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A COMBINED GENERALIZED KAUP-NEWELL SOLITON
HIERARCHY AND ITS HEREDITARY RECURSION OPERATOR
AND BI-HAMILTONIAN STRUCTURE

Wen-Xiu Ma*T#§

On the basis of a specific matrix Lie algebra, we propose a Kaup—Newell-type matrix eigenvalue problem
with four potentials and compute an associated soliton hierarchy within the zero-curvature formulation.
A hereditary recursion operator and a bi-Hamiltonian structure are presented to show the Liouville inte-
grability of the resulting soliton hierarchy. An illustrative example is a novel model consisting of combined

derivative nonlinear Schrédinger equations with two arbitrary constants.
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1. Introduction

Integrable models are associated with matrix eigenvalue problems [1], [2], called Lax pairs [3], and they
possess hereditary recursion operators, which generate symmetries from symmetries, and bi-Hamiltonian
structures, which connect symmetries with conserved quantities [4]. Matrix eigenvalue problems are also
used to establish inverse scattering transforms, which solve initial value problems [1]. Integrable models
have various applications in physical sciences and engineering, such as water waves, nonlinear optics, and
quantum mechanics [2].

There are well-known examples of integrable models, including the Ablowitz—Kaup—Newell-Segur inte-
grable models [5] and their integrable couplings [6]. Matrix Lie algebras lay a strong foundation for inte-
grable models within the zero-curvature formulation [6]-[8]. It is always intriguing to see what kind of
matrix eigenvalue problems can yield integrable models. In this paper, we propose a novel Kaup—Newell-
type 4 x 4 matrix eigenvalue problem and construct an associated soliton hierarchy, starting from a specific
matrix Lie algebra.
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The zero-curvature formulation is powerful in constructing integrable models (see [8], [9] for details).

As usual, we let v = (ug, ..., uq)T denote a column potential vector and A denote the spectral parameter.

Let g be a given loop matrix algebra § with the loop parameter A\. A matrix Fp in § is said to be pseudo-
regular if it satisfies

Imadp, @ Keradp, = g, [Keradp,,Keradg,] =0, (1.1)

where adp, denotes the adjoint action of Fy on g. We take one pseudo-regular matrix Fj and ¢ linear
independent matrices Fi,..., Fy, in g to introduce a spatial spectral matrix

M = M(u,\) = Fo(\) + ur Fy(A) + -+ + ug Fy (). (1.2)

Then we compute a Laurent series solution

Z =Y Az,

n=0

of the stationary zero-curvature equation
Zy =M, Z] (1.3)

in the underlying loop algebra g. The pseudoregularity guarantees the existence of such Laurent series
solutions.
The second step is to find an infinite sequence of temporal spectral matrices
m
NP =(A"Z)p + Ay (AmZ)p =) Az m>0, A, ey, (1.4)

n=0

that provide the other parts of Lax pairs, such that the zero curvature equations

M, — N+ M N =0, m>o0, (1.5)

m

produce a soliton hierarchy
ue, = XM = xIml(y), m > 0. (1.6)

The zero-curvature equations in (1.5) actually represent the solvability conditions of the spatial and temporal
matrix eigenvalue problems:

Pz =Mp, o, =Ny, m>0 (1.7)

To determine the modification terms A,,,, m > 0, we often need the trial and error strategy.
The third step is to furnish a bi-Hamiltonian structure for the resulting soliton hierarchy (1.6), by
determining a hereditary recursion operator and applying the so-called trace identity,

] oM ke 0 s oM
5u/tr(Z Sy >dx—/\ 8/\/\ tr<Z au), (1.8)

where §/du is the variational derivative with respect to u, and & is a constant independent of the spectral
parameter A. It then follows that every member of the soliton hierarchy has a bi-Hamiltonian structure
and thus Liouville integrability (see, e.g., [8]-[10]).
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Various hierarchies of Liouville integrable models exist in the literature [5]-[20]. Among the one-
component integrable hierarchies are the Korteweg—de Vries hierarchy, the nonlinear Schrodinger hierarchy,
and the modified Korteweg—de Vries hierarchy [1], [2]. The case of two components is also very popular, and
the well-known examples include the Ablowitz—Kaup—Newell-Segur integrable hierarchy [5], the Heisenberg
integrable hierarchy [21], the Kaup—Newell integrable hierarchy [22], and the Wadati-Konno-Ichikawa inte-
grable hierarchy [23]. All those soliton hierarchies are associated with 2 x 2 spectral matrices. The case of
higher-order spectral matrices leads to a higher level of difficulty.

Our aim in this paper is to propose a specific Kaup—Newell-type 4 x 4 spectral matrix and construct an
associated hierarchy of four-component Liouville integrable models within the zero-curvature formulation,
based on a special matrix Lie algebra. A hereditary recursion operator and a bi-Hamiltonian structure are
determined to show the Liouville integrability for the resulting soliton hierarchy. An illustrative example
is presented, which consists of combined generalized integrable derivative nonlinear Schrédinger equations.
A summary and concluding remarks are given in the final section (Sec. 4).

2. A soliton hierarchy with four potentials

We take an arbitrary real number § and a square matrix 7" of order r € N, such that
% =1,, (2.1)

where [, stands for the identity matrix of order r. We define a set § of block matrices

i={a-

Obviously, this forms a matrix Lie algebra, with the matrix commutator [A, B] = AB — BA being the Lie

A A,
As Ay

‘ Ay =TA T Ay = 5TA2T‘1}. (2.2)

2rX2r

bracket. In what follows, we use this matrix Lie algebra in the case r =2, 6 =1 and
0 1 0 -1

(2.3)
1 0 -1 0

Let u = u(z,t) = (u1,us,us,us)" be a column vector with four potentials, and a; and as be two

T =

to formulate a specific spectral matrix.

arbitrary real numbers; we assume that
oa=oa; —ay#0. (2.4)

Motivated by recent diverse studies on matrix eigenvalue problems involving four potentials (see, e.g., [24]—
[27] and [28], [29] for examples of respective arbitrary-order and fourth-order matrix eigenvalue problems),
we introduce and study a matrix eigenvalue problem of the form

0 Auq Aus  agA?
Aug 0 aoX? Ay
/\U4 a9 /\2 0 )\Ug

a1 )\2 )\UQ /\Ul 0

Pz = Mp = M(u, Ny, M= , (2.5)

where \ is again the spectral parameter. This spectral matrix M is built from the above matrix Lie
algebra g, and it is a kind of 4 x 4 matrix generalization of the Kaup—Newell eigenvalue problem [22]. Tt is
not an easy job to determine a Lax pair of 4 X 4 matrix eigenvalue problems that produces a hierarchy of
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integrable models. Interestingly, the above eigenvalue problem generates an associated integrable hierarchy
possessing a hereditary recursion operator and a bi-Hamiltonian structure. All equations in the hierarchy
exhibit specific combined structures.

To construct an associated soliton hierarchy, we usually start with the corresponding stationary zero-
curvature equation (1.3). Based on the presented matrix Lie algebra, we try to take

a b e f
c —a _f g —n rz[n]
Z = = Az (2.6)
g —f —a c 1;
f e b a

The reason to take this form is that with the specific spectral matrix M in (2.5), an arbitrary matrix
in ¢ leads to a commutator matrix of the above form (2.6). Consequently, the corresponding stationary
zero-curvature equation (1.3) becomes

Qg = Acui + Agus — Abus — Aeuy,

by = aX?e — 2\au; — 2\ fua, (2.7)
ce = —arlg + 2 aus + 2\ fuy,

ex = aX?b — 2\ fui — 2 aus,

gz = —aA?c + 2X fus + 2 auy, (2.8)
fz = Aguy + Acus — deus — \buy.

Given these equations, the basic objects of a solution Z can be assumed to be as follows:

a= Z )\—Zna[n]’ b= Z A—Qn—lb[n]7 ¢ = Z )\—Zn—lc[n]’

n=0 n>0 n>0

(2.9)
e = Z /\7211716[11]’ f _ Z /\72nf[n]’ g= Z /\72n71g[n]'
n=0 n=0 n=0
To determine a solution Z recursively, the following two equations
— aAfr = ugby + uicy + ugey + UGy,
f 3 1 4 29 (2.10)

— aday = usby + uscy + usey + U1y

are crucial, which can be verified directly. At this moment, we can see that Egs. (2.7) and (2.8) lead to the

two initial equations

al% = ;e 4 uggl® — b0l — el

FIO = 0 g0 4 el — gl — gy bl0) (2.11)
and the recursion relations for the Laurent series solution:
a&"H] = —Cly(u4b£0n] + uch"] + ugegcn] + ulggn]),
1l _ 1y il ] ) il (2.12)
T = _a(u3bw +uicy” + ugey +u2gw )7
plntl] = 1 (e[wn} + 2uy fIP ) 4 2upaln ) (2.13)
a ’ 2.13
cln 1l = i(—ggn] + 2ug fIP ] 4 2 aln 1,
[n4+1] _ 1 b[wn] 492 [n+1] ) [n+41]
e . ( ura us f ), (2.14)

gt = i(—c&"] + 2ugalt U 4 2q, fIn 1),
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where n > 0. To achieve the uniqueness of the Laurent series solution, we fix the initial data by
solving (2.11),

% = Buy +yuz, % = Bug + yus,
el = Buy + yuy, 9% = Buy + yus, (2.15)

0]

al% = const, f O] — const

with two arbitrary constants 8 and «, and select the constants of integration in (2.12) to be zero:
a—o =0,  fMg=0  n>1L (2.16)

The initial values for al” and £ do not affect all other coefficients in the Laurent series solution, but
the two constants 8 and ~ bring the diversity of the associated integrable models, exhibiting a combined
structure in the resulting models. We can now compute that

all = — V[(yus + Bua)ur + (Bug + yua)us),
= _é[(ﬁug + yua)ur + (yus + fug)us],

bl = 2yure 4 Buze — 2[(Bus + yus)ur + (yus + Bug)ugluy —
—21(yus + Bug)ur + (Busz + yuq)usglus },

M = M —qug » — Buaz — 2[(Bus + yus)us + (yus + Bua)uslus —
= 21(yus + Bug)ur + (Busz + yua)uzlug },

el = Y Buy 4+ yus o — 2[(vus + Bua)ur + (Bus + yua)us]uy —
— 2[(Bus + yua)ur + (yus + Bua)uglus},

g = 2 —Buss — yuae — 2[(vus + Bua)ur + (Bus + yus)usluz —
= 2[(Bus + yua)ur + (yus + Bua)uglua}.

Based on a careful inspection of the corresponding zero-curvature equation, we can introduce the
temporal matrix eigenvalue problems

or, = NMo = N, N, N =X 2),,  m>0 (2.17)

where the subscript + denotes the polynomial part of A as in (1.4), to generate associated integrable models.
The solvability conditions of the spatial and temporal matrix eigenvalue problems in (2.5) and (2.17) are
exactly the zero-curvature equations in (1.5). All those zero-curvature equations yield a soliton hierarchy
with four potentials:

ut,, = XM = Xt () = (o, el ol gl T om0 (2.18)
More precisely, we obtain a hierarchy of models with four equations
Ui g, = bgm], Ugt,, = e&m], us ¢, = cgﬁm], Ua,, = gg[ﬁm], m > 0. (2.19)
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The first nonlinear example in this hierarchy is the model of generalized integrable derivative nonlinear
Schrodinger equations

) — azz {[(Bus + yua)ur + (yus + Bua)usur }z —
— 2 {(yus + Bua)ur + (Buz + yua)uszlus}e,
Upg, = L (Butga + YU2.00) — B {[(yus + Bua)us + (Bus + yus)uolui bo —
— 2 {(Bus + yua)ur + (yus + fua)us]us}s,
Uz, = — L (V3,00 + Buazs) — 2 {[(Bus + yus)ur + (yus + Bug)uglusts —
— 2 {(yus + Bua)ur + (Bus + yua)ug]ua}a,
Ugt, = _i(ﬁu&ww + YUd gz) — fz {[(yus + Bua)ur + (Bug + yua)uslug}ts —
— 2{(Bus +yua)ur + (yus + Bua)uglus} .

U1,t, = é("/ulmsw + ﬁu27$w

(2.20)

This system provides a combined integrable model with four components, which broadens the category of
coupled integrable models of nonlinear Schrédinger type equations (see, e.g., [30]-[32]). One point worth
mentioning is that each equation in (2.20) contains a linear combination of two derivative terms of the
second order, and we therefore say that such a model is a combined model.

Two special subcases, 5 = 0 and v = 0, in the resulting soliton hierarchy provide uncombined integrable
models.

If we take « = 8 =1 and v = 0 in model (2.20), we obtain a coupled integrable derivative nonlinear
Schrédinger model

U1 4, = U2,zz — 2[(u1us + ugug)us + (u1us + uguz)uzs,
Uz ¢, = Ul zz — 2[(U1ug + uguz)us + (u1uz + u2ug)uzs, (2.21)
U34, = —Udze — 2[(urus + uzta)uz + (U1tg + uau3) s,

Ust, = —U3 30 — 2[(U1Us + Ugugz)us + (W1U3 + UsUs)Ud).

If we take @« = =1 and § = 0 in model (2.20), we obtain another coupled integrable derivative nonlinear

Schrédinger model,

U1 = e — 2[(urua + uguz)un + (urug + ugua)usle,

Uty = U2 ze — 2[(urus + ugua)ur + (U1 + ugusz)usy, (2.22)
uze = —Ugze — 2[(u1ua + uguz)uz + (uruz + ugua)uale,

Uy, = —Udzo — 2[(Uruz + ugua)uz + (urug + uguz)ugle.

There is an interesting phenomenon that the obtained two models just exchange the first component
with the second component and the third component with the fourth component in the vector fields in the
right-hand sides. Surprisingly, those two uncombined models still commute with each other.

3. Recursion operator and the bi-Hamiltonian structure

To propose a bi-Hamiltonian structure to show the Liouville integrability of soliton hierarchy (2.19),
we can use trace identity (1.8) for the spatial matrix eigenvalue problem in (2.5). From the Laurent series
solution Z in (2.6), we readily obtain

tr (Zaa/\;> =2(2a\f + bus + cuq + eug + gus),

oM\ T
tr(Z o ) =2(Ac, Ag, Ab, Ae) ™,
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and as a consequence of these computations, the trace identity generates

J
J /)\72”71(2af[n+1] + ugb™ + ugel™ +urcl™ + ung™) da =
u

=" 88)\ A= (el glnl plnl el T n = 0. (3.2)

Checking with n = 1 leads to k = 0, and we therefore arrive at

)

o = (el g gl T, (3.3)

where the Hamiltonian functionals are given by

1
#0 — / 5 [u1 (Bus + yua) 4 uz(Bug + yus) +

+uz(Bur + yuz) + ug(Buz + yur)] dz, (3.4)

WV
—_

1
Hm = —/ 2n(20<f[”+1] + g™ - up el 4+ ugel™ + ugg™) de, n

The above Hamiltonian functionals #[° have been computed directly. The results in (3.3) enable us to
produce a Hamiltonian structure for soliton hierarchy (2.19),

SHI[™
u%:XW:ﬁ,M, m >0, (3.5)
where the Hamiltonian operator J; is defined by
0
0
0
J1 = ’ (36)
o 0
0
0

and the functionals H["™ are determined by (3.4). With this Hamiltonian structure, we have an interrelation
Y=/ f;f between a symmetry Y and a conserved functional H of each model in the hierarchy.
The characteristic Abelian algebra of vector fields X [

[[X[nl],X[n2]]] _ X[n1]/(u)[X[n2]] _ X[nz]/(u)[X[m]] =0, ny,ng = 0, (37)
can be derived from the algebra of Lax operators
V] A1) = AT )X — Nl ) ) (AT, ) = 0 (38)

for ny,me > 0. This is a direct result from the relation between the isospectral zero-curvature equations
(see [33] for details).
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On the other hand, based on the recursion relation X!t = ®X" we can derive a hereditary
recursion operator ® = (P, )axa4 [4] for soliton hierarchy (2.19). The operator ® is given by

Py = — 2% (0u10 tug + Quad ™ tuy),
P12 = 0p — 2 (0u1d ™ ug + Ju20 " us), (3.9)
D3 = —(122 (Ou10~ uy + Ouaduy),
g = — 2% (0u10 tug + Quzd~uy);
oy = L0, = 2 (0ua0 ug + Jusd ),
By = — 2 (Qur10  uz + Juzd uy), (3.10)
Poz = — % (Ou10~ Mg + dupd~uy),
Doy = — 2% (Our0ug + Quad~tuy);
D31 = — % (Quzd 'z + Ousd~uy),
D3 = — % (Qusd tug + Qusd lus), (3.11)
Dy3 = — % (Quzd~tuy + Juad ' ug),
D3y = _clxar a2 2 (Ous0 ™ uz + 0uad ™ w );
Dy = —(122 (Ouzd~tuy + Ousd ug),
Byp = — 2 (Quzdtuz + Ousd tuy), (3.12)
Bag = =\ 0s — 5 (Qusd " uz + Quad M),
Pyq = — 2% (Ouz0'ug + Qusd~ u).
The hereditariness of ® means [34] that it satisfies
Lox® = OLy® (3.13)

for an arbitrary vector field X, where the Lie derivative Lx® is defined by
(Lx®)Y = [X,Y] — [X, PY].

An operator ¥ = U(x,t, u,u,,...) is a recursion operator of a given evolution equation u; = X (u) iff ¥

tisfi
satisfies ow

ot
We can readily verify that Ly ® = 0, whence

+ Lx¥ =0. (3.14)

Lxim® = Lexim-1P=PLxm-y®=---=0"Lxd =0, m > 1. (3.15)

This implies that ® is a recursion operator for each model in hierarchy (2.19). Several symbolic algorithms
are also available in the literature for computing recursion operators of given nonlinear partial differential
equations directly (see, e.g., [35]).

By direct analysis, we can show that J; and Jo = ®J; constitute a Hamiltonian pair. Namely, an
arbitrary linear combination J of J; and Js is again Hamiltonian, because it satisfies

/ (YOI () [TY PRyl da + eyele(v I, v 2Ly B — o, (3.16)
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where the Yl are arbitrary vector fields. Accordingly, hierarchy (2.19) possesses a bi-Hamiltonian struc-
ture [36]:
SHIM SHIm=1
= J2 )
ou ou

It then follows that the associated Hamiltonian functionals commute with each other under the correspond-

w,, = XM = J, m > 1. (3.17)

ing two Poisson brackets [8]:

[na]\T [n2]
{H["”,H[m]}h:/(ﬂ )me dx =0,

ou ou
T ni, N2 2 0 (318)
’ J2 u > su -

The bi-Hamiltonian structure also implies the hereditary property of the recursion operator ® [4].

To conclude, each model in hierarchy (2.19) is Liouville integrable and possesses infinitely many com-
muting symmetries {X[}2  and conserved functionals {#H["1}22 ;. One particular illustrative integrable
model is the system in (2.20), which adds to the existing category of nonlinear combined Liouville integrable
Hamiltonian models with four components.

4. Conclusions

Based on a specific matrix Lie algebra, a Kaup—Newell type (4 x 4) matrix eigenvalue problem was
proposed and a hierarchy of four-component integrable models was successfully generated within the zero-
curvature formulation. The key is to find a particular Laurent series solution of the corresponding stationary
zero-curvature equation. The resulting soliton hierarchy was shown to be bi-Hamiltonian and therefore
Liouville integrable, by determining a hereditary recursion operator and a Hamiltonian structure.

It would be interesting to explore what kind of mathematical structures of solitons could exist for
the resulting integrable models. Various powerful and effective approaches could be used, including the
Riemann—Hilbert technique [37], the Zakharov—Shabat dressing method [38], the Darboux transforma-
tion [39]-[41], and the determinant approach [42]. Besides soliton solutions, lump, kink, breather, and
rogue-wave solutions, particular interactions between them (see, e.g., [43]-[50]) are also of great interest.
They can be derived from soliton solutions by conducting wave number reductions. Nonlocal reduced inte-
grable models are another important area; they can be generated by taking nonlocal group reductions or
similarity transformations of matrix eigenvalue problems (see, e.g., [51]-[53]). It is a novel topic to explore
solitons of nonlocal integrable models that are significant in mathematics and physics.

Integrable models are of great interest, and they are built around connections with various branches
of mathematics, such as algebraic geometry, Lie theory, and the theory of Hamiltonian equations. The
interplay between mathematics and physics enriches both fields and often leads to discoveries of new math-
ematical structures.
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