is given by four formulas for the four distinct cases of the coefficients [19]. Similarly, the second-order

equation

x′′(t) = λx(t) + μx(−t) + f(t) (2.15)

has nine solution cases [20].
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3. Lax pair formulation

To discuss integrable equations, we begin with introducing a Lax pair of matrix spectral problems

−iφx = Uφ, −iφt = V φ, (3.1)

where i is the imaginary unit, U = U(u, λ) and V = V (u, λ) are two given square matrices, and φ is a matrix

eigenfunction. Nonlinear integrable equations are generated from the zero-curvature equation

Ut − Vx + i[U, V ] = 0. (3.2)

3.1. AKNS NLS and mKdV equations. We take arbitrary constants α1, α2, β1, and β2 and define

α = α1 − α2, β = β1 − β2. (3.3)

To generalize the AKNS integrable equations [7], we consider the matrix potentials

u = u(p, q), p = p(x, t) = (pjk)1�j�m,1�k�n, q = q(x, t) = (qkj)1�k�n,1�j�m. (3.4)

The Lax pair takes the form [21]

U = λΛ + P (u), V [r] = λrΩ+Q[r](u, λ), (3.5)

where r ∈ N, Λ = diag(α1Im, α2In), Ω = diag(β1Im, β2In), P and Q[r] are traceless, and degλQ
[r] � r − 1.

The matrix PT -symmetric NLS equations correspond to the potential matrix

P =

[
0 p

q 0

]
(3.6)

and the matrix

Q[2] =
β

α
λ

[
0 p

q 0

]
− β

α2

[
pq ipx

−iqx −qp

]
. (3.7)

The matrix NLS equations are derived from the zero-curvature equation

Ut − V [2]
x + i[U, V [2]] = 0 (3.8)

and are given by

pt = − β

α2
i(pxx + 2pqp), qt =

β

α2
i(qxx + 2qpq). (3.9)

This includes the case m = 1 and n = 2, which was studied in [22]. Similarly, the matrix PT -symmetric

mKdV equations arise from the zero-curvature equation

Ut − V [3]
x + i[U, V [3]] = 0, (3.10)

where Q[3] is defined by

Q[3] =
β

α
λ2P − β

α2
λIm,n(P

2 + iPx)− β

α3
(i[P, Px] + Pxx + 2P 3), (3.11)

with Im,n = diag(Im,−In). The matrix mKdV equations are given by

pt = − β

α3
(pxxx + 3pqpx + 3pxqp), qt = − β

α3
(qxxx + 3qxpq + 3qpqx). (3.12)
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3.2. Other spectral matrices. Other examples of successful spectral matrices associated

with sl(2,R) are

U =

[
λ p

q −λ

]
, U =

[
λ2 λp

λq −λ2

]
, U =

[
λ λp

λq −λ

]
, U =

[
λr λp

λq −λr

]
, (3.13)

where pq + r2 = 1. They lead to the respective AKNS, Kaup–Newell, Wadati–Konno–Ichikawa, and

Heisenberg soliton hierarchies

Generalized spectral matrices associated with sl(2,R) include (see, e.g., [23]–[27])

U =

[
λ+ αpq p

q −λ− αpq

]
, U =

[
λ2 + αpq λp

λq −λ2 − αpq

]
,

U =

[
λ+ α

√
pq + 1 λp

λq −λ− α
√
pq + 1

]
,

(3.14)

where α is a constant. They give rise to generalized soliton hierarchies.

Examples of successful spectral matrices associated with so(3,R) (see, e.g., [28]–[31]) include

U =

⎡

⎢⎣
0 −q −λ

q 0 −p

λ p 0

⎤

⎥⎦ , U =

⎡

⎢⎣
0 −λq −λ2

λq 0 −λp

λ2 λp 0

⎤

⎥⎦ ,

U =

⎡

⎢⎣
0 −λq −λ

λq 0 −λp

λ λp 0

⎤

⎥⎦ , U =

⎡

⎢⎣
0 −λq −λr

λq 0 −λp

λr λp 0

⎤

⎥⎦ ,

(3.15)

where p2 + q2 + r2 = 1. They yield the respective AKNS, Kaup–Newell, Wadati–Konno–Ichikawa, and

Heisenberg-type soliton hierarchies.

To derive four-component generalizations, we proposed a novel 4× 4 spectral matrix [32]

U = U(u, λ) =

⎡

⎢⎢⎢⎣

α1λ δ1u1 u2 0

δ1u3 α2λ 0 u4

δ1δ2u4 0 α2λ −δ1u3

0 δ1δ2u2 −δ1u1 α1λ

⎤

⎥⎥⎥⎦ , (3.16)

where u = (u1, u2, u3, u4)
T, and α1, α2, δ1, and δ2 are arbitrary constants, but α1 �= α2. This spectral

matrix generates a combined soliton hierarchy that includes the combined nonlinear Schrödinger equations:

u1,t =
1

α2
[δ1βu1,xx + δ2γu2,xx − 2δ1(δ1βu3 − δ2γu4)(δ1u

2
1 − δ2u

2
2)−

− 4δ21δ2(γu3 + βu4)u1u2],

u2,t =
1

α2
[−δ1γu1,xx + δ1βu2,xx + 2δ21(γu3 + βu4)(δ1u

2
1 − δ2u

2
2)−

− 4δ21(δ1βu3 − δ2γu4)u1u2],

u3,t = − 1

α2
[δ1βu3,xx − δ2γu4,xx − 2δ1(δ1βu1 + δ2γu2)(δ1u

2
3 − δ2u

2
4) +

+ 4δ21δ2(γu1 − βu2)u3u4],

u4,t = − 1

α2
[δ1γu3,xx + δ1βu4,xx − 2δ21(γu1 − βu2)(δ1u

2
3 − δ2u

2
4)−

− 4δ21(δ1βu1 + δ2γu2)u3u4],

(3.17)

where α is still defined to be α = α1 − α2. More examples can be found in the literature (see, e.g., [33]).
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4. Nonlocal integrable equations

We aim to discuss the classification of nonlocal integrable equations, derived either from single nonlocal

group reductions or from pairs of group reductions containing nonlocal ones, in relation to the matrix AKNS

spectral problem described above.

There are three cases for replacing the eigenvalue λ: λ → −λ∗,−λ, λ, where λ∗ is the complex conjugate

of λ. Each of these cases generates nonlocal integrable NLS equations. Moreover, there are two cases for

replacing λ: λ → −λ∗, λ, each of which generates nonlocal integrable mKdV equations. The replacement

λ → −λ yields only local reduced integrable mKdV equations [34], while the replacement λ → λ∗ yields

only local reduced NLS and mKdV integrable equations (see, e.g., [35]).

4.1. Single group reduction. By taking single group reduction, we can formulate nice types of the

corresponding group reductions,

U †(x̃, t̃,−λ∗) = −ΣU(x, t, λ)Σ−1,

UT(x̃, t̃,−λ) = −ΣU(x, t, λ)Σ−1,

UT(x̃, t̃, λ) = ΣU(x, t, λ)Σ−1,

(4.1)

where (x̃, t̃ ) = (−x, t), (x,−t), (−x,−t), and

Σ =

[
Σ1 0

0 Σ2

]
, Σ†

j = Σj or ΣT
j = Σj , j = 1, 2, (4.2)

where W † (or WT) denotes the Hermitian conjugate (or transpose) of a matrix W .

Based on the specific form of Q[2], we obtain three types of nonlocal integrable NLS reductions: reverse-

space, reverse-time, and reverse-spacetime reductions,

U †(−x, t,−λ∗) = −ΣU(x, t, λ)Σ−1,

UT(x,−t,−λ) = −ΣU(x, t, λ)Σ−1,

UT(−x,−t, λ) = ΣU(x, t, λ)Σ−1,

(4.3)

which preserve the integrability conditions, ensuring the invariance of the zero-curvature equations. The

corresponding potential reductions are given by

q(x, t) = −Σ−1
2 p†(−x, t)Σ1,

q(x, t) = −Σ−1
2 pT(x,−t)Σ1,

q(x, t) = Σ−1
2 pT(−x,−t)Σ1.

(4.4)

They respectively generate the nonlocal reverse-space integrable NLS equations

pt = − β

α2
i(pxx − 2pΣ−1

2 p†(−x, t)Σ1p), (4.5)

the nonlocal reverse-time integrable NLS equations

pt = − β

α2
i(pxx − 2pΣ−1

2 pT(x,−t)Σ1p) (4.6)

and the nonlocal reverse-spacetime integrable NLS equations

pt = − β

α2
i(pxx + 2pΣ−1

2 pT(−x,−t)Σ1p). (4.7)

In (4.5), Σ1 and Σ2 are arbitrary invertible Hermitian matrices, while in (4.6) and (4.7), Σ1 and Σ2 are

arbitrary invertible symmetric matrices. It is easy to see that all three types of nonlocal integrable NLS

equations are PT -symmetric.
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Based on the specific form of Q[3], we derive two types of complex and real reverse-spacetime integrable

reductions,

U †(−x,−t,−λ∗) = −ΣU(x, t, λ)Σ−1 (4.8)

and

UT(−x,−t, λ) = ΣU(x, t, λ)Σ−1, (4.9)

which maintain the integrability conditions and guarantee the invariance of the zero-curvature equations.

The respective potential reductions are presented by

q(x, t) = −Σ−1
2 p†(−x,−t)Σ1 (4.10)

and

q(x, t) = Σ−1
2 pT(−x,−t)Σ1. (4.11)

The two reductions respectively lead to nonlocal complex reverse-spacetime integrable mKdV equations

pt = − β

α3
(pxxx − 3pΣ−1

2 p†(−x,−t)Σ1px − 3pxΣ
−1
2 p†(−x,−t)Σ1p) (4.12)

and nonlocal real reverse-spacetime integrable mKdV equations

pt = − β

α3
(pxxx + 3pΣ−1

2 pT(−x,−t)Σ1px + 3pxΣ
−1
2 pT(−x,−t)Σ1p). (4.13)

In (4.12), Σ1 and Σ2 are arbitrary invertible Hermitian matrices, while in (4.13), Σ1 and Σ2 are arbitrary

invertible symmetric matrices. It is also easy to see that both types of nonlocal integrable mKdV equations

are PT -symmetric.

4.2. Pairs of group reductions. For the NLS equations, we note that we have one type of local

reduction in the case of replacing λ: λ → λ∗, and three types of nonlocal reductions in the cases of

replacing λ: λ → −λ,−λ∗, λ. Clearly, we can formulate six types of nonlocal reductions: three pairs

of local and nonlocal reductions and three pairs of nonlocal and nonlocal reductions. These are classified

as follows:

types (λ∗,−λ), (λ∗,−λ∗), (λ∗, λ), (−λ,−λ∗), (−λ, λ) and (−λ∗, λ). (4.14)

For the mKdV equations, we note that there are two types of local reductions when replacing λ:

λ → λ∗,−λ, and two types of nonlocal reductions when replacing λ: λ → −λ∗, λ. It follows that we can

formulate one type of local reduction (λ∗,−λ) and five types of nonlocal reductions:

Types (λ∗,−λ∗), (λ∗, λ), (−λ,−λ∗), (−λ, λ) and (−λ∗, λ). (4.15)

The pair of local reductions (λ∗,−λ) gives rise to Sasa–Satsuma-type integrable mKdV equations [21].

We specify pairs of group reductions for the spectral matrix

U †(x̃, t̃,±λ∗) or UT(x̃, t̃,±λ) = ±ΣU(x, t, λ)Σ−1,

U †(x̃, t̃,±λ∗) or UT(x̃, t̃,±λ) = ±ΔU(x, t, λ)Δ−1,
(4.16)

where Σ and Δ are two Hermitian, or symmetric, matrices, defined by

Σ =

[
Σ1 0

0 Σ2

]
, Δ =

[
Δ1 0

0 Δ2

]
. (4.17)
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In what follows, we consider two specific cases where m = 2 and n = 1:

Σ1 =

[
σ 0

0 σ

]
, Σ−1

2 = 1, Δ1 =

[
0 δ

δ 0

]
, Δ−1

2 = 1, (4.18)

and

Σ1 =

[
0 σ

σ 0

]
, Σ−1

2 = 1, Δ1 =

[
δ 0

0 δ

]
, Δ−1

2 = 1, (4.19)

where σ and δ are real and satisfy σ2 = δ2 = 1. These two group reductions generate scalar nonlocal

integrable NLS and mKdV equations, which are listed as follows (see also [15]–[18]).

Six classes of nonlocal integrable NLS equations (where p1 = p11 is assumed):

Class 1: Type (λ∗,−λ) equations

p1,t = − β

α2
i[p1,xx + 2σ(p1p

∗
1 + p1(x,−t)p∗1(x,−t))p1],

p1,t = − β

α2
i[p1,xx − 2δ(p1p1(x,−t) + p∗1p

∗
1(x,−t))p1].

(4.20)

Class 2: Type (λ∗,−λ∗) equations

p1,t = − β

α2
i[p1,xx + 2σ(p1p

∗
1 + p1(−x, t)p∗1(−x, t))p1],

p1,t = − β

α2
i[p1,xx − 2δ(p1p

∗
1(−x, t) + p∗1p1(−x, t))p1].

(4.21)

Class 3: Type (λ∗, λ) equations

p1,t = − β

α2
i[p1,xx + 2σ(p1p

∗
1 + p1(−x,−t)p∗1(−x,−t))p1],

p1,t = − β

α2
i[p1,xx + 2δ(p1p1(−x,−t) + p∗1p

∗
1(−x,−t))p1].

(4.22)

Class 4: Type (−λ,−λ∗) equations

p1,t = − β

α2
i[p1,xx − 2σ(p1p

∗
1(−x, t) + p1(x,−t)p∗1(−x,−t))p1],

p1,t = − β

α2
i[p1,xx − 2δ(p1p1(x,−t) + p∗1(−x, t)p∗1(−x,−t))p1].

(4.23)

Class 5: Type (−λ, λ) equations

p1,t = − β

α2
i[p1,xx − 2σ(p1p1(x,−t) + p1(−x, t)p1(−x,−t))p1],

p1,t = − β

α2
i[p1,xx + 2δ(p1p1(−x, t) + p1(x,−t)p1(−x,−t))p1].

(4.24)

Class 6: Type (−λ∗, λ) equations

p1,t = − β

α2
i[p1,xx − 2σ(p1p

∗
1(−x, t) + p1(−x,−t)p∗1(x,−t))p1],

p1,t = − β

α2
i[p1,xx + 2δ(p1p1(−x,−t) + p∗1(−x, t)p∗1(x,−t))p1].

(4.25)
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Five classes of nonlocal integrable mKdV equations (where p1 = p11 is again assumed):

Class 1: Type(λ∗,−λ∗) equations

p1,t = − β

α3
[p1,xxx + 6σ|p1|2p1,x + 3σp∗1(−x,−t)(p1p1(−x,−t))x],

p1,t = − β

α3
[p1,xxx − 6δp1p

∗
1(−x,−t)p1,x − 3δp∗1(p1p1(−x,−t))x].

(4.26)

Class 2: Type (λ∗, λ) equations

p1,t = − β

α3
[p1,xxx + 6σ|p1|2p1,x + 3σp1(−x,−t)(p1p

∗
1(−x,−t))x],

p1,t = − β

α3
[p1,xxx + 6δp1p1(−x,−t)p1,x + 3δp∗1(p1p

∗
1(−x,−t))x].

(4.27)

Class 3: Type (−λ,−λ∗) equations

p1,t = − β

α3
[p1,xxx − 6σp21p1,x − 3σp∗1(−x,−t)(p1p

∗
1(−x,−t))x],

p1,t = − β

α3
[p1,xxx − 6δp1p

∗
1(−x,−t)p1,x − 3δp1(p1p

∗
1(−x,−t))x].

(4.28)

Class 4: Type (−λ, λ) equations

p1,t = − β

α3
[p1,xxx − 6σp21p1,x − 3σp1(−x,−t)(p1p1(−x,−t))x],

p1,t = − β

α3
[p1,xxx + 6δp1p1(−x,−t)p1,x + 3δ(p1p1(−x,−t))xp1].

(4.29)

Class 5: Type (−λ∗, λ) equations

p1,t = − β

α3
[p1,xxx − 6σp1p

∗
1(−x,−t)p1,x − 3σp1(−x,−t)(|p1|2)x],

p1,t = − β

α3
[p1,xxx + 6δp1p1(−x,−t)p1,x + 3δp∗1(−x,−t)(|p1|2)x].

(4.30)

5. Soliton solutions

We construct soliton solutions using the Darboux transformation (DT) method [36]–[38], which is

equivalent to the reflectionless Riemann–Hilbert problem. The resulting Darboux matrices encompass the

most general situation, including the so-called generalized Darboux matrices (see, e.g., [39], [40]).

5.1. General framework of binary DTs. We assume that a binary Darboux transformation is

given by

φ′ = T+φ = T+(u, λ)φ, φ̃′ = φ̃T− = φ̃T−(u, λ), u′ = f(u), (5.1)

such that

−iφ′
x = U ′φ′, −iφ′

t = V ′φ′ and iφ̃′
x = φ̃′U ′, iφ̃′

t = φ̃′V ′, (5.2)

where

U ′ = U(u′, λ), V ′ = V (u′, λ). (5.3)

The conditions for T+ and T− are

−iT+
x T− + T+UT− = U ′, −iT+

t T− + T+V T− = V ′. (5.4)

1228



5.2. Darboux matrices. To construct Darboux matrices, we choose two sets of arbitrary numbers

{λk, λ̂k ∈ C}Nk=1, where N ∈ N. Then we define the Darboux matrices

T+ = Im+n −
N∑

j,l=1

vj(M
−1)jlv̂l

λ− λ̂l

, T− = Im+n +

N∑

j,l=1

vj(M
−1)jlv̂l

λ− λj
, (5.5)

where the eigenvectors and adjoint eigenvectors are defined by

−ivk,x = U(u, λk)vk, −ivk,t = V [r](u, λk)vk,

iv̂k,x = v̂kU(u, λ̂k), iv̂k,t = v̂kV
[r](u, λ̂k),

1 � k � N, (5.6)

with r = 2, 3 corresponding to the respective NLS and mKdV equations.

5.3. M-matrices. To satisfy the corresponding spectral problems, we introduce the square

matrix M as

M = (mjl)N×N , mjl =

⎧
⎪⎨

⎪⎩

v̂jvl

λl − λ̂j

, if λl �= λ̂j ,

mc
jl(x, t), if λl = λ̂j ,

1 � j, l � N, (5.7)

where we require the orthogonality condition

v̂jvl = 0, (5.8)

and the two ODE evolution properties

mc
jl,x = iv̂j

U(λl)− U(λ̂j)

λl − λ̂j

vl, mc
jl,t = iv̂j

V [r](λl)− V [r](λ̂j)

λl − λ̂j

vl (5.9)

if λl = λ̂j , 1 � j, l � N , where r = 2, 3. It is straightforward to see that T+ and (T−)−1 are inverse to

each other. These conditions are both necessary and sufficient to guarantee the correctness of the binary

Darboux transformations.

We note that the case λl = λ̂j , 1 � j, l � N , can yield the so-called generalized Darboux matrices.

Furthermore, an iterated sequence of these Darboux matrices in the standard case (i.e., without the afore-

mentioned condition) can be linked to the study of the algebraic properties of n-simplex maps, such as the

local Yang–Baxter equation [41]. A decomposition of these Darboux matrices has also been explored in the

literature (see, e.g., [42]).

5.4. Solitons by asymptotic expansions. We now expand T+ at λ = ∞ as

T+(x, λ) = Im+n +
1

λ
T+
1 (x) +O

(
1

λ2

)
, λ → ∞, (5.10)

to obtain the potential matrix

P = −[Λ, T+
1 ] = lim

λ→∞
λ[T+(λ),Λ]. (5.11)

In other words, we obtain the so-called soliton solutions as

pjk = −α(T+
1 )j,k+m, 1 � j � m, 1 � k � n, (5.12)

where T+
1 = ((T+

1 )jk)(m+n)×(m+n). The reduction properties for the new potential matrices are inherited

from the original group reduction properties.
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6. Conclusions, future work, and open questions

In this paper, we have discussed a method of group reductions for matrix spectral problems to generate

nonlocal integrable equations within the Lax pair formulation. A comprehensive classification of nonlocal

NLS and mKdV integrable equations generated both by single group reduction and by pairs of group

reductions from the AKNS matrix spectral problems has been provided. Moreover, we have presented

a general framework for binary Darboux transformations to derive soliton solutions for the resulting nonlocal

reduced integrable equations, alongside novel solution phenomena in the nonlocal setting.

Regarding nonlocal differential equations (DEs), there are several directions that we are particularly

interested in exploring. Below are two of these directions.

Other applications of group reductions. It is one of our future problems to explore how to

apply the group reduction idea to other matrix spectral problems. For instance, we can consider many

4× 4 matrix spectral problems that generate four-component Hamiltonian integrable equations. One of the

involved spectral matrices is

U = U(u, λ) =

⎡

⎢⎢⎢⎣

α1λ u1 u2 0

u3 α2λ 0 u4

u4 0 α2λ −u3

0 u2 −u1 α1λ

⎤

⎥⎥⎥⎦ , (6.1)

where u = (u1, u2, u3, u4)
T, λ is the spectral parameter, and α1 and α2 are two distinct constants.

Solution structures of nonlocal linear DEs. Another very interesting problem is how to find

solutions of nth-order nonlocal linear DEs. For example, how to systematically derive the solution formulas

for the equation

x(n)(t) = λx′(t) + μx′(−t) + νx(t) + δx(−t) + f(t), (6.2)

where n is a natural number, x(n) denotes the nth-order derivative of x, λ, μ, ν, δ are real constants,

and f is a continuous function.

Additionally, there are open questions regarding the determination of the well-posedness of

nonlocal DEs.

Existence and uniqueness of nonlocal DEs. What conditions must be satisfied for the existence

of a unique solution of nonlocal DEs of the types

x′(t) = f(t, x(t), x(−t)) (6.3)

and

x′(t) = f

(
t, x(t), x

(
1

t

))
, (6.4)

and how do these properties depend on the structure of the nonlocal terms and on the initial and boundary

conditions?

Stability of nonlocal DEs. Under what conditions can we guarantee the stability properties of non-

local DEs? How are the stability properties affected by the nonlocal structure and the solution conditions?

Specifically, how can we establish uniform or asymptotic stability for the solutions of nonlocal equations of

the types described above?
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Well-posedness for nonlocal integrable equations. How can we establish the existence, unique-

ness, and stability (spectral, orbital, and asymptotic) for the nonlocal integrable equations we have pre-

sented? This includes the well-posedness of the Cauchy problems for the nonlocal integrable NLS equations

of the following types.

Type (−λ,−λ∗):
p1,t = −i[p1,xx − 2σ(p1p

∗
1(−x, t) + p1(x,−t)p∗1(−x,−t))p1],

p1,t = −i[p1,xx − 2δ(p1p1(x,−t) + p∗1(−x, t)p∗1(−x,−t))p1];
(6.5)

type (−λ, λ):

p1,t = −i[p1,xx − 2σ(p1p1(x,−t) + p1(−x, t)p1(−x,−t))p1],

p1,t = −i[p1,xx + 2δ(p1p1(−x, t) + p1(x,−t)p1(−x,−t))p1];
(6.6)

type (−λ∗, λ):
p1,t = −i[p1,xx − 2σ(p1p

∗
1(−x, t) + p1(−x,−t)p∗1(x,−t))p1],

p1,t = −i[p1,xx + 2δ(p1p1(−x,−t) + p∗1(−x, t)p∗1(x,−t))p1];
(6.7)

where σ and δ are both taken to be ±1. The solution can exhibit either rarefaction waves or compression

waves, depending on the initial conditions and the governing equations. Any contribution to these equa-

tions would introduce new ideas and techniques for tackling nonlocal DEs and determining their solution

properties.
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