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A COMBINED GENERALIZED KAUP–NEWELL SOLITON

HIERARCHY AND ITS HEREDITARY RECURSION OPERATOR

AND BI-HAMILTONIAN STRUCTURE

Wen-Xiu Ma∗†‡§

On the basis of a specific matrix Lie algebra, we propose a Kaup–Newell-type matrix eigenvalue problem

with four potentials and compute an associated soliton hierarchy within the zero-curvature formulation.

A hereditary recursion operator and a bi-Hamiltonian structure are presented to show the Liouville inte-

grability of the resulting soliton hierarchy. An illustrative example is a novel model consisting of combined

derivative nonlinear Schrödinger equations with two arbitrary constants.
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1. Introduction

Integrable models are associated with matrix eigenvalue problems [1], [2], called Lax pairs [3], and they

possess hereditary recursion operators, which generate symmetries from symmetries, and bi-Hamiltonian

structures, which connect symmetries with conserved quantities [4]. Matrix eigenvalue problems are also

used to establish inverse scattering transforms, which solve initial value problems [1]. Integrable models

have various applications in physical sciences and engineering, such as water waves, nonlinear optics, and

quantum mechanics [2].

There are well-known examples of integrable models, including the Ablowitz–Kaup–Newell–Segur inte-

grable models [5] and their integrable couplings [6]. Matrix Lie algebras lay a strong foundation for inte-

grable models within the zero-curvature formulation [6]–[8]. It is always intriguing to see what kind of

matrix eigenvalue problems can yield integrable models. In this paper, we propose a novel Kaup–Newell-

type 4× 4 matrix eigenvalue problem and construct an associated soliton hierarchy, starting from a specific

matrix Lie algebra.
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The zero-curvature formulation is powerful in constructing integrable models (see [8], [9] for details).

As usual, we let u = (u1, . . . , uq)
T denote a column potential vector and λ denote the spectral parameter.

Let g̃ be a given loop matrix algebra g̃ with the loop parameter λ. A matrix F0 in g̃ is said to be pseudo-

regular if it satisfies

ImadF0 ⊕Ker adF0 = g̃, [Ker adF0 ,Ker adF0 ] = 0, (1.1)

where adF0 denotes the adjoint action of F0 on g̃. We take one pseudo-regular matrix F0 and q linear

independent matrices F1, . . . , Fq in g̃ to introduce a spatial spectral matrix

M = M(u, λ) = F0(λ) + u1F1(λ) + · · ·+ uqFq(λ). (1.2)

Then we compute a Laurent series solution

Z =
∑

n�0

λ−nZ [n],

of the stationary zero-curvature equation

Zx = [M, Z] (1.3)

in the underlying loop algebra g̃. The pseudoregularity guarantees the existence of such Laurent series

solutions.

The second step is to find an infinite sequence of temporal spectral matrices

N [m] = (λmZ)+ +Δm, (λmZ)+ =

m∑

n=0

λm−nZ [n], m � 0, Δm ∈ g̃, (1.4)

that provide the other parts of Lax pairs, such that the zero curvature equations

Mtm −N [m]
x + [M,N [m]] = 0, m � 0, (1.5)

produce a soliton hierarchy

utm = X [m] = X [m](u), m � 0. (1.6)

The zero-curvature equations in (1.5) actually represent the solvability conditions of the spatial and temporal

matrix eigenvalue problems:

ϕx = Mϕ, ϕtm = N [m]ϕ, m � 0. (1.7)

To determine the modification terms Δm, m � 0, we often need the trial and error strategy.

The third step is to furnish a bi-Hamiltonian structure for the resulting soliton hierarchy (1.6), by

determining a hereditary recursion operator and applying the so-called trace identity,

δ

δu

∫
tr

(
Z
∂M
∂λ

)
dx = λ−κ ∂

∂λ
λκ tr

(
Z
∂M
∂u

)
, (1.8)

where δ/δu is the variational derivative with respect to u, and κ is a constant independent of the spectral

parameter λ. It then follows that every member of the soliton hierarchy has a bi-Hamiltonian structure

and thus Liouville integrability (see, e.g., [8]–[10]).
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Various hierarchies of Liouville integrable models exist in the literature [5]–[20]. Among the one-

component integrable hierarchies are the Korteweg–de Vries hierarchy, the nonlinear Schrödinger hierarchy,

and the modified Korteweg–de Vries hierarchy [1], [2]. The case of two components is also very popular, and

the well-known examples include the Ablowitz–Kaup–Newell–Segur integrable hierarchy [5], the Heisenberg

integrable hierarchy [21], the Kaup–Newell integrable hierarchy [22], and the Wadati–Konno–Ichikawa inte-

grable hierarchy [23]. All those soliton hierarchies are associated with 2× 2 spectral matrices. The case of

higher-order spectral matrices leads to a higher level of difficulty.

Our aim in this paper is to propose a specific Kaup–Newell-type 4×4 spectral matrix and construct an

associated hierarchy of four-component Liouville integrable models within the zero-curvature formulation,

based on a special matrix Lie algebra. A hereditary recursion operator and a bi-Hamiltonian structure are

determined to show the Liouville integrability for the resulting soliton hierarchy. An illustrative example

is presented, which consists of combined generalized integrable derivative nonlinear Schrödinger equations.

A summary and concluding remarks are given in the final section (Sec. 4).

2. A soliton hierarchy with four potentials

We take an arbitrary real number δ and a square matrix T of order r ∈ N, such that

T 2 = Ir, (2.1)

where Ir stands for the identity matrix of order r. We define a set g̃ of block matrices

g̃ =

{
A =

[
A1 A2

A3 A4

]

2r×2r

∣∣∣∣ A4 = TA1T
−1, A3 = δTA2T

−1

}
. (2.2)

Obviously, this forms a matrix Lie algebra, with the matrix commutator [A,B] = AB −BA being the Lie

bracket. In what follows, we use this matrix Lie algebra in the case r = 2, δ = 1 and

T =

[
0 1

1 0

]
or

[
0 −1

−1 0

]
(2.3)

to formulate a specific spectral matrix.

Let u = u(x, t) = (u1, u2, u3, u4)
T be a column vector with four potentials, and α1 and α2 be two

arbitrary real numbers; we assume that

α = α1 − α2 �= 0. (2.4)

Motivated by recent diverse studies on matrix eigenvalue problems involving four potentials (see, e.g., [24]–

[27] and [28], [29] for examples of respective arbitrary-order and fourth-order matrix eigenvalue problems),

we introduce and study a matrix eigenvalue problem of the form

ϕx = Mϕ = M(u, λ)ϕ, M =

⎡

⎢⎢⎢⎣

0 λu1 λu2 α1λ
2

λu3 0 α2λ
2 λu4

λu4 α2λ
2 0 λu3

α1λ
2 λu2 λu1 0

⎤

⎥⎥⎥⎦ , (2.5)

where λ is again the spectral parameter. This spectral matrix M is built from the above matrix Lie

algebra g̃, and it is a kind of 4× 4 matrix generalization of the Kaup–Newell eigenvalue problem [22]. It is

not an easy job to determine a Lax pair of 4× 4 matrix eigenvalue problems that produces a hierarchy of

1605



integrable models. Interestingly, the above eigenvalue problem generates an associated integrable hierarchy

possessing a hereditary recursion operator and a bi-Hamiltonian structure. All equations in the hierarchy

exhibit specific combined structures.

To construct an associated soliton hierarchy, we usually start with the corresponding stationary zero-

curvature equation (1.3). Based on the presented matrix Lie algebra, we try to take

Z =

⎡

⎢⎢⎢⎣

a b e f

c −a −f g

g −f −a c

f e b a

⎤

⎥⎥⎥⎦ =
∑

n�0

λ−nZ [n]. (2.6)

The reason to take this form is that with the specific spectral matrix M in (2.5), an arbitrary matrix

in g̃ leads to a commutator matrix of the above form (2.6). Consequently, the corresponding stationary

zero-curvature equation (1.3) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ax = λcu1 + λgu2 − λbu3 − λeu4,

bx = αλ2e− 2λau1 − 2λfu2,

cx = −αλ2g + 2λau3 + 2λfu4,

(2.7)

⎧
⎪⎪⎨

⎪⎪⎩

ex = αλ2b− 2λfu1 − 2λau2,

gx = −αλ2c+ 2λfu3 + 2λau4,

fx = λgu1 + λcu2 − λeu3 − λbu4.

(2.8)

Given these equations, the basic objects of a solution Z can be assumed to be as follows:

a =
∑

n�0

λ−2na[n], b =
∑

n�0

λ−2n−1b[n], c =
∑

n�0

λ−2n−1c[n],

e =
∑

n�0

λ−2n−1e[n], f =
∑

n�0

λ−2nf [n], g =
∑

n�0

λ−2n−1g[n].
(2.9)

To determine a solution Z recursively, the following two equations

− αλfx = u3bx + u1cx + u4ex + u2gx,

− αλax = u4bx + u2cx + u3ex + u1gx
(2.10)

are crucial, which can be verified directly. At this moment, we can see that Eqs. (2.7) and (2.8) lead to the

two initial equations

a[0]x = u1c
[0] + u2g

[0] − u3b
[0] − u4e

[0],

f [0]
x = u1g

[0] + u2c
[0] − u3e

[0] − u4b
[0]

(2.11)

and the recursion relations for the Laurent series solution:
⎧
⎨

⎩
a
[n+1]
x = − 1

α (u4b
[n]
x + u2c

[n]
x + u3e

[n]
x + u1g

[n]
x ),

f
[n+1]
x = − 1

α (u3b
[n]
x + u1c

[n]
x + u4e

[n]
x + u2g

[n]
x ),

(2.12)

⎧
⎨

⎩
b[n+1] = 1

α (e
[n]
x + 2u1f

[n+1] + 2u2a
[n+1]),

c[n+1] = 1
α (−g

[n]
x + 2u3f

[n+1] + 2u4a
[n+1]),

(2.13)

⎧
⎨

⎩
e[n+1] = 1

α (b
[n]
x + 2u1a

[n+1] + 2u2f
[n+1]),

g[n+1] = 1
α (−c

[n]
x + 2u3a

[n+1] + 2u4f
[n+1]),

(2.14)
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where n � 0. To achieve the uniqueness of the Laurent series solution, we fix the initial data by

solving (2.11),

b[0] = βu1 + γu2, c[0] = βu3 + γu4,

e[0] = βu2 + γu1, g[0] = βu4 + γu3,

a[0] = const, f [0] = const

(2.15)

with two arbitrary constants β and γ, and select the constants of integration in (2.12) to be zero:

a[n]|u=0 = 0, f [n]|u=0 = 0, n � 1. (2.16)

The initial values for a[0] and f [0] do not affect all other coefficients in the Laurent series solution, but

the two constants β and γ bring the diversity of the associated integrable models, exhibiting a combined

structure in the resulting models. We can now compute that

⎧
⎨

⎩
a[1] = − 1

α [(γu3 + βu4)u1 + (βu3 + γu4)u2],

f [1] = − 1
α [(βu3 + γu4)u1 + (γu3 + βu4)u2],

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

b[1] = 1
α

{
γu1,x + βu2,x − 2

α [(βu3 + γu4)u1 + (γu3 + βu4)u2]u1 −
− 2

α [(γu3 + βu4)u1 + (βu3 + γu4)u2]u2

}
,

c[1] = 1
α

{−γu3,x − βu4,x − 2
α [(βu3 + γu4)u1 + (γu3 + βu4)u2]u3 −

− 2
α [(γu3 + βu4)u1 + (βu3 + γu4)u2]u4

}
,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e[1] = 1
α

{
βu1,x + γu2,x − 2

α [(γu3 + βu4)u1 + (βu3 + γu4)u2]u1 −
− 2

α [(βu3 + γu4)u1 + (γu3 + βu4)u2]u2

}
,

g[1] = 1
α

{−βu3,x − γu4,x − 2
α [(γu3 + βu4)u1 + (βu3 + γu4)u2]u3 −

− 2
α [(βu3 + γu4)u1 + (γu3 + βu4)u2]u4

}
.

Based on a careful inspection of the corresponding zero-curvature equation, we can introduce the

temporal matrix eigenvalue problems

ϕtm = N [m]ϕ = N [m](u, λ)ϕ, N [m] = λ(λ2m+1Z)+, m � 0 (2.17)

where the subscript + denotes the polynomial part of λ as in (1.4), to generate associated integrable models.

The solvability conditions of the spatial and temporal matrix eigenvalue problems in (2.5) and (2.17) are

exactly the zero-curvature equations in (1.5). All those zero-curvature equations yield a soliton hierarchy

with four potentials:

utm = X [m] = X [m](u) = (b[m]
x , e[m]

x , c[m]
x , g[m]

x )T, m � 0. (2.18)

More precisely, we obtain a hierarchy of models with four equations

u1,tm = b[m]
x , u2,tm = e[m]

x , u3,tm = c[m]
x , u4,tm = g[m]

x , m � 0. (2.19)
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The first nonlinear example in this hierarchy is the model of generalized integrable derivative nonlinear

Schrödinger equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,t1 = 1
α (γu1,xx + βu2,xx)− 2

α2 {[(βu3 + γu4)u1 + (γu3 + βu4)u2]u1}x −
− 2

α2 {(γu3 + βu4)u1 + (βu3 + γu4)u2]u2}x,
u2,t1 = 1

α (βu1,xx + γu2,xx)− 2
α2 {[(γu3 + βu4)u1 + (βu3 + γu4)u2]u1}x −

− 2
α2 {(βu3 + γu4)u1 + (γu3 + βu4)u2]u2}x,

u3,t1 = − 1
α (γu3,xx + βu4,xx)− 2

α2 {[(βu3 + γu4)u1 + (γu3 + βu4)u2]u3}x −
− 2

α2 {(γu3 + βu4)u1 + (βu3 + γu4)u2]u4}x,
u4,t2 = − 1

α (βu3,xx + γu4,xx)− 2
α2 {[(γu3 + βu4)u1 + (βu3 + γu4)u2]u3}x −

− 2
α2 {(βu3 + γu4)u1 + (γu3 + βu4)u2]u4}x.

(2.20)

This system provides a combined integrable model with four components, which broadens the category of

coupled integrable models of nonlinear Schrödinger type equations (see, e.g., [30]–[32]). One point worth

mentioning is that each equation in (2.20) contains a linear combination of two derivative terms of the

second order, and we therefore say that such a model is a combined model.

Two special subcases, β = 0 and γ = 0, in the resulting soliton hierarchy provide uncombined integrable

models.

If we take α = β = 1 and γ = 0 in model (2.20), we obtain a coupled integrable derivative nonlinear

Schrödinger model
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1,t1 = u2,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,

u2,t1 = u1,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,

u3,t1 = −u4,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x,

u4,t1 = −u3,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x.

(2.21)

If we take α = γ = 1 and β = 0 in model (2.20), we obtain another coupled integrable derivative nonlinear

Schrödinger model,
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1,t1 = u1,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,

u2,t1 = u2,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,

u3,t1 = −u3,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x,

u4,t1 = −u4,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x.

(2.22)

There is an interesting phenomenon that the obtained two models just exchange the first component

with the second component and the third component with the fourth component in the vector fields in the

right-hand sides. Surprisingly, those two uncombined models still commute with each other.

3. Recursion operator and the bi-Hamiltonian structure

To propose a bi-Hamiltonian structure to show the Liouville integrability of soliton hierarchy (2.19),

we can use trace identity (1.8) for the spatial matrix eigenvalue problem in (2.5). From the Laurent series

solution Z in (2.6), we readily obtain

tr

(
Z
∂M
∂λ

)
= 2(2αλf + bu3 + cu1 + eu4 + gu2),

tr

(
Z
∂M
∂u

)
= 2(λc, λg, λb, λe)T,

(3.1)
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and as a consequence of these computations, the trace identity generates

δ

δu

∫
λ−2n−1(2αf [n+1] + u3b

[n] + u4e
[n] + u1c

[n] + u2g
[n]) dx =

= λ−κ ∂

∂λ
λκ−2n(c[n], g[n], b[n], e[n])T, n � 0. (3.2)

Checking with n = 1 leads to κ = 0, and we therefore arrive at

δ

δu
H[n] = (c[n], g[n], b[n], e[n])T, n � 0, (3.3)

where the Hamiltonian functionals are given by

H[0] =

∫
1

2
[u1(βu3 + γu4) + u2(βu4 + γu3) +

+ u3(βu1 + γu2) + u4(βu2 + γu1)] dx,

H[n] = −
∫

1

2n
(2αf [n+1] + u3b

[n] + u1c
[n] + u4e

[n] + u2g
[n]) dx, n � 1.

(3.4)

The above Hamiltonian functionals H[0] have been computed directly. The results in (3.3) enable us to

produce a Hamiltonian structure for soliton hierarchy (2.19),

utm = X [m] = J1
δH[m]

δu
, m � 0, (3.5)

where the Hamiltonian operator J1 is defined by

J1 =

⎡

⎢⎢⎢⎢⎣

∂ 0
0

0 ∂

∂ 0
0

0 ∂

⎤

⎥⎥⎥⎥⎦
, (3.6)

and the functionals H[m] are determined by (3.4). With this Hamiltonian structure, we have an interrelation

Y = J1
δH
δu between a symmetry Y and a conserved functional H of each model in the hierarchy.

The characteristic Abelian algebra of vector fields X [n]

[[X [n1], X [n2]]] = X [n1]′(u)[X [n2]]−X [n2]′(u)[X [n1]] = 0, n1, n2 � 0, (3.7)

can be derived from the algebra of Lax operators

[[N [n1],N [n2]]] = N [n1]′(u)[X [n2]]−N [n2]′(u)[X [n1]] + [N [n1],N [n2]] = 0 (3.8)

for n1, n2 � 0. This is a direct result from the relation between the isospectral zero-curvature equations

(see [33] for details).
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On the other hand, based on the recursion relation X [m+1] = ΦX [m], we can derive a hereditary

recursion operator Φ = (Φjk)4×4 [4] for soliton hierarchy (2.19). The operator Φ is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ11 = − 2
α2 (∂u1∂

−1u3 + ∂u2∂
−1u4),

Φ12 = 1
α∂x − 2

α2 (∂u1∂
−1u4 + ∂u2∂

−1u3),

Φ13 = − 2
α2 (∂u1∂

−1u1 + ∂u2∂
−1u2),

Φ14 = − 2
α2 (∂u1∂

−1u2 + ∂u2∂
−1u1);

(3.9)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ21 = 1
α∂x − 2

α2 (∂u1∂
−1u4 + ∂u2∂

−1u3),

Φ22 = − 2
α2 (∂u1∂

−1u3 + ∂u2∂
−1u4),

Φ23 = − 2
α2 (∂u1∂

−1u2 + ∂u2∂
−1u1),

Φ24 = − 2
α2 (∂u1∂

−1u1 + ∂u2∂
−1u2);

(3.10)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ31 = − 2
α2 (∂u3∂

−1u3 + ∂u4∂
−1u4),

Φ32 = − 2
α2 (∂u3∂

−1u4 + ∂u4∂
−1u3),

Φ33 = − 2
α2 (∂u3∂

−1u1 + ∂u4∂
−1u2),

Φ34 = − 1
α∂x − 2

α2 (∂u3∂
−1u2 + ∂u4∂

−1u1);

(3.11)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Φ41 = − 2
α2 (∂u3∂

−1u4 + ∂u4∂
−1u3),

Φ42 = − 2
α2 (∂u3∂

−1u3 + ∂u4∂
−1u4),

Φ43 = − 1
α∂x − 2

α2 (∂u3∂
−1u2 + ∂u4∂

−1u1),

Φ44 = − 2
α2 (∂u3∂

−1u1 + ∂u4∂
−1u2).

(3.12)

The hereditariness of Φ means [34] that it satisfies

LΦXΦ = ΦLXΦ (3.13)

for an arbitrary vector field X , where the Lie derivative LXΦ is defined by

(LXΦ)Y = Φ[[X,Y ]]− [[X,ΦY ]].

An operator Ψ = Ψ(x, t, u, ux, . . . ) is a recursion operator of a given evolution equation ut = X(u) iff Ψ

satisfies
∂Ψ

∂t
+ LXΨ = 0. (3.14)

We can readily verify that LX[0]Φ = 0, whence

LX[m]Φ = LΦX[m−1]Φ = ΦLX[m−1]Φ = · · · = ΦmLX[0]Φ = 0, m � 1. (3.15)

This implies that Φ is a recursion operator for each model in hierarchy (2.19). Several symbolic algorithms

are also available in the literature for computing recursion operators of given nonlinear partial differential

equations directly (see, e.g., [35]).

By direct analysis, we can show that J1 and J2 = ΦJ1 constitute a Hamiltonian pair. Namely, an

arbitrary linear combination J of J1 and J2 is again Hamiltonian, because it satisfies

∫
(Y [1])TJ ′(u)[JY [2]]Y [3] dx+ cycle(Y [1], Y [2], Y [3]) = 0, (3.16)
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where the Y [i] are arbitrary vector fields. Accordingly, hierarchy (2.19) possesses a bi-Hamiltonian struc-

ture [36]:

utm = X [m] = J1
δH[m]

δu
= J2

δH[m−1]

δu
, m � 1. (3.17)

It then follows that the associated Hamiltonian functionals commute with each other under the correspond-

ing two Poisson brackets [8]:

{H[n1],H[n2]}J1 =

∫ (
δH[n1]

δu

)T

J1
δH[n2]

δu
dx = 0,

{H[n1],H[n2]}J2 =

∫ (
δH[n1]

δu

)T

J2
δH[n2]

δu
dx = 0,

n1, n2 � 0. (3.18)

The bi-Hamiltonian structure also implies the hereditary property of the recursion operator Φ [4].

To conclude, each model in hierarchy (2.19) is Liouville integrable and possesses infinitely many com-

muting symmetries {X [n]}∞n=0 and conserved functionals {H[n]}∞n=0. One particular illustrative integrable

model is the system in (2.20), which adds to the existing category of nonlinear combined Liouville integrable

Hamiltonian models with four components.

4. Conclusions

Based on a specific matrix Lie algebra, a Kaup–Newell type (4 × 4) matrix eigenvalue problem was

proposed and a hierarchy of four-component integrable models was successfully generated within the zero-

curvature formulation. The key is to find a particular Laurent series solution of the corresponding stationary

zero-curvature equation. The resulting soliton hierarchy was shown to be bi-Hamiltonian and therefore

Liouville integrable, by determining a hereditary recursion operator and a Hamiltonian structure.

It would be interesting to explore what kind of mathematical structures of solitons could exist for

the resulting integrable models. Various powerful and effective approaches could be used, including the

Riemann–Hilbert technique [37], the Zakharov–Shabat dressing method [38], the Darboux transforma-

tion [39]–[41], and the determinant approach [42]. Besides soliton solutions, lump, kink, breather, and

rogue-wave solutions, particular interactions between them (see, e.g., [43]–[50]) are also of great interest.

They can be derived from soliton solutions by conducting wave number reductions. Nonlocal reduced inte-

grable models are another important area; they can be generated by taking nonlocal group reductions or

similarity transformations of matrix eigenvalue problems (see, e.g., [51]–[53]). It is a novel topic to explore

solitons of nonlocal integrable models that are significant in mathematics and physics.

Integrable models are of great interest, and they are built around connections with various branches

of mathematics, such as algebraic geometry, Lie theory, and the theory of Hamiltonian equations. The

interplay between mathematics and physics enriches both fields and often leads to discoveries of new math-

ematical structures.
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