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ABSTRACT

In this paper, the conception of generators of vector fields with the general characteris-
1ic is introduced and the correspondence with time dependent symmetries of evolution equa-
tions is provided alemg with applications to special evolution equations. Furthermeore, a
theoretical approach for generating time polynomial dependent symmetries of hierarchies of
evolution equations is proposed through hereditary symmetries.
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1. InTrODUCTION

Symmetries of evolution equations are an important topic in the field of mathe-
‘matical physics. Many evolution equations posed in physics and further their corre-
sponding hierarchies (such as KdV and AKNS hierarchies) all satisfy one common
property that they possess an infinite number of symmetries. It appears that the
possession of an infinite number of symmetries is a characterizing property of integra-
ble evolution equations, which have in general soliton solutions and can often be solv-
ed via inverse scattering technique (IST). sherefore the studying of symmetries
of evolution equations may improve the understanding of algebraic and geometrical
properties of integrability of evolution equations.

With the further development of the study, ones have discovered® ™ that inte-
grable evolution equations possess not only K symmetries (old symmetries) but also
symmetries (new symmetries mostly time polynomial dependent symmetries of the first
order in #). Those K and t symmetries often constitute a Lie subalgebra of the
vector field Lie algebra. Furthermore, the evolution equations which take z sym-
metries as their vector fields still possess an infinite pumber of symmetries and can be
solved by ISTP78, Hence symmetries prove to be of importance in the study of evo-
lution equations.

This paper presents the conception of generators of vector fields with general
characteristics and gives the correspondence with time dependent symmetries, includ-
ing time polynomial dependent symmetries of evolution equations. Section I main-
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ly discusses some properties of both the adjoint operators determined by elements of
vector field Lie algebra o777 and the generators introduced in this section. Section
IIl proposes a kind of time dependent vector fields and provides an algebraic des-
cription so that those vector fields become symmetries of a given evolution equation.
The last section, through hereditary symmetries, proposes a theoretical approach for
finding higher-degree time polynomial dependent symmetries of hierarchies of evo-
lution equations. The time polynomial dependent symmetries obtained by our ap-
proach greatly extend the range of original T symmetries in literature.

In the following, we explain some basic notions and give some related funda-
tmental results.

Let o= (#',-«,22)7, u= {4, -+, #?)?, in which = #'(x, 1), 1€R, 1<
< g, For nuﬁapu...uawvu ¢; 20, ; €2, 1 <i<p, we write Un.lhﬁmmﬂvu
x
Wﬂuaw and o, = (ub,- - ,42)T = (D%, -+, D°u?)T. By _o denote all smooth func-
x

tions with the form P = P(x,t,u4) = P(x, 2, #+++,u,). Furthermore let oz ?={(P,,
<eey, POT|P;€ o, 1 <<i<Cg}, that is to say that o7 consists of smooth vector
fields defined over the function space to which # belongs.

Definition 1.1. Let K = K(u) =K(x,t, %), § = 8(u) = §(x, ¢, u)€ o7?. The
Gateaux derivative of K(#) in the direction S(#) with respect to # is defined as
follows:

K'[S] = K'(#)[5(u)] = %m K(# + eS(5))] . (1.1)

In o777 we define the binatry operation
[K,8]=[K(#),8(x)] = K'()[$(s)] — §'(#)[K(u)], K,S€ 27", (1.2)

At this moment, ( oz ?,[+,+]) constitutes a Lie algebra over the complex field in-
deed. If we define the following matrix differential operator”™
%
ﬂ\ﬂn.Q_v q\u.mmﬁv. - .ﬁ\amﬂhu
VG =| L » G={(Gp,"-,G)' € 9, (1.32)

H\_mﬁmv a\nmﬁmv. - .q\mmﬁmv

with _
aG;

VG = >} 52D 1<, i< g, (1.3b)

then it 'is easy to show that the noEBHpﬂoH product defined in (1.2) becomes
[K,8] = V(K)S— V($HK, K,S5¢€ o7, . (1.4)

We consider the following general evolution equation:
u, = K(x,t,4), K= K(2,2,8)€ . ", _ | (1.5)

Definition 1.2. Let G = G(x,t,4)€ % If the infinitesimal transformation
#=u -+ eG(x,7,4) leaves the evolution equation (1.5) form-invariant, we call G a
Bayerische
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symmetry of (1.5). .

It is easily proved that G = G(x,7,%) € o? is a symmetry of (1. mv if and only
it G satisfies the linearized equation of (1.5)":

26 _ gwIG1, o (Le)
.mw
where M&l denotes the total z-derivative and # satisfies the evolution equation C..mvu
z
or equivalently satisfies the following equation®™:
96~ 1x,61, - (1.7)
B
where |%| denotes the partial z—derivative and [+,+] is defined by (1.2). Suppose
N .

that L(_ ez 7) stands for the space of linear operators from .7 to ¢, Let ®(x,2,%)
== Px,2,ts o8 ) € L{ oz?) for any x, ¢, 4, ~++, 5,3 by 2 (or 2/7) denote the
space of this kind of Gateaux differemtiable operators with respect to the variables
Xy%,%5 5%, Throughout this paper, we accept @K = @(x,2,#)K for $€ 2/, K¢
7 %
Umwmxm“maa 13001, Ter @€ 2/ . If the operator P satisfies
FUK,S] + [OK, 051 — S{[K, 051 + [@K,ST} = 0, K,S€ .o?, (1.8)

then @ is called a hereditary symmetry. If the operator @ maps one symmetry of (L.5)
into another symmetry of (1.5), then & is called a strong symmetry (or a recursion
operator) of (1.5).

Definition 1.4. Let ®6 2, K€ o7?. The Lie derivative'™ Lx@ € 2/ of the
operator ¢ with respect to K is defined by

Ahwﬁvh = ¢[K,§] — [K,®8], S¢ 7.

It is not difficult to show that $€ % is 2 hereditary symmetry if and only if

H;eﬂ@ nvﬁ.ﬂeq .Wm .l&.n , AH.@_V
and that @ = ®(x,2,4) € % is a strong symmetry of (1.5) if and only it
ww 4+ Lg® = 0, | (1.10)

Besides, if we define the following Gateaux derivative @'[K] of @€ %/ in the direc-
tion K€ o7

&'[K]S = @E@Axu*.mﬁuh_ml: §€ o7,
e

then we can obtain that
Lg® = ¢'[K] — [K',0] = &'{K] — K'® + oK’ (1.11)
and that (1.8) is equivalent to



772 SCIENCE IN CHINA (Series A) Vol. 34

' [OK1S — O'[PSIK — O{0'[KIS — #[SIK} = 0, K,§€ or?.  (L12)
Now we list one known result whichk will be used later on in the proofs. .

Lemma 1.1, Ler & = ®(x,2,u) € D be a hereditary symmerry, K = K(x,
t,u)€ or?. If the Lie derivative Ly® = 0, then we have

[O"K,@"K] =0, m,n =0,
Heiwugaﬂwu = %aﬁeamu%“—u -Wm -\va maLn W\ Qo

0. Apjornt Orerators AND GENERATORS
Let K be a vector field, i.e. K€ 7% By K denote its adjonit operator
= [K,8], S€ o7 (2.1)

Naturally K possesses the following properties of the adjoint operators correspond-
ing to e¢lements of general Lie algebras:

(1) The Lebnitz rule:

n

R*18,T1 — MA

i=0

v:Nd R*iT1, §,T€ o7t, 220, o (2.28)

£
in particular, .
R[8,T] = [RS,T1 + [§,RT1, 8,T€ or¥, o (2.2b)

(2) Let K,G€ z?. If [K,G] =0, then RG = GK,

Correspondingly to vector fields, we introduce the following operator:

prK = M (D°K;) @Nm » K= ANC vt .umﬂmv.w.m NAR AN.wmv
and define
dprK(8) = (prK(8;)s -+ +,prK(8,))7s §=(8,- "~ 2807 € a2t (2.3b)

Propesition 2.1. For any K, S€ o?, we have V(K)S = dprS(K), whkere
V(K) is determined by (1.3).

Proof. Set K= (K;,--*,K,)T, §=1(8;, +++, §,)7. Then the i~th component
of the vector field V(K)S is calculated as follows:

VEYS),; = S ViK)S = 3 M

thus V(K)S == dprS(K),

Theorem 2.1. Ler K,G€ 7%, ®cD . Then (1) K=V(K)— mw:.w and
thus K€ D , where V(K) is defined by (1.3); (2) LeR =RG; (3) Lg® = [0,K]
= Pk — Ko,

u .Uﬂrm-u HuHrWAHva H JIA..I u- m Qu
Oul

Proof. (1) By Proposition 2.1 and the formula (1.4), it is .om&q to obtain the
desired expression of K. Thus we also have K€ %/,

(2) For any S€ .or?, we have
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(LR)S = RIG, ST — [6,RS1Z22 R, 5] — KGS.

‘Therefore .
P
LR = RG,

(3) The desired result follows directly from the definition of the Lie derivative
Lg®. 'The proof of Theorem 2.1 is completed. .

Notice that all symmetries of the evolution equation :
cy = K(x,2,5) = K(xy2505+~,4,), NA = K(x,0,4) € Loz'? . (2.4}

constitute a Lie subalgebra of the vector field Lie algebra (,ez?, [+,+1). By using
{1.10) and (3) of Theorem 2.1, we can obtain the following result.

Proposition 2.2, Let K,G € or?, O=0(x, ¥)€ %, and G be a symmeztry of
(2.4). Then (1) G is a strong symmesry of (2.4); (2) © is @ sirong symmeiry of
(2.4) if and only if ®K = Ko, :

8K

When 5 0, i.e. K= K(x, #), since K is naturally a symmetry of (2.4), by

the above proposition we see that K is a strong symmetry of (2.4) and commutes
with any time independent strong symmetry of (2.4).

In the following we introduce the conception of the generators which can gener-
ate time dependent symmetries of evolution equations.

Definition 2.1. Let K, T € _g7?. If there exists a non-negative integer r and a
.complex constant ¢ so that

Y

EPT = 0, in which K, =R —al, I. o9~ 7% is an identity operator, (2.5)
then T is called a K generator of order r with characteristic e.

From the definition we easily know that 2 non-zero KT is the same as an eigen-
vector of K corresponding to an eigenvalue a. Particularly, 2 non-zero K genera-
tor of order 0 with characteristic # is just 2n eigenvector of K corresponding to an
eigenvalue a. These show that the condition of existence of K generators is equiva-
lent to that of possession of discrete spectra for K. Ref. [9] introduced a kind of
generators corresponding to those given here with characteristic 0.

From Definition 2.1, we easily come to the following conclusion by Proposition
2.2 . :

Proposition 2.3. Lez K = K(x,4), T=T{xs2,4)€ .or® and T be a K gener-
-ator of order r with characteristic 0. Then K is a symmetry of the mu&&.&.ea equa-
tion . :

#,=G=RKT, - (2.6)
and thus K is a sirong symmetry of (2.6),

Theorem 2.2, Let K€ %, Q€U and Lg® = 0 and choose T€ ! 10
be a K generator of order r with characteristic a. Then {Q'T|1 > 0} are all K
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generators of order r with characteristic a.

Proof. Since Lg® = 0, by (3) of Theorem 2.1 we have ®K = K&, thus @aNa
R*¢™, m,n = 0. By this and (2.5) we obtain

Ni%ﬁ. —_ G~W<M+HH =0, ] >

Hence {®'T [l > 0} are all K generators of order r with characteristic 2. The proof
1s completed.

By (1.10), we deduce immediately from the theorem the following result:

Corollary 2.1. If ¢ = 0(x, #) €D is a strong symmetry of (2.4) and T is
a K gencrator of order r with characteristic a, then {@®'T|1 == 0} are all K gener-
ators of order r with characteristic a. ‘

IO Tive DereNDENT SYMMETRIES

This section considers the following time independent evolution equation:
= NA%U&VM N = Nhauav m -KQD AW-HV

We shall give a large number of time dependent symmetries of the evolution equa-
tion (3.1), the basis of which is the generators introduced in Section II. In this sec-
tion, we always suppose that % is a natural number, r,r; (1<j<Ck) are non-negative
integers, and C stands for the complex field.
Theorem 3.1. Le: T;;=T,;i(x,8)€ 7% 0<i<r;, 1 <j<k, and g;€C (1<
i< k) be distinct. Then
— S e Sy | (3.2)
=1 i=0 ! o

is @ symmetry of the evolution Eq. (3.1) if and only if for any 1 << j<< k, Ty is
a K generator of order r; with characteristic aj, and

ﬁ.mu..w,mpﬁ: 1<ir, 1<i<k (3.3)
z] .

Proof. By the expression (3.2) of v we have

3 ri [ rj
or A a e
_— = M” aje’i* M“ v T + M” e%* M" it 1T
Oz i=1 i=p i=1

i=1
ri—=1 £ .
= M M t'leiTy + ( + Huu‘civ; M 8;e’' e T,
i=0 =1

and
.k i
[Kyz]l = > &% > P[K,T;l.
i=1 i=0
Using (1.7), we know that 7 is a symmetry of (3.1) if and only if
.N.Nn. H‘Nn.u cv H a&l..nl H- m Nu

and
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: .wmn.u..mu I<i<r;j—1, 1<k,

Tipi = Ty B

from which the desired result ?ﬁoém.

When %=1, we obtain the following corollary from the above theorem at once.

Corollary 3.1. Ler T; = Ti(x,u)€ 7% 0<<i<r, a€C. Then 7= e¢"Sl,
#T; is a symmetry of (3.1) iff T, isa K generator of order r with characteristic a,

&&ﬁ.ﬂ%.\u,s_m«.mr
. nm

More particularly, when ¢ == 0, we arrive at

Corollary 3.2%., Let T;=T(2,u)¢ %y 0i<<r. Then v = 375 4T, is

a symmetry of (3.1) iff T, is a K generator of order r with characteristic 0 and

H..H\m, BT, 1<i<r,
ﬂ -
By this corollary, we know that the evolution Eq. (3.1) has and only has the

time polynomial dependent symmetries generated by K generaators of any order with
characteristic 0.

Lemma 3.1. Lez 5 be a non-negative integer, a€ C,T,=T(x, )€ %, —s
<i<r, and T_,5 0. If v = 20 _#*T; is a symmetry of (3.1), then s= 0.,
ot

Proof. By a simple calculation, we see that vy = [K,7] becomes
t

r 5—=1 r
e > arT; + e > (i + )Ty, =" > v[K,T;], (3.4)
fm—g =gl ==
If ¢> 0, comparing the terms containing #~!, we can obtain T'_,=0, which contra-
dicts the assumption of the lemma. Thus the result of the lemma is true.

When @ = 0, the above result shows that time Laurent polynomial dependent
symmetries of one time independent evolution equation must be of time polynomial
forms.

Lemma 3.2, Lez s be ¢ non-negative integer, 1 a non-zero integer, a€ C.

n
N z : .
non—zero, Is=Ti(x,0)€ o, —s<i<r, If 1= ¢* M ” t*T; is a non-zero sym-
- f=1z

mezry of (3.1), then I =1,

Proof. By a direct calculation, we easily obtain tha ,wlﬂ.ﬂ [K, 7] is equivalent
¢
tothe following equality: .
. ray—t r—1 r .
> aléTi g+ ). G+ 16T = M #IK,T;1, (3.5)

i=—s+l=1 ~f=s5—1 f=-1

Let > 1, By comparidg the coefficients of r 4+ s highest mmmnmo terms of 1, i.e.
#(—s+I—1<i<r+1—1)in (3.5), it is not difficult to obtain T; =0, —s
=L i << r, which contradicts the assumption 7 % 0, Let < -~1, Similarly by com-
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paring the coefficients of 7 + s lowest degree terms of z, 1.e. ¢ (—s+1—1<
1<Xr+ —1)in (3.5), we can obtain that 7; =0, —s<{i<Cr, which also contra-
dicts the assumption of the lemma. ‘Therefore [= 1, which completes the proof.

Theorem 3.2. Let s, s and 1, I' be all non-negative integers, a;; € G, Ty =

Tilx,u)€ of?y, —s'<i<s, —F<1< 1, Then for the evolution Eq. (3.1), the
time dependent symmetry T with the form

s !
r= > > Ty (3.6)

=g j=-Ir
must possess the form (3.2).
Proof. We rewrite 7 in {3.6) as the following form

i

Iy
7= M Tiy 7§ = €% M 885, (3.7)

i=1 iuagy
where I, 1 <<7< %k, are integers; s;,1 < 7 << &, denote non-negative integers, a; € G,
1<7i<<k, S;=38:i{a,4)€ or¥y —sj<<i<rj, 1 <7<k, and further the condition
Laj, ;) 5= (apslp)s 1% 7, may be satisfied. Therefore 7 is a symmetry of (3.1) if
and only if 75, 1<{7<Ck, are all symmetries of (3.1). From this point, by using
Lemmas 3.1 and 3.2 we can deduce the result desired in the theorem.

Example 3.1. We consider the evolution equation

Sﬁe m‘w.wﬂ Na+§3a:mm“

where

O = 0" + 4u + 24,07, O= L,

dx
‘We can prove that (see [3,14])
Twa&nu%a A.w.vu— = AN m + HV%&.T.IHunau mynz0, m+nz=l, Aw.mv
Tua A.mtvq o Alﬁﬁ == 2 (m — n)@mt="1 mlﬁvu myn =0, LG9
2 A2 . 2/ .

When n =1, the relations (3.8), (3.9) show that the equation under consideration

possesses two hierarchies of generators of order 0; {@™#.|(m = 0} and A_p‘%a Alw.v m =

2

cw. Thus by Corollary 3.1 we know that % = 2% -+ xu, possesses the following
two hierarchies of time dependent symmetries:
Ty == m,lﬁ&;.?@aﬁt m=0,

7l = g UmDegm A..W.Vu m >0,

Example 3.2. We consider the evolution equation #,=#,, %, 7€ R. Set &=0"+
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42 - Na o= ...MI and choose T =@ ﬁuwl Hv == 2 xu ..Ml.ahau. It is easy toshow
X , : . .

that T is a #, generator of the second order with characteristic 0. Noticing that ¢
is a strong symmetry of the evolution equation #,==#., we obtain by Corollary 2.1 that
{®*T{n = 0} are all u, generators of the second order with characteristic 0. Hence

according to OomoﬁpQ 3.2, we obtain a hierarchy of time ﬁo@ﬁoﬂﬁ& mmﬁnumnuﬂ sym-
metries om the mmoonm Qommon of u,= u,:

-

T, = M;N?: [#:,@*T1] 4 2[2.,0°T] + @°T, n = 0,

Further, since

[0 07T] = & [1t,,T'] = 8°(2u + x4,) = G+ ﬁ,v "0,

2
(3.8
Lt [, @°T 1] = T&nueu.ﬁ A.W:VALG»SZ nz=0,
we have
T, = 1 ?@ru, + 1o A.mlv + @+t Aami avu n>=0,
2 2 S \2
In addition, 7_;= ..MIN + sw,, % is also a symmetry of w,=u,, We point out that

Twnwnuuu can generate time polynomjal dependent symmetries of any degree of
== u., For example, when m # an_..ﬂa.\.ﬂau 1$ a time polynomial dependent symme-
ﬂ.% of the third degree of #, = u,

IV, Tmme PoryNomiarn DepeNpeENT SyMmerrmEs or Fquation Hisrarcuies

In this section, we consider time polynomial dependent symmetries correspond-
ing to generators with characteristic 0 for equation hierarchies generated by heredita-
1y Symmetries.

Definition 4.1"'. Let &, be a Lie subalgebra of _o?. 1 for any K€ ¥, ei-
ther (1) K&y = {4 £ |KA =0} is Abelian or (2) KS=10 for any S€ &,
then &, is called a beautiful Lie algebra. An element in &, satisfying the condi-
tion (2) is said to be trivial.

Henceforth in this section, we always suppose that &, is a beautiful Lie sub-
algebra of _o7?.

Theorem 4.1, Let K€ & be non-trivial, T € ! a K generator of order r
with characteristic a and s a natural number. Choose arbizrarily s wvector fields
G: e KNZL ), 1<i<s, If Gy 1<<i<<s, satisfy

KRG --GiT € &1, iydysrvyi, 20, NIT?-T e = 4.1
then we have

Q)“.u.-“,‘mruhuaﬂOu ﬂ-u“.uuAvo.oN..h\V\Ou u.+w.—+ b +Q.MH r + H.- ’ A_A.-Nv
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Proof. First noticing that K € &', is a non-trivial element, we see that k(&)
is Abelian. And then we begin to prove the theorem by induction for order . When
r = 0, by the condition (4.1) we have T'€ &, Thus T € K1(&}) and particularly

A .

;T =0, 1<7:<s, which shows that the equality (4.2) is true for 7 = 0,

Now assume that the result of the theorem is also true for r =, Let r = J+1
in the following. For any given i,i5,++-,f, = 0 satisfying i =7y + +-+ 4§, = I+2,
we want to prove that KRG --GirT == 0, ,

If i>1, set T,=KT, This moment T, 15 a K generator of order [ with charac-
teristic 0. Notice that KGj = GiE, 1 <<j << s (see the property (2) of adjoint oper-
.ators in Section II). By (4.1) we have

Kigj:- - .m\._.wum,_n = MNILQJ.T. --GiT €L ys doinyreryi, 20, f+ix+ -0+ =1,
‘Therefore by the inductive hypothesis, we obtain

RitiGie - - GUT = RiGj - - GUT =0, fuyiny=+-5i, 20, [+ iv+ oo +i,=1+1,
in particular,
RiGj- - CiT — O

If some 7y =1, let 7, > 1 without loss of generality. Set T,= G,T, Since
KT =0 and B¢ &, by (4.1), we have BHT¢ K<), Hence KT, =
GR*IT =0 which shows that T, is a K generator of order / with characteristic 0.
Also, by (4.1) we have

RiGH- - -GiTy = RiGp*1- - GET € &L\, foigy-roiy 20y iy oo i, =1,

In this case, again by the inductive hypothesis, we have
RIGHH1 <. GyT == RiGi- « +GiTy = 0, fyisyr i, 220, fodb iy -or i, =141,
in particular,
RiGir - -GUT = 0,
Summing up, we see that the result of the theorem is indeed true for r=

4+ 1, Until now, we complete the proof by induction.

Corollary 4.1. Under the assumpiion of Theorem 4.1, Git--- GET, i, -+,
520, h+ - +i,<r, are K generators of order r—(fy+-+--+1,) with charac-
teristic 0.

Corollary 4.2. Ler K€ &, be non-trivial, T € of? ¢ K generator of order
r with characteristic 0, and GE KWL, If RiGT € &Ly, i,1> 0,0+ i=r, then
R™T, 0<s<r, are G generators of order s with characterisiic 0.

Theorem 4.2. Ler K€ &, be non-trivial, € @ a hereditary symmetry and
LyP =0, TE€ o#? a K generator of order r with cheoracteristic 0, and [ @ non—

negative integer. If G—=K;=0'Ke<; and K'G'T € F i = 0,i+i=r, then
Tis also a G generator of order r with characteristic 0.

Proof. W%HoBBw 1.1, we have [@"K, §"K] =0, m,z =20, In particular, we
have [K,G] =0, Also, we have G¢&,, Thus G¢& K*(&,). At this moment, by



No. 7 GENERATORS & TIME DEPENDENT SYMMETRIES SRR

using Oonoﬂmnw 4.2 we can obtain thet T is also a G generator Om order r sﬂw cha-
Tacteristic 0.

Theorem 4.3. Le: K = K(x,%) € &, be non-trivial, ® = Q(x,%u) ¢ D a here-
ditary symmetry and e strong symmiery of the ecvolution equation u,—= K(x, %),
ond T=T(x,u)€ or? a K generator of order r with éharacteristic 0. If for some
integer 1220, we have K;=0'K€ L, and K'RiTc &1, i,i20, i+ i=r, then
2he evolution equation

= K; = ¢'K (4.3)

possesses a hierarchy of K symmeitries and a hierarcky of wime polynomial depen-
dent symmetries

Kp=0"K, m>=0, (4.4)
wlnu . )
=S L RFeT, 0<i<r, n>0, (4.5)
=0l
Furthermore
_ thi= 0", 0KTI<r, n 220, . (4.6)
Proof. Since .WW =0, we obtain Lg® =0 by (1.10). By Lemma 1.1,
z
[¢=K,$*K] = 0, mo,n=0, Q_:wv
_”Gaﬂﬂw%u%”_ ﬂ.enhﬁawﬂuhu s SE ' myn =20, . A#.mv

The equality (4.7) shows that {K,|m > 0} are all time independent symmetries of
the evolution equation (4.3). In the following, we prove that rl; are also symmetries
of (4.3), but are time polynomial dependent. By Theorem 2.2 we see that
{@"T|n = 0} are all K generators of order r with characteristic 0. From this we
can deduce, by using Theorem 4.2, that all {®*T |n > 0} are also K; generators of
order r with characteristic 0. Naturally for 0 <7< r, 22> 0 Ri®*T is a2 K, genera-
tor of order r—7 with characteristic 0. Thus by Corollary 3.2 we obtain that
7i; are time polynomial dependent symmetries of degree r—j of (4.3). Besides,
{4.6) is a direct corollary of (4.8). The proof is completed.

Noticing (4.7) and (4.8), we can deduce the following result by the above the-
orem.

Corollary 4.3. Under the assumption of Theorem 4.3, the evolution equation
(4.3) possesses the following time polynomial dependent symmerries:

=iyt

th(quss = sgi3iin-oui) = >, —Kiki---Rio*T,

N

where s 21, G50 oqe = 051505l 20, h+ i, <7y, n220, and these sym-
metries satisfy

ﬁwﬁ%ﬁ.. i umumm: i !;....v == Ba&ﬁ&-u. - um»mm.:. a1

Theorem 4.3 with r = 1 gives rise to the following corollary.
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Corollary 4.4. Le: K =K(x, #) €&, be non—trigial, ® = &(x, u)€ U be
hereditary and Ly® =0, T =T(z,4)€ o7 and [K, T]1 € K*(&L,). If for some
integer 1 22 0, we have Ky = O'K € & 1and [K;,T]1 €L\, then the evolution equation
(4.3) possesses symmetries . |

.Na_— == ﬂvawu m W Qu A%.Wv
The = t[K;,0°T]1 + 0°T, n> 0, (4.10)
.H‘_M-H = anugau...”_ s 77 \V\. OQ . AA,.HMV‘

Note that Theorem 4:3, in fact, gives a theoretical method for generating, based-
upon hereditary symmetries, time polynomial dependent symmetries of hierarchies.
of evolution equations. A key point of the method is to find generators with char-
acteristic 0 corresponding to the first equation #, == K(x,#) in one hierarchy.

Example 4.1. Consider KdV hierarchy
=K, =0'K=08",, x,1¢ R, 1>0, (4.12a)
with
Q=0 +4u+ 24,07, K = Qu, = u,,, + 6un,, (4.12b)
Let &, consist of constant coefficient polynomials in l,#,#.,---, It is known that .

the Lie algebra &, is beautiful and K = u,,.-6un, is nontrivial®?. We easily show

that T = W is a K generator of the first order with characteristic 0. Noticing
(3.8), we can obtain, according to the skeleton of Corollary 4.4, a hierarchy of time

polynomial dependent symmetries of (4.12)%3.

Hw_ = N_H_Wﬁu@am;u —+ O*T = ANN -1 mv«&n«.va + o* Au.w_lvv n .\V\ O-.

Example 4.2. Consider the following hiearachy of evolution equations™",

#, = Qu,, u=_d,#,0°), 2z,2¢R, 10, . (4.13a)
where the operator @ reads as
(0 0 — 2 F+u+ L]
4 2
1
e—|1 o w207 . (4.13b)
. .
|01 @+ W .
- . Hu ] M_ ‘3 N\T m— H =
Choosing T =| — Iw..,.a > T W 1) , we have that L@ -3 and [#., OT]
-wlxu. Also, it has been proved that @ is a hereditary %BB&Q and Lg@ = 0"

Hence by an approach in Ref. [14] we can obtain

[Q™u.,P*u,] = .Qu mon =0, , AA.HAV«
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Ea&ﬁ%..uq Aw m -+ wvﬁs._.ala e Mon =2 tm Yt a1, BTN CRE )
[0"T, @°T] = W (m— )P, >0, (4.16)

From (4.14) and (4.15), we know that {@"T |n = 0} are all K; ( =@, 1>20)
generators of the first order with characteristic 0. Therefore we can obtain a hierar.
<hy of time polynomial dependent symmetries of (4.13):

= ¢ [K;,@°T] + O°T = AI.N -+ Nv NN?TH +@*T, K =0, a =0,

From (4.14—4.16), it is easy to see that this hierarchy of symmetries constitutes one
Lie algebra with K symmetries {K, = ®"x.}mo:

_”Wr.vmnu”_ =0, m,n =20,

[Ku> 751 = A[wlaa + W.V Kpigers Ky =0, myn =20,

[thy il = .W. (m — w)thinys 7.i=0, mn=0,

For a lot of hierarchies of soliton equations, the generators of the first order
with characteristic 0 similar to those in the sbove examples have been found out!®¥,
This kind of generators is the simplest among the generators to generate time poly-
nomial dependent symmetries of evolution equations. But it is more difficult to
search for the higher-order generators with characteristic 0.

The author wishes to express his sincere thanks z0 Prof. Tu Q&m.nwnam for en-
thusiastic encouragement and convinuing guidance. The awthor is also grarejul to
Meng Da-zhi, Hu Xing-biao and Chen Zkhi-xiong for helpful discussions.
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