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FOUR-COMPONENT INTEGRABLE HIERARCHIES

OF HAMILTONIAN EQUATIONS WITH (m + n + 2)TH-ORDER

LAX PAIRS
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A class of higher-order matrix spectral problems is formulated and the associated integrable hierarchies are

generated via the zero-curvature formulation. The trace identity is used to furnish Hamiltonian structures

and thus explore the Liouville integrability of the obtained hierarchies. Illuminating examples are given

in terms of coupled nonlinear Schrödinger equations and coupled modified Korteweg–de Vries equations

with four components.
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1. Introduction

Integrable Hamiltonian equations of infinite dimensions are a class of partial differential equations

(PDEs) that possess infinitely many conserved functionals commuting with respect to the associated Poisson

bracket [1]. Such Hamiltonian equations often have a rich array of analytic and geometric structures, the

study of which can reveal new and unexpected connections to other areas of mathematical physics. The

most famous example is the Korteweg–de Vries equation.

It is known that constructing integrable Hamiltonian equations is a challenging task, requiring a com-

bination of physical intuition, mathematical insight, and technical expertise. A common approach in soliton

theory is the zero-curvature formulation. One first formulates Lax pairs of matrix spectral problems and then

generate integrable Hamiltonian PDEs via zero-curvature equations [2], [3]. Recursion structures behind

matrix spectral problems guarantee the existence of integrable hierarchies of Hamiltonian equations, which

commute with respect to the commutator of vector fields over the corresponding jet space.
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We consider PDEs with a vector potential or a dependent variable, u = (u1, . . . , uq)
T. Let λ denote

the spectral parameter in matrix spectral problems. The starting point is a loop algebra g̃ of matrices with

the loop parameter λ. We take linearly independent elements e1, . . . , eq and a pseudoregular element e0,

i.e., an element satisfying

Ker ade0 ⊕ Imade0 = g̃, [Ker ade0 ,Ker ade0 ] = 0. (1.1)

We then specify a spectral matrix as

U = U(u, λ) = e0(λ) + u1e1(λ) + · · ·+ uqeq(λ). (1.2)

The properties of the pseudoregular element e0 ensure that there exists a Laurent-series solution

Z =
∑

s�0 λ
−sZ [s] of the stationary zero-curvature equation

Zx = i[U,Z]. (1.3)

Now, after introducing

V [r] = V [r](u, λ) = (λrZ)+ +Δr =

r∑

s=0

λsZ [r−s] +Δr, r � 0, (1.4)

an integrable hierarchy of Hamiltonian equations can be represented as a hierarchy of zero-curvature equa-

tions

Utr − V [r]
x + i[U, V [r]] = 0, r � 0, (1.5)

which are the compatibility conditions for the spatial and temporal matrix spectral problems

−iφx = Uφ, −iφtr = V [r]φ, r � 0, (1.6)

with φ being an eigenfunction. Their Hamiltonian structures and corresponding Liouville integrability are

typically shown by applying the trace identity [4], [5],

δ

δu

∫

tr

(

Z
∂U

∂λ

)

dx = λ−γ ∂

∂λ
λγ tr

(

Z
∂U

∂u

)

, (1.7)

where δ/δu is the variational derivative with respect to u and the constant γ is determined by

γ = −λ

2

∂

∂λ
ln | tr(Z2)|. (1.8)

Many integrable hierarchies of Hamiltonian equations are presented in the zero-curvature formula-

tion, based on the special linear algebras (see, e.g., [2], [6]–[13]) and the special orthogonal algebras (see,

e.g., [14]–[17]). The combination of Hamiltonian structures with recursion structures yields bi-Hamiltonian

structures, which exhibit the Liouville integrability of the Hamiltonian equations [18]. Integrable hierar-

chies with two scalar potentials include the Ablowitz–Kaup–Newell–Segur hierarchy [2], the Kaup–Newell

hierarchy [19], the Wadati–Konno–Ichikawa hierarchy [20], and the Heisenberg hierarchy [21], which are

associated with the four spectral matrices

U =

[
λ p

q −λ

]

, U =

[
λ2 λp

λq −λ2

]

, U =

[
λ λp

λq −λ

]

, U =

[
λr λp

λq −λr

]

,
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where pq+ r2 = 1, and p and q are two scalar potentials. Similar integrable hierarchies are generated from

the four counterparts of spectral matrices associated with so(3,R),

U =

⎡

⎢
⎣

0 q −λ

q 0 −p

λ p 0

⎤

⎥
⎦ , U =

⎡

⎢
⎣

0 −λq −λ2

λq 0 −λp

λ2 λp 0

⎤

⎥
⎦ ,

U =

⎡

⎢
⎣

0 −λq −λ

λq 0 −λp

λ λp 0

⎤

⎥
⎦ , U =

⎡

⎢
⎣

0 −λq −λr

λq 0 −λp

λr λp 0

⎤

⎥
⎦ ,

where p2 + q2 + r2 = 1 (see, e.g., [15]).

The aim of this paper is to formulate a class of higher-order matrix spectral problems with four compo-

nents and compute the associated integrable hierarchies within the zero-curvature formulation. Hamiltonian

structures of the resulting hierarchies are established by the trace identity. Two illustrative examples are

coupled integrable nonlinear Schrödinger equations and coupled integrable modified Korteweg–de Vries

equations. The last section is devoted to the concluding remarks.

2. Higher-order Lax pairs and integrable hierarchies

Let m and n be two arbitrary natural numbers and δ = ±1. Within the zero-curvature formulation,

we introduce an (m+ n+ 2)th-order matrix spectral problem

−iφx = Uφ, U = U(u, λ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ p1 p2 0

q1

q2

0
δpT

1

pT
2

0 δqT
1 qT

2 −λ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(m+n+2)×(m+n+2)

, (2.1)

where

p1 = ( p1, . . . , p1︸ ︷︷ ︸
m

), p2 = ( p2, . . . , p2︸ ︷︷ ︸
n

), q1 = ( q1, . . . , q1︸ ︷︷ ︸
m

)T, q2 = ( q2, . . . , q2︸ ︷︷ ︸
n

)T,

and the potential vector u is given by u = (p1, p2, q1, q2)
T. This spectral problem is different from the

matrix Ablowitz–Kaup–Newell–Segur spectral problem (see, e.g., [2]).

As usual, we seek a Laurent-series solution of the stationary zero-curvature equation (1.3), and based

on machine learning, we can take the solution Z in the form

Z =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a b1 b2 0

c1 0 d δbT
1

c2 −δdT 0 bT
2

0 δcT1 cT2 −a

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(m+n+2)×(m+n+2)

=
∑

s�0

λ−sZ [s], (2.2)

where

b1 = ( b1, . . . , b1︸ ︷︷ ︸
m

), b2 = ( b2, . . . , b2︸ ︷︷ ︸
n

), c1 = ( c1, . . . , c1︸ ︷︷ ︸
m

)T, c2 = ( c2, . . . , c2︸ ︷︷ ︸
n

)T,

d = d

⎡

⎢
⎢
⎢
⎢
⎣

1 1 . . . 1

1 1 . . . 1
...

...
. . .

...

1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎦

m×n

,
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and the Laurent expansions are

a =
∑

s�0

λ−sa[s], bj =
∑

s�0

λ−sb
[s]
j , cj =

∑

s�0

λ−sc
[s]
j , d =

∑

s�0

λ−sd[s], (2.3)

with j = 1, 2.

Then, it is straightforward to see that the corresponding stationary zero-curvature equation (1.3)

leads to

b1,x = i(λb1 − p1a− δnp2d), b2,x = i(λb2 − p2a+mp1d),

c1,x = −i(λc1 − q1a+ nq2d), c2,x = −i(λc2 − q2a− δmq1d),

dx = i(q1b2 − δq2b1 + δp1c2 − p2c1),

ax = i(mp1c1 + np2c2 −mq1b1 − nq2b2) = −λ−1(mq1b1,x + nq2b2,x +mp1c1,x + np2c2,x).

(2.4)

These equations equivalently generate the initial conditions

a[0]x = 0, b
[0]
1 = b

[0]
2 = c

[0]
1 = c

[0]
2 = 0, d[0]x = 0 (2.5)

and the recursion relation

b
[s+1]
1 = −ib

[s]
1,x + p1a

[s] + δnp2d
[s],

b
[s+1]
2 = −ib

[s]
2,x + p2a

[s] −mp1d
[s],

c
[s+1]
1 = ic

[s]
1,x + q1a

[s] − nq2d
[s],

c
[s+1]
2 = ic

[s]
2,x + q2a

[s] + δmq1d
[s],

d[s+1]
x = i(q1b

[s+1]
2 − δq2b

[s+1]
1 + δp1c

[s+1]
2 − p2c

[s+1]
1 ),

a[s+1]
x = i(−mq1b

[s+1]
1 − nq2b

[s+1]
2 +mp1c

[s+1]
1 + np2c

[s+1]
2 ) =

= −(mq1b
[s]
1,x + nq2b

[s]
2,x +mp1c

[s]
1,x + np2c

[s]
2,x),

(2.6)

where s � 0.

In what follows, we take the initial values and choose the integration constants to be zero,

a[0] = 1, d[0] = 0, a[s]|u=0 = 0, d[s]|u=0 = 0, s � 1, (2.7)

to uniquely determine the solution Z. We can then find the first four sets of a[s], b
[s]
1 , b

[s]
2 , c

[s]
1 , c

[s]
2 and d[s]:

a[1] = 0, b
[1]
1 = p1, b

[1]
2 = p2, c

[1]
1 = q1, c

[1]
2 = q2, d[1] = 0;

a[2] = −mp1q1 − np2q2, b
[2]
1 = −ip1,x, b

[2]
2 = −ip2,x,

c
[2]
1 = iq1,x, c

[2]
2 = iq2,x, d[2] = −δp1q2 + p2q1;

a[3] = −i(mp1q1,x −mp1,xq1 + np2q2,x − np2,xq2),

b
[3]
1 = −p1,xx −mp21q1 − 2np1p2q2 + δnp22q1,

b
[3]
2 = −p2,xx + δmp21q2 − 2mp1p2q1 − np22q2,

c
[3]
1 = −q1,xx −mp1q

2
1 + δnp1q

2
2 − 2np2q1q2,

c
[3]
2 = −q2,xx − 2mp1q1q2 + δmp2q

2
1 − np2q

2
2 ,
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d[3] = −i(δp1q2,x − p2q1,x − δp1,xq2 + p2,xq1);

a[4] =
3

2
m2p21q

2
1 −

3

2
δmnp21q

2
2 + 6mnp1p2q1q2 − 3

2
δmnp22q

2
1 +

3

2
n2p22q

2
2 +

+mp1q1,xx +mp1,x,xq1 + np2q2,xx + np2,xxq2 −mp1,xq1,x − np2,xq2,x,

b
[4]
1 = i(p1,xxx + 3mp1p1,xq1 + 3np1p2,xq2 − 3δnp2p2,xq1 + 3np1,xp2q2),

b
[4]
2 = i(p2,xxx + 3mp1p2,xq1 − 3δmp1p1,xq2 + 3mp1,xp2q1 + 3np2p2,xq2),

c
[4]
1 = −i(q1,xxx + 3mp1q1q1,x − 3δnp1q2q2,x + 3np2q1q2,x + 3np2q1,xq2),

c
[4]
2 = −i(q2,xxx + 3mp1q1q2,x + 3mp1q1,xq2 − 3δmp2q1q1,x + 3np2q2q2,x),

d[4] = 3(mp1q1 + np2q2)(δp1q2 − p2q1) + δp1,xxq2 − p2,xxq1 −
− p2q1,xx + δp1q2,xx − δp1,xq2,x + p2,xq1,x.

Now, we introduce the temporal matrix spectral problems

−iφtr = V [r]φ = V [r](u, λ)φ, V [r] = (λrZ)+ =

r∑

s=0

λsZ [r−s], r � 0, (2.8)

which are the other parts of Lax pairs of matrix spectral problems in the zero-curvature formulation.

The compatibility conditions for the spatial and temporal matrix spectral problems, Eqs. (2.1) and (2.8),

are the zero-curvature equations (1.5). These equations yield a four-component integrable hierarchy

utr = K [r] = (ib
[r+1]
1 , ib

[r+1]
2 ,−ic

[r+1]
1 ,−ic

[r+1]
2 )T, r � 0, (2.9)

or, more precisely,

p1,tr = ib
[r+1]
1 , p2,tr = ib

[r+1]
2 , q1,tr = −ic

[r+1]
1 , q2,tr = −ic

[r+1]
2 , r � 0. (2.10)

The first two nonlinear examples in the above integrable hierarchy are the coupled nonlinear Schrödinger

equations

ip1,t2 = p1,xx +mp21q1 + 2np1p2q2 − δnp22q1,

ip2,t2 = p2,xx − δmp21q2 + 2mp1p2q1 + np22q2,

iq1,t2 = −q1,xx −mp1q
2
1 + δnp1q

2
2 − 2np2q1q2,

iq2,t2 = −q2,xx − 2mp1q1q2 + δmp2q
2
1 − np2q

2
2

(2.11)

and the coupled modified Korteweg–de Vries equations

p1,t3 = p1,xxx + 3mp1p1,xq1 + 3np1p2,xq2 − 3δnp2p2,xq1 + 3np1,xp2q2,

p2,t3 = p2,xxx + 3mp1p2,xq1 − 3δmp1p1,xq2 + 3mp1,xp2q1 + 3np2p2,xq2,

q1,t3 = q1,xxx + 3mp1q1q1,x − 3δnp1q2q2,x + 3np2q1q2,x + 3np2q1,xq2,

q2,t3 = q2,xxx + 3mp1q1q2,x + 3mp1q1,xq2 − 3δmp2q1q1,x + 3np2q2q2,x,

(2.12)

where m and n are two arbitrary natural numbers and δ = ±1.

They provide two examples of coupled integrable nonlinear Schrödinger equations and coupled inte-

grable modified Korteweg–de Vries equations.
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3. Hamiltonian structures

To obtain Hamiltonian structures for integrable hierarchy (2.9), we apply trace identity (1.7) to the

matrix spectral problem in (2.1). Noting that the solution Z is given by (2.2), we can directly compute

that

tr

(

Z
∂U

∂λ

)

= 2a, tr

(

Z
∂U

∂u

)

= (2mc1, 2nc2, 2mb1, 2nb2)
T.

It follows that using trace identity (1.7) leads to

δ

δu

∫

λ−s−1a[s+1] dx = λ−γ ∂

∂λ
λγ−s(mc

[s]
1 , nc

[s]
2 ,mb

[s]
1 , nb

[s]
2 )T, s � 0.

Considering the case with s = 2, we obtain γ = 0; we then have the variational identities

δH[s]

δu
= (mc

[s+1]
1 , nc

[s+1]
2 ,mb

[s+1]
1 , nb

[s+1]
2 )T, s � 0, (3.1)

where the Hamiltonian functionals are

H[s] = −
∫

a[s+2]

s+ 1
dx, s � 0, (3.2)

the first three of which are given by

H[0] =

∫

(mp1q1 + np2q2) dx,

H[1] =

∫
i

2
(mp1q1,x −mp1,xq1 + np2q2,x − np2,xq2) dx, (3.3)

H[2] =

∫ [
1

2
(−m2p21q

2
1 + δmnp21q

2
2 − 4mnp1p2q1q2 + δmnp22q

2
1 − n2p22q

2
2)−

− 1

3
(mp1q1,xx +mp1,x,xq1 + np2q2,xx + np2,xxq2 −mp1,xq1,x − np2,xq2,x)

]

dx.

From these identities, we can easily obtain the Hamiltonian structures for the associated integrable

equations,

utr = K [r] = (ib
[r+1]
1 , ib

[r+1]
2 ,−ic

[r+1]
1 ,−ic

[r+1]
2 )T = J

δH[r]

δu
, r � 0, (3.4)

where

J =

⎡

⎢
⎢
⎢
⎣

0
i/m 0

0 i/n

−i/m 0

0 −i/n
0

⎤

⎥
⎥
⎥
⎦
. (3.5)

The associated Hamiltonian structures show a connection S = J δH
δu between a conserved functional H and

a symmetry S, which can be used to show the Liouville integrability of hierarchy (2.9).

A basic feature of integrability is the commutativity of the vector fields K [r]:

[[K [s1],K [s2]]] = K [s1]′(u)[K [s2]]−K [s2]′(u)[K [s1]] = 0, s1, s2 � 0. (3.6)

It is guaranteed by the Lax operator algebra

[[V [s1], V [s2]]] = V [s1]′(u)[K [s2]]− V [s2]′(u)[K [s1]] + [V [s1], V [s2]] = 0, s1, s2 � 0, (3.7)

which is a consequence of the isospectral zero-curvature equations (see [22] for details).
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In addition, from the recursion relation K [r+1] = ΦK [r], we find the entries of the recursion operator

Φ = (Φjk)4×4 to be

Φ11 = i(−∂x −mp1∂
−1q1 − np2∂

−1q2), Φ12 = i(−np1∂
−1q2 + δnp2∂

−1q1),

Φ13 = i(−mp1∂
−1p1 + δnp2∂

−1q2), Φ14 = i(−np1∂
−1p2 − np2∂

−1p1),

Φ21 = i(−mp2∂
−1q1 + δmp1∂

−1q2), Φ22 = i(−∂x − np2∂
−1q2 −mp1∂

−1q1),

Φ23 = i(−mp2∂
−1p1 −mp1∂

−1p2), Φ24 = i(np2∂
−1p2 + δmp1∂

−1p1),

Φ31 = i(mq1∂
−1q1 − δnq2∂

−1q2), Φ32 = i(nq1∂
−1q2 + nq2∂

−1q1),

Φ33 = i(∂x +mq1∂
−1p1 + nq2∂

−1p2), Φ34 = i(nq1∂
−1p2 − δnq2∂

−1p1),

Φ41 = i(mq2∂
−1q1 +mq1∂

−1q2), Φ42 = i(nq2∂
−1q2 − δmq1∂

−1q1),

Φ43 = i(mq2∂
−1p1 − δmq1∂

−1p2), Φ44 = i(∂x + nq2∂
−1p2 +mq1∂

−1p1).

Obviously, the operator ΦJ is skewsymmetric, and therefore the conserved functionals commute with respect

to the corresponding Poisson bracket [4]:

{H[s1],H[s2]}J =

∫ (
δH[s1]

δu

)T

J
δH[s2]

δu
dx = 0, s1, s2 � 0. (3.8)

Finally, a combination of the Hamiltonian operator J with the recursion operator Φ [23] yields

a bi-Hamiltonian structure [18] for hierarchy (2.9). To conclude, each equation in hierarchy (2.9) possesses

infinitely many commuting symmetries {K [s]}∞s=0 and conserved functionals {H[s]}∞s=0, and is therefore

Liouville integrable, due to (3.6) and (3.8). In particular, Eqs. (2.11) and (2.12) present two simplest

examples of nonlinear integrable Hamiltonian equations in the hierarchy.

4. Concluding remarks

A class of higher-order matrix spectral problems has been formulated and their associated integrable

hierarchies of Hamiltonian equations have been generated within the zero-curvature formulation. A Laurent-

series solution of the corresponding stationary zero-curvature equation is an essential ingredient of the

construction. All equations in the resulting hierarchies have been shown to be Liouville integrable, with

the Hamiltonian structures following from the trace identity.

We note that the matrix spectral problems in (2.1) are specific reductions of the matrix spectral

problems in [24]–[26] and [17], which lead to integrable equations generalizing the Kulish–Sklyanin ones [27].

But how a successful reduction from a given matrix spectral problem can be found remains an open question.

Any modified example of (2.1), where δpT
1 and δqT

1 are changed to (δ1p1, . . . , δmp1)
T and (δ1q1, . . . , δmq1)

with the δi being ±1 but not the same (for example, (δp1, . . . , δp1,−δp1)
T and (δq1, . . . , δq1,−δq1)), does

not work because it has no nonzero Laurent-series solution.

On the other hand, one could generalize the previous matrix spectral problems in (2.1) by adding

a third pair of potentials p3 and q3. The task is then to derive a meaningful Laurent-series solution of

the corresponding stationary zero-curvature equation. When the spectral matrix in a spectral problem is

of higher order, it would be difficult to compute a required Laurent-series solution. In our example, such

a Laurent-series solution was determined by some deep learning technique.

It is always interesting to explore solution structures of integrable equations by incorporating and

integrating a wide variety of techniques in soliton theory. Those methods contain the Riemann–Hilbert

technique [28], the Zakharov–Shabat dressing method [29], the Darboux transformation [30], [31], and

the determinant approach [32], [33]. Reductions from the τ -function theory are particularly interesting.

Special kinds of solutions such as lump wave and rogue wave solutions can often be generated by taking

wave-number reductions of N -soliton solutions (see, e.g., [34]–[41]).
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Nonlocal integrable equations could also be considered if nonlocal group reductions were used for the

considered matrix spectral problems (see, e.g., [42]–[45] for novel kinds of nonlocal integrable NLS equa-

tions). However, comparatively little is known about nonlocal integrable equations, and further investigation

is required.
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