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This is a continuation of a study on Riemann
theta function representations of algebro-geometric
solutions to soliton hierarchies. In this part, we
straighten out all flows in soliton hierarchies under
the Abel–Jacobi coordinates associated with Lax
pairs, upon determining the Riemann theta function
representations of the Baker–Akhiezer functions,
and generate algebro-geometric solutions to soliton
hierarchies in terms of the Riemann theta functions,
through observing asymptotic behaviours of the
Baker–Akhiezer functions. We emphasize that we
analyse the four-component AKNS soliton hierarchy
in such a way that it leads to a general theory of
trigonal curves applicable to construction of algebro-
geometric solutions of an arbitrary soliton hierarchy.

1. Introduction
This is a study on Riemann theta function representations
of algebro-geometric solutions to soliton hierarchies.
It consists of two parts. In the first part [1], we
introduced a class of trigonal curves generated from
linear combinations of Lax matrices in the zero
curvature formulation, analysed general properties
of meromorphic functions defined as ratios of the
Baker–Akhiezer functions, including derivative relations
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between derivatives of the characteristic variables with respect to time and space, and determined
zeros and poles of the Baker–Akhiezer functions and their Dubrovin-type dynamical equations.

This is the second part, comprising five sections. In §2, we present basic notation and
background, introduced and discussed in the first part [1], on the four-component AKNS
soliton hierarchy, trigonal curves and the Baker–Akhiezer functions, which will be needed in
the subsequent sections of this part. In §3, we explore asymptotic properties for the three
Baker–Akhiezer functions in the four-component AKNS case at the points at infinity. In §4, we
straighten out all the flows of the four-component AKNS soliton hierarchy under the Abel–Jacobi
coordinates, and construct algebro-geometric solutions of the whole soliton hierarchy by use
of the Riemann theta functions according to the asymptotic properties of the Baker–Akhiezer
functions. In the last section, we present a few concluding remarks and open questions related to
lump solitons and soliton hierarchies.

2. Notation and background

(a) Four-component AKNS hierarchy
The four-component AKNS soliton hierarchy is associated with the following 3 × 3 matrix
spectral problem:

ψx = Uψ = U(u, λ)ψ , U = (Uij)3×3 =

⎡
⎢⎣−2λ p1 p2

q1 λ 0
q2 0 λ

⎤
⎥⎦ , ψ =

⎡
⎢⎣ψ1
ψ2
ψ3

⎤
⎥⎦ , (2.1)

where λ is a spectral parameter and u is a four-component potential

u = (p, qT)T, p = (p1, p2), q = (q1, q2)T. (2.2)

As usual, we solve the stationary zero curvature equation Wx = [U, W], corresponding to (2.1),
to obtain a formal series solution W:

W =
[

a b
c d

]
=

∞∑
k=0

Wkλ
−k, Wk = Wk(u) =

[
a[k] b[k]

c[k] d[k]

]
, k ≥ 0, (2.3)

where a[k] are scalar functions, and b[k], c[k] are vector functions and d[k] are matrix functions
assumed to be represented by

b[k] = (b[k]
1 , b[k]

2 ), c[k] = (c[k]
1 , c[k]

2 )T and d[k] = (d[k]
ij )2×2, k ≥ 0. (2.4)

All the involved functions above are recursively defined by

b[0] = 0, c[0] = 0, a[0] = −2, d[0] = I2 = diag(1, 1), (2.5a)

b[k+1] = 1
3 (−b[k]

x + pd[k] − a[k]p), k ≥ 0, (2.5b)

c[k+1] = 1
3 (c[k]

x − qa[k] + d[k]q), k ≥ 0 (2.5c)

and a[k]
x = pc[k] − b[k]q, d[k]

x = qb[k] − c[k]p, k ≥ 1, (2.5d)

where we take constants of integration to be zero:

Wk|u=0 = 0, k ≥ 1. (2.6)

For all integers r ≥ 0, we have introduced the following Lax matrices:

V[r] = V[r](u, λ) = (V[r]
ij )3×3 = (λrW)+ =

r∑
k=0

Wkλ
r−k, r ≥ 0, (2.7)

to formulate the temporal spectral problems

ψtr = V[r]ψ = V[r](u, λ)ψ , r ≥ 0. (2.8)
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The compatibility conditions of (2.1) and (2.8), i.e. the zero curvature equations

Utr − V[r]
x + [U, V[r]] = 0, r ≥ 0 (2.9)

generate the four-component AKNS soliton hierarchy

utr =
[

pT

q

]
tr

= Kr =
[
−3b[r+1]T

3c[r+1]

]
, r ≥ 0. (2.10)

The Lax matrices above have a relation

V[r+1] =
r+1∑
k=0

Wkλ
r−k+1 = λ

r+1∑
k=0

Wkλ
r−k = λV[r] + Wr+1, r ≥ 0, (2.11)

which allows us to determine asymptotic properties of the Baker–Akhiezer functions recursively
in the next section. Obviously, the first two nonlinear systems in the four-component AKNS
soliton hierarchy (2.10) read

pi,t2 = − 1
3 [pi,xx − 2(p1q1 + p2q2)pi] and qi,t2 = 1

3 [qi,xx − 2(p1q1 + p2q2)qi], 1 ≤ i ≤ 2, (2.12)

pi,t3 = 1
9 [pi,xxx − 3(p1q1 + p2q2)pi,x − 3(p1,xq1 + p2,xq2)pi], 1 ≤ i ≤ 2 (2.13a)

and qi,t3 = 1
9 [qi,xxx − 3(p1q1 + p2q2)qi,x − 3(p1q1,x + p2q2,x)qi], 1 ≤ i ≤ 2, (2.13b)

which are the four-component versions of the AKNS systems of nonlinear Schrödinger equations
and modified Korteweg–de Vries equations, respectively.

A bi-Hamiltonian formulation of the four-component AKNS equations (2.10) is determined by

utr = Kr = JGr = J
δH̃r+1

δu
= M

δH̃r

δu
, r ≥ 1, (2.14)

where the Hamiltonian functions are defined by

H̃k = 1
k

∫
(2a[k+1] − d[k+1]

11 − d[k+1]
22 ) dx, k ≥ 1 (2.15)

and the Hamiltonian operators J and M, forming a Hamiltonian pair, by

J =
[

0 −3I2
3I2 0

]
(2.16a)

and

M =

⎡
⎢⎢⎢⎢⎢⎣

pT∂−1p + (pT∂−1p)T

(
∂ −

2∑
i=1

pi∂
−1qi

)
I2 − pT∂−1qT

(
∂ −

2∑
i=1

pi∂
−1qi

)
I2 − q∂−1p q∂−1qT + (q∂−1qT)T

⎤
⎥⎥⎥⎥⎥⎦ . (2.16b)

(b) Riemann surfaces and Baker–Akhiezer functions
For each integer n ≥ 1, we have taken a linear combination of the Lax matrices

W[n] = W[n](u, λ) = (W[n]
ij )3×3 =

n∑
k=0

αkV[n−k], (2.17)

where the Lax matrices V[k], 0 ≤ k ≤ n, are given by (2.7) and αk, 0 ≤ k ≤ n, are arbitrary constants
but α0 �= 0, to introduce a trigonal curve Kg of degree m = 3n as follows:

Kg = {P = (λ, y) ∈ C
2 | det(yI3 − W[n]) = 0}. (2.18)

The compactified Riemann surface, still denoted by Kg, consists of points satisfying Fm(λ, y) = 0
and the three points at infinity: {P∞1 , P∞2 , P∞3 } (see [1] for details).

 on July 31, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


4

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170233

...................................................

We have also introduced the vector of associated Baker–Akhiezer functions ψ(P, x, x0, tr, t0,r)
through

ψx(P, x, x0, tr, t0,r) = U(u(x, tr), λ(P))ψ(P, x, x0, tr, t0,r), (2.19)

ψtr (P, x, x0, tr, t0,r) = V[r](u(x, tr), λ(P))ψ(P, x, x0, tr, t0,r), (2.20)

W[n](u(x, tr), λ(P))ψ(P, x, x0, tr, t0,r) = y(P)ψ(P, x, x0, tr, t0,r) (2.21)

and ψi(P, x0, x0, t0,r, t0,r) = 1, 1 ≤ i ≤ 3, (2.22)

where x, tr, x0, t0,r, λ(P), y(P) ∈ C and P = (λ, y) ∈Kg\{P∞1 , P∞2 , P∞3}. Associated with the Baker–
Akhiezer functions, a set of meromorphic functions are defined by

φij = φij(P, x, x0, tr, t0,r) = ψi(P, x, x0, tr, t0,r)
ψj(P, x, x0, tr, t0,r)

, 1 ≤ i, j ≤ 3. (2.23)

The property (2.21) leads to

φij =
yW[n]

ik + C[m]
ij

yW[n]
jk + A[m]

ij

=
F[m]

ij

y2W[n]
ik − yC[m]

ij + D[m]
ij

=
y2W[n]

jk − yA[m]
ij + B[m]

ij

E[m]
ij

, (2.24)

with

A[m]
ij = W[n]

ji W[n]
ik − W[n]

jk W[n]
ii , (2.25)

B[m]
ij = W[n]

jk (W[n]
jj W[n]

kk − W[n]
jk W[n]

kj ) + W[n]
ji (W[n]

jj W[n]
ik − W[n]

jk W[n]
ij ), (2.26)

C[m]
ij = A[m]

ji , D[m]
ij = B[m]

ji , (2.27)

E[m]
ij = (W[n]

jk )2W[n]
ki + W[n]

ji W[n]
jk (W[n]

ii − W[n]
kk ) − (W[n]

ji )2W[n]
ik (2.28)

and F[m]
ij = E[m]

ji , (2.29)

where {i, j, k} = {1, 2, 3}. We know from Lemma 3.1 in [1] that the meromorphic functions φij, 1 ≤
i, j ≤ 3, defined above, satisfy the following Riccati-type equations

φij,x = (Uii − Ujj)φij + Uij + Uikφkj − Ujiφ
2
ij − Ujkφijφkj (2.30)

and
φij,tr = (V[r]

ii − V[r]
jj )φij + V[r]

ij + V[r]
ik φkj − V[r]

ji φ
2
ij − V[r]

jk φijφkj, (2.31)

where {i, j, k} = {1, 2, 3}.
To deal with asymptotic properties of the Baker–Akhiezer functions ψi, 1 ≤ i ≤ 3, we have set

J(i)
r = Ui1φ1i + Ui2φ2i + Ui3φ3i and I(i)

r = V[r]
i1 φ1i + V[r]

i2 φ2i + V[r]
i3 φ3i, 1 ≤ i ≤ 3. (2.32)

Obviously, the properties (2.19) and (2.20) lead to

ψi,x(P, x, x0, tr, t0,r)
ψi(P, x, x0, tr, t0,r)

= J(i)
r (P, x, tr), 1 ≤ i ≤ 3 (2.33)

and
ψi,tr (P, x, x0, tr, t0,r)
ψi(P, x, x0, tr, t0,r)

= I(i)
r (P, x, tr), 1 ≤ i ≤ 3, (2.34)

respectively. Then, we have the basic conservation laws

(I(i)
r )x =

(
ψi,tr

ψi

)
x
=
(
ψi,x

ψi

)
tr

= (J(i)
r )tr , 1 ≤ i ≤ 3, (2.35)

from which infinitely many conservation laws can be generated by observing Laurent series of the
conserved quantities J(i)

r , 1 ≤ i ≤ 3, and the conserved fluxes I(i)
r , 1 ≤ i ≤ 3, at λ= ∞ (or ζ = λ−1 = 0).
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Finally, based on the basic conservation laws in (2.35), we know that (2.33) and (2.34) imply the
expressions for the Baker–Akhiezer functions ψi, 1 ≤ i ≤ 3:

ψi(P, x, x0, tr, t0,r) = exp

(∫ x

x0

J(i)
r (P, x′, tr) dx′ +

∫ tr

t0,r

I(i)
r (P, x0, t′) dt′

)
, 1 ≤ i ≤ 3. (2.36)

3. Asymptotic behaviours
In order to generate algebro-geometric solutions in terms of the Riemann theta functions, we need
to explore asymptotic properties of the three Baker–Akhiezer functions ψi, 1 ≤ i ≤ 3, at the three
points at infinity.

(a) Asymptotics of the first Baker–Akhiezer function
We first start with determining asymptotic properties of the meromorphic functions φ21 and φ31
at the points at infinity.

Lemma 3.1. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

φ21(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

3
p1
ζ−1 + p1,x − p1p2χ1,0

p2
1

+ κ1,1ζ + O(ζ 2), as P → P∞1 ,

κ2,0 + κ2,1ζ + O(ζ 2), as P → P∞2 ,

−q1

3
ζ − q1,x

9
ζ 2 − q1,xx − p1q2

1 − p2q1q2

27
ζ 3 + O(ζ 4), as P → P∞3

(3.1)

and

φ31(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χ1,0 + χ1,1ζ + O(ζ 2), as P → P∞1 ,

3
p2
ζ−1 + p2,x − p1p2κ2,0

p2
2

+ χ2,1ζ + O(ζ 2), as P → P∞2 ,

−q2

3
ζ − q2,x

9
ζ 2 − q2,xx − p2q2

2 − p1q1q2

27
ζ 3 + +O(ζ 4), as P → P∞3 ,

(3.2)

where

(p1χ1,0)x = p1q2, (p1χ1,1)x = −χ1,0

3p1
(p2

1p2,xχ1,0 − p1p1,xp2 + p3
1q1 + p2

1p2q2 − p1p1,xx + p2
1,x),

κ1,1 = 1

3p3
1

(p2
1p2,xχ1,0 − p1p1,xp2χ1,0 − 3p2

1p2χ1,1 + p3
1q1 + p2

1p2q2 − p1p1,xx + p2
1,x)

and

(p2κ2,0)x = p2q1, (p2κ2,1)x = κ2,0

3p2
(p1p2p2,xκ2,0 − p1,xp2

2 − p1p2
2q1 − p3

2q2 + p2p2,xx − p2
2,x),

χ2,1 = − 1

3p3
2

(p1p2p2,xκ2,0 − p1,xp2
2κ2,0 + 3p1p2

2κ2,1 − p1p2
2q1 − p3

2q2 + p2p2,xx − p2
2,x).

Proof. We begin with the following three ansatzes:

φ21 =
ζ→0

κ1,−1ζ
−1 + κ1,0 + κ1,2ζ

2 + O(ζ 3), φ31 =
ζ→0

χ1,0 + χ1,1ζ + O(ζ 2), as P → P∞1 ;

φ21 =
ζ→0

κ2,0 + κ2,1ζ + O(ζ 2), φ31 =
ζ→0

χ2,−1ζ
−1 + χ2,0 + χ2,1ζ + O(ζ 2), as P → P∞2 ;

and φ21 =
ζ→0

κ3,1ζ + κ3,2ζ
2 + κ3,3ζ

3 + O(ζ 4),

φ31 =
ζ→0

χ3,1ζ + χ3,2ζ
2 + χ3,3ζ

3 + O(ζ 4), as P → P∞3 ;
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where the coefficients, κij and χij, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) with i = 2, 3 and j = 1, i.e.

φ21,x = q1 + 3λφ21 − p1φ
2
21 − p2φ21φ31 and φ31,x = q2 + 3λφ31 − p1φ21φ31 − p2φ

2
31 (3.3)

and comparing the three lowest powers ζ i in each resulting equation, where i goes either from −2
to 0, or from −1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions κi,j and
χi,j, which yields the asymptotic properties in (3.1) and (3.2). The proof is completed. �

To determine asymptotic properties of the Baker–Akhiezer function ψ1 at the points at infinity,
we now analyse

J(1)
r = U11 + U12φ21 + U13φ31 = −2λ+ p1φ21 + p2φ31 (3.4)

and
I(1)
r = V[r]

11 + V[r]
12φ21 + V[r]

13φ31. (3.5)

Lemma 3.2. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

J(1)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ−1 + p1,x

p1
+ O(ζ ), as P → P∞1 ,

ζ−1 + p2,x

p2
+ O(ζ ), as P → P∞2 ,

−2ζ−1 + O(ζ ), as P → P∞3

(3.6)

and

I(1)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ζ−r + p1,tr

p1
+ O(ζ ), as P → P∞1 ,

ζ−r + p2,tr

p2
+ O(ζ ), as P → P∞2 ,

−2ζ−r + O(ζ ), as P → P∞3 .

(3.7)

Proof. First, based on (3.4), we obtain (3.6) directly from lemma 3.1.
Second, note that the first compatibility condition in (2.35) reads

I(1)
r,x =

(
ψ1,tr

ψ1

)
x
=
(
ψ1,x

ψ1

)
tr

= J(1)
r,tr

(3.8)

and that from (2.11), we obtain

V[r+1]
11 = λV[r]

11 + a[r+1], V[r+1]
12 = λV[r]

12 + b[r+1]
1 and V[r+1]

13 = λV[r]
13 + b[r+1]

2

and thus, we have
I(1)
r+1 = λI(1)

r + a[r+1] + b[r+1]
1 φ21 + b[r+1]

2 φ31. (3.9)

Now, based on (3.8) and (3.9), we can verify (3.7) from (3.6) by the mathematical induction. The
proof is completed. �

We can then show the asymptotic behaviour of the Baker–Akhiezer function ψ1 at the points
at infinity.

Theorem 3.3. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

ψ1(P, x, x0, tr, t0,r)

=
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p1(x, tr)
p1(x0, t0,r)

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )), as P → P∞1 ,

p2(x, tr)
p2(x0, t0,r)

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )), as P → P∞2 ,

exp(−2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ )), as P → P∞3 .

(3.10)
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Proof. The first formula in (2.36) on the Baker–Akhiezer function ψ1 gives

ψ1(P, x, x0, tr, t0,r) = exp

(∫ x

x0

J(1)
r (P, x′, tr) dx′ +

∫ tr

t0,r

I(1)
r (P, x0, t′) dt′

)
,

where J(1)
r and I(1)

r are defined by (3.4) and (3.5). Based on lemma 3.2, this expression generates the
asymptotic properties of ψ1 in (3.10). The proof is completed. �

(b) Asymptotics of the second Baker–Akhiezer function
We now start with determining asymptotic properties of the meromorphic functions φ12 and φ32
at the points at infinity.

Lemma 3.4. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

φ12(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1

3
ζ +

(
p2

3
χ1,1 − 1

9
p1,x

)
ζ 2 + κ1,3ζ

3 + O(ζ 4), as P → P∞1 ,

1
3

p2χ2,−1 + κ2,1ζ + κ2,2ζ
2 + O(ζ 3), as P → P∞2 ,

− 3
q1
ζ−1 + q1,x

q2
1

+
q1q1,xx − q2

1,x − p1q3
1 − p2q2

1q2

3q3
1

ζ + O(ζ 2), as P → P∞3

(3.11)

and

φ32(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

χ1,1ζ + χ1,2ζ
2 + O(ζ 3), as P → P∞1 ,

χ2,−1ζ
−1 + χ2,0 + χ2,1ζ + O(ζ 2), as P → P∞2 ,

q2

q1
+ 1

3

(
q2

q1

)
x
ζ + 1

9

[(
q2

q1

)
xx

+ q1,x

q1

(
q2

q1

)
x

]
ζ 2 + O(ζ 3), as P → P∞3 ,

(3.12)

where

χ1,1,x = 1
3 p1q2, χ1,2,x = 1

3 (p2q2 − p1q1)χ1,1 − 1
9 p1,xq2,

κ1,3 = − 1
9 p2,xχ1,1 + 1

3 p2χ1,2 − 1
27 p1(p1q1 + p2q2) + 1

27 p1,xx

and

χ2,−1,x = − 1
3 p2q1χ

2
2,−1, κ2,1 = − 1

9 p2,xχ2,−1 + 1
3 p2χ2,0 + 1

3 p1,

κ2,2 = − 1
27 p1p2q1χ2,−1 − 1

27 p2
2q2χ2,−1 + 1

27 p2,xxχ2,−1 − 1
9 p2,xχ2,0 + 1

3 p2χ2,1 − 1
9 p1,x,

χ2,0,x + 2
3 p2q1χ2,−1χ2,0 − 1

9 p2,xq1χ
2
2,−1 + 1

3 (p1q1 − p2q2)χ2,−1 = 0,

χ2,1,x + 2
3 p2q1χ2,−1χ2,1 − 1

27 p1p2q2
1χ

2
2,−1 − 1

27 p2
2q1q2χ

2
2,−1 + 1

27 p2,xxq1χ
2
2,−1 + 1

3 p2q1χ
2
2,−1

− 2
9 p2,xq1χ2,−1χ2,0 + 1

3 p1q1χ2,0 − 1
3 p2q2χ2,0 + 1

9 p2,xq2χ2,−1 − 1
9 p1,xq1χ2,−1 − 1

3 p1q2 = 0.

Proof. Similarly, we begin with the following three ansatzes:

φ12 =
ζ→0

κ1,1ζ + κ1,2ζ
2 + κ1,3ζ

3 + O(ζ 4),

φ32 =
ζ→0

χ1,1ζ + χ1,2ζ
2 + O(ζ 3), as P → P∞1 ;

φ12 =
ζ→0

κ2,0 + κ2,1ζ + κ2,2ζ
2 + O(ζ 3),
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φ32 =
ζ→0

χ2,−1ζ
−1 + χ2,0 + χ2,1ζ + O(ζ 2), as P → P∞2 ;

φ12 =
ζ→0

κ3,−1ζ
−1 + κ3,0 + κ3,1ζ + O(ζ 2)

and φ32 =
ζ→0

χ3,0 + χ3,1ζ + χ3,2ζ
2 + O(ζ 3), as P → P∞3 ;

where the coefficients, κij and χij, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) with i = 1, 3 and j = 2, i.e.

φ12,x = −3λφ12 + p1 + p2φ32 − q1φ
2
12 and φ32,x = q2φ12 − q1φ12φ32, (3.13)

and comparing the three lowest powers ζ i in each resulting equation, where i goes either from −2
to 0, or from −1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions κi,j and
χi,j, which leads to the asymptotic properties in (3.11) and (3.12). This proves the lemma. �

To determine asymptotic properties of the Baker–Akhiezer function ψ2 at the points at infinity,
we now analyse

J(2)
r = U21φ12 + U22 + U23φ32 = q1φ12 + λ (3.14)

and

I(2)
r = V[r]

21φ12 + V[r]
22 + V[r]

23φ32. (3.15)

Lemma 3.5. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

J(2)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ−1 + O(ζ ), as P → P∞1 ,

ζ−1 + ρ
(2)
r + O(ζ ), as P → P∞2 ,

−2ζ−1 + q1,x

q1
+ O(ζ ), as P → P∞3

(3.16)

and

I(2)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ−r + O(ζ ), as P → P∞1 ,

ζ−r + σ
(2)
r + O(ζ ), as P → P∞2 ,

−2ζ−r + q1,tr

q1
+ O(ζ ), as P → P∞3 ,

(3.17)

where ρ(2)
r = 1

3 p2q1χ2,−1 and σ (2)
r,x = ρ

(2)
r,tr

, with χ2,−1 being defined in lemma 3.4.

Proof. The proof is similar. First, based on (3.14), we obtain (3.16) directly from lemma 3.4.
Second, note that the second compatibility condition in (2.35) reads

I(2)
r,x =

(
ψ2,tr

ψ2

)
x
=
(
ψ2,x

ψ2

)
tr

= J(2)
r,tr

(3.18)

and that from (2.11), we get

V[r+1]
21 = λV[r]

21 + c[r+1]
1 , V[r+1]

22 = λV[r]
22 + d[r+1]

11 and V[r+1]
23 = λV[r]

23 + d[r+1]
12

and this leads to

I(2)
r+1 = λI(2)

r + c[r+1]
1 φ12 + d[r+1]

11 + d[r+1]
12 φ32. (3.19)

Now, based on (3.18) and (3.19), we can prove (3.17) from (3.16) by mathematical induction. This
completes the proof. �

We can then prove the asymptotic behaviour of the Baker–Akhiezer function ψ2 at the points
at infinity as follows.
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Theorem 3.6. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

ψ2(P, x, x0, tr, t0,r)

=
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )), as P → P∞1 ,

exp

(∫ x

x0

ρ
(2)
r (P, x′, tr) dx′ +

∫ tr

t0,r

σ
(2)
r (P, x0, t′) dt′

+ ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )
)

, as P → P∞2 ,
q1(x, tr)

q1(x0, t0,r)
exp(−2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ )), as P → P∞3 ,

(3.20)

where ρ(2)
r and σ (2)

r are defined in lemma 3.5.

Proof. Similarly, the second formula in (2.36) presents

ψ2(P, x, x0, tr, t0,r) = exp

(∫ x

x0

J(2)
r (P, x′, tr) dx′ +

∫ tr

t0,r

I(2)
r (P, x0, t′) dt′

)
,

where J(2)
r and I(2)

r are given by (3.14) and (3.15). This expression generates the asymptotic
properties of the Baker–Akhiezer function ψ2 in (3.20), based on lemma 3.5. The proof is
completed. �

(c) Asymptotics of the third Baker–Akhiezer function
We thirdly start with determining asymptotic properties of the meromorphic functions φ13 and
φ23 at the points at infinity.

Lemma 3.7. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

φ13(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3

p1χ1,−1 + κ1,1ζ + κ1,2ζ
2 + O(ζ 3), as P → P∞1 ,

p2

3
ζ +

(
p1

3
χ2,1 − 1

9
p2,x

)
ζ 2 + κ2,3ζ

3 + O(ζ 4), as P → P∞2 ,

− 3
q2
ζ−1 + q2,x

q2
2

+
q2q2,xx − q2

2,x − p2q3
2 − p1q1q2

2

3q3
2

ζ + O(ζ 2), as P → P∞3

(3.21)

and

φ23(P, x, tr) =
ζ→0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ1,−1ζ
−1 + χ1,0 + χ1,1ζ + O(ζ 2), as P → P∞1 ,

χ2,1ζ + χ2,2ζ
2 + O(ζ 3), as P → P∞2 ,

q1

q2
+ 1

3

(
q1

q2

)
x
ζ + 1

9

[(
q1

q2

)
xx

+ q2,x

q2

(
q1

q2

)
x

]
ζ 2 + O(ζ 3), as P → P∞3 ,

(3.22)

where

χ2,1,x = 1
3 p2q1, χ2,2,x = 1

3 (p1q1 − p2q2)χ2,1 − 1
9 p2,xq1,

κ2,3 = − 1
9 p1,xχ2,1 + 1

3 p1χ2,2 − 1
27 p2(p1q1 + p2q2) + 1

27 p2,xx,
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and

χ1,−1,x = − 1
3 p1q2χ

2
1,−1, κ1,1 = − 1

9 p1,xχ1,−1 + 1
3 p1χ1,0 + 1

3 p2,

κ1,2 = − 1
27 p1p2q2χ1,−1 − 1

27 p2
1q1χ1,−1 + 1

27 p1,xxχ1,−1 − 1
9 p1,xχ1,0 + 1

3 p1χ1,1 − 1
9 p2,x,

χ1,0,x + 2
3 p1q2χ1,−1χ1,0 − 1

9 p1,xq2χ
2
1,−1 + 1

3 (p2q2 − p1q1)χ1,−1 = 0,

χ1,1,x + 2
3 p1q2χ1,−1χ1,1 − 1

27 p1p2q2
2χ

2
1,−1 − 1

27 p2
1q1q2χ

2
1,−1 + 1

27 p1,xxq2χ
2
1,−1 + 1

3 p1q2χ
2
1,−1

− 2
9 p1,xq2χ1,−1χ1,0 + 1

3 p2q2χ1,0 − 1
3 p1q1χ1,0 + 1

9 p1,xq1χ1,−1 − 1
9 p2,xq2χ1,−1 − 1

3 p2q1 = 0.

Proof. Similarly, we begin with the following three ansatzes:

φ13 =
ζ→0

κ1,0 + κ1,1ζ + κ1,2ζ
2 + O(ζ 3),

φ23 =
ζ→0

χ1,−1ζ
−1 + χ1,0 + χ1,1ζ + O(ζ 2), as P → P∞1 ;

φ13 =
ζ→0

κ2,1ζ + κ2,2ζ
2 + κ2,3ζ

3 + O(ζ 4),

φ23 =
ζ→0

χ2,1ζ + χ2,2ζ
2 + O(ζ 3), as P → P∞2 ;

and φ13 =
ζ→0

κ3,−1ζ
−1 + κ3,0 + κ3,1ζ + O(ζ 2),

φ23 =
ζ→0

χ3,0 + χ3,1ζ + χ3,2ζ
2 + O(ζ 3), as P → P∞3 ;

where the coefficients, κij and χij, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) with i = 1, 2 and j = 3, i.e.

φ13,x = −3λφ13 + p1φ23 + p2 − q2φ
2
13 and φ23,x = q1φ13 − q2φ13φ23, (3.23)

and comparing the three lowest powers ζ i in each resulting equation, where i goes either from −2
to 0, or from −1 to 1, or from 0 to 2, we get a set of relations on the coefficient functions κi,j and
χi,j, which engenders the asymptotic properties in (3.21) and (3.22). The proof is completed. �

In order to determine asymptotic properties of the Baker–Akhiezer function ψ3 at the points at
infinity, we similarly analyse

J(3)
r = U31φ13 + U32φ23 + U33 = q2φ13 + λ (3.24)

and

I(3)
r = V[r]

31φ13 + V[r]
32φ23 + V[r]

33 . (3.25)

Lemma 3.8. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

J(3)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ−1 + ρ

(3)
r + O(ζ ), as P → P∞1 ,

ζ−1 + O(ζ ), as P → P∞2 ,

−2ζ−1 + q2,x

q2
+ O(ζ ), as P → P∞3

(3.26)

and

I(3)
r (P, x, tr) =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ζ−r + σ

(3)
r + O(ζ ), as P → P∞1 ,

ζ−r + O(ζ ), as P → P∞2 ,

−2ζ−r + q2,tr

q2
+ O(ζ ), as P → P∞3 ,

(3.27)

where ρ(3)
r = 1

3 p1q2χ1,−1 and σ (3)
r,x = ρ

(3)
r,tr

, with χ1,−1 being defined in lemma 3.7.
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Proof. Similarly, first based on (3.24), we obtain (3.26) directly from lemma 3.7.
Second, note that the third compatibility condition in (2.35) reads

I(3)
r,x =

(
ψ3,tr

ψ3

)
x
=
(
ψ3,x

ψ3

)
tr

= J(3)
r,tr

, (3.28)

and that from (2.11), we obtain

V[r+1]
31 = λV[r]

31 + c[r+1]
2 , V[r+1]

32 = λV[r]
32 + d[r+1]

21 and V[r+1]
33 = λV[r]

33 + d[r+1]
22

and this tells us

I(3)
r+1 = λI(3)

r + c[r+1]
2 φ13 + d[r+1]

21 φ23 + d[r+1]
22 . (3.29)

Finally, based on (3.28) and (3.29), we can verify (3.27) from (3.26) by mathematical induction.
This completes the proof. �

We can then show the following asymptotic behaviour of the Baker–Akhiezer function ψ3 at
the points at infinity.

Theorem 3.9. Let u = (p1, p2, q1, q2)T satisfy the rth four-component AKNS equations (2.10) and ζ =
λ−1. Suppose that P ∈Kg\{P∞1 , P∞2 , P∞3 } and (x, tr) ∈ C

2. Then

ψ3(P, x, x0, tr, t0,r)

=
ζ→0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

(∫ x

x0

ρ
(3)
r (P, x′, tr) dx′ +

∫ tr

t0,r

σ
(3)
r (P, x0, t′) dt′

+ ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )
)

, as P → P∞1 ,

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ )), as P → P∞2 ,

q2(x, tr)
q2(x0, t0,r)

exp(−2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ )), as P → P∞3 ,

(3.30)

where ρ(3)
r and σ (3)

r are defined in lemma 3.8.

Proof. Similarly, the third formula in (2.36) reads

ψ3(P, x, x0, tr, t0,r) = exp

(∫ x

x0

J(3)
r (P, x′, tr) dx′ +

∫ tr

t0,r

I(3)
r (P, x0, t′) dt′

)
,

where J(3)
r and I(3)

r are determined by (3.24) and (3.25). Based on lemma 3.8, this expression
generates the asymptotic properties of the Baker–Akhiezer function ψ3 in (3.30). The proof is
completed. �

Now, note that a meromorphic function on a compact Riemann surface has the same number
of zeros and poles. Therefore, in view of lemma 3.1, lemma 3.4 and lemma 3.7, and from the
expressions in (2.24) for the meromorphic functions φij, 1 ≤ i, j ≤ 3, we can assume that their
divisors are given by

(φ21(P, x, tr)) =DP∞3 ,ν̂h1 (x,tr),...,ν̂g(x,tr) − DP∞1 ,μ̂h1 (x,tr),...,μ̂g(x,tr), (3.31)

(φ31(P, x, tr)) =DP∞3 ,ξ̂h2 (x,tr),...,ξ̂g(x,tr)
− DP∞2 ,μ̂h2 (x,tr),...,μ̂g(x,tr), (3.32)

(φ12(P, x, tr)) =DP∞1 ,μ̂h1 (x,tr),...,μ̂g(x,tr) − DP∞3 ,ν̂h1 (x,tr),...,ν̂g(x,tr), (3.33)

(φ32(P, x, tr)) =DP∞1 ,ξ̂h3 (x,tr),...,ξ̂g(x,tr)
− DP∞2 ,ν̂h3 (x,tr),...,ν̂g(x,tr), (3.34)

(φ13(P, x, tr)) =DP∞2 ,μ̂h2 (x,tr),...,μ̂g(x,tr) − DP∞3 ,ξ̂h2 (x,tr),...,ξ̂g(x,tr)
(3.35)

and (φ23(P, x, tr)) =DP∞2 ,ν̂h3 (x,tr),...,ν̂g(x,tr) − DP∞1 ,ξ̂h3 (x,tr),...,ξ̂g(x,tr)
, (3.36)
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for some natural numbers hi, 1 ≤ i ≤ 3. The case of hi > 1 for some 1 ≤ i ≤ 3 could happen,
particularly when y = −A[m]

ij /W[n]
jk , and E[m]

ij and 2(A[m]
ij )2 + W[n]

jk B[m]
ij have common zeros, or when

y = −C[m]
ij /W[n]

ik , and F[m]
ij and 2(C[m]

ij )2 + W[n]
ik D[m]

ij have common zeros, where {i, j, k} = {1, 2, 3}.

4. Algebro-geometric solutions
In order to straighten out the corresponding flows in the soliton hierarchy (2.10), we equip Kg

with a homology basis of a-cycles: a1, . . . , ag, and b-cycles: b1, . . . , bg, which are independent and
have intersection numbers as follows:

aj ◦ ak = 0, bj ◦ bk = 0 and aj ◦ bk = δjk, 1 ≤ j, k ≤ g.

In what follows, we will choose the following set as our basis for the space of holomorphic
differentials on Kg [2,3]:

ω̃l = 1
3y2(P) + Sm

{
λl−1 dλ, 1 ≤ l ≤ deg(Sm) − 1,

y(P)λl−deg(Sm) dλ, deg(Sm) ≤ l ≤ g,
(4.1)

which are g linearly independent holomorphic differentials on Kg. By using the above homology
basis, the period matrices A = (Ajk) and B = (Bjk) can be constructed as

Akj =
∫

aj

ω̃k and Bkj =
∫

bj

ω̃k, 1 ≤ j, k ≤ g. (4.2)

It is possible to show that matrices A and B are invertible [4]. So, we can define the matrices C
and τ by C = A−1 and τ = A−1B. The matrix τ can be shown to be symmetric (τkj = τjk), and it has
a positive-definite imaginary part (Im τ > 0) [5–7]. If we normalize ω̃l, 1 ≤ l ≤ g, into a new basis
ω= (ω1, . . . ,ωg):

ωj =
g∑

l=1

Cjlω̃l, 1 ≤ j ≤ g, (4.3)

where C = (Cij)g×g, then we obtain

∫
ak

ωj =
g∑

l=1

Cjl

∫
ak

ω̃l = δjk and
∫

bk

ωj = τjk, 1 ≤ j, k ≤ g. (4.4)

To compute the b-periods of Abelian differentials of the second kind, we assume that

ωk =
ζ→0

∞∑
l=0

�k,l(P∞j )ζ
l dζ , as P → P∞j , 1 ≤ k ≤ g, 1 ≤ j ≤ 3, (4.5)

where �k,l(P∞j ), l ≥ 0, are constants.
Now, let Tg be the period lattice Tg = {z ∈ C

g | z = N + Lτ , N, L ∈ Z
g}. The complex torus Tg =

C
g/Tg is called the Jacobian variety of Kg. The Abel map A : Kg → Tg is defined as follows:

A(P) =
(∫P

Q0

ω1, . . . ,
∫P

Q0

ωg

)
(mod Tg), (4.6)

where Q0 ∈Kg is a fixed base point. We take the natural linear extension of the Abel map to the
space of divisors Div(Kg):

A
(∑

nkPk

)
=
∑

nkA(Pk), (4.7)

where P, Pk ∈Kg.
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Let ω(2)
∞j,l

(P), 1 ≤ j ≤ 3 and l ≥ 2, denote the normalized Abelian differential of the second kind,
being holomorphic on Kg\{P∞j} and possessing the asymptotic property:

ω
(2)
∞j,l

(P) =
ζ→0

(ζ−l + O(1)) dζ , as P → P∞j , 1 ≤ j ≤ 3, l ≥ 2. (4.8)

The adopted normalization condition is
∫

ak

ω
(2)
∞j,l

= 0, 1 ≤ k ≤ g, 1 ≤ j ≤ 3, l ≥ 2 (4.9)

and (4.8) implies that the residues of ω(2)
∞j,l

at P∞j are all zero. Based on the asymptotic properties
of the Baker–Akhiezer functions ψj, 1 ≤ j ≤ 3, we introduce the following Abelian differentials of
the second kind

Ω
(2)
2 =ω

(2)
P∞1 ,2 + ω

(2)
P∞2 ,2 − 2ω(2)

P∞3 ,2 (4.10)

and

Ω̃
(2)
r = rω(2)

P∞1 ,r+1 + rω(2)
P∞2 ,r+1 − 2rω(2)

P∞3 ,r+1. (4.11)

Then for Ω (2)
2 , we have the asymptotic expansions

∫P

Q0

Ω
(2)
2 =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ζ−1 + e(2)
2,1(Q0) + O(ζ ), as P → P∞1 ,

−ζ−1 + e(2)
2,2(Q0) + O(ζ ), as P → P∞2 ,

2ζ−1 + e(2)
2,3(Q0) + O(ζ ), as P → P∞3

(4.12)

and for Ω̃ (2)
r , we have the asymptotic expansions:

∫P

Q0

Ω̃
(2)
r =

ζ→0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ζ−r + ẽ(2)
r,1(Q0) + O(ζ ), as P → P∞1 ,

−ζ−r + ẽ(2)
r,2(Q0) + O(ζ ), as P → P∞2 ,

2ζ−r + ẽ(2)
r,3(Q0) + O(ζ ), as P → P∞3 ,

(4.13)

where the paths of integration are chosen to be the same as the one in the Abel map (4.6). Define
the b-periods of the differentials Ω (2)

2 and Ω̃ (2)
r , respectively, by

U(2)
2 = (U(2)

2,1, . . . , U(2)
2,g), U(2)

2,k = 1
2π i

∫
bk

Ω
(2)
2 , 1 ≤ k ≤ g (4.14)

and

Ũ
(2)
r = (Ũ(2)

r,1, . . . , Ũ(2)
r,g), Ũ(2)

r,k = 1
2π i

∫
bk

Ω̃
(2)
r , 1 ≤ k ≤ g. (4.15)

Through the relationship between the normalized meromorphic differential of the second kind
and the normalized holomorphic differentials ωk, 1 ≤ k ≤ g, we can derive that

U(2)
2,k = �k,0(P∞1 ) + �k,0(P∞2 ) − 2�k,0(P∞3 ), 1 ≤ k ≤ g (4.16)

and

Ũ(2)
r,k = �k,r(P∞1 ) + �k,r(P∞2 ) − 2�k,r(P∞3 ), 1 ≤ k ≤ g. (4.17)

Let ω(3)
Q1,Q2

stand for the normalized Abelian differential of the third kind, holomorphic

on Kg\{Q1, Q2} and with simple poles at Ql with residues (−1)l+1, l = 1, 2. The adopted
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normalization condition reads ∫
ak

ω
(3)
Q1,Q2

= 0, 1 ≤ k ≤ g (4.18)

and, thus, ∫
bk

ω
(3)
Q1,Q2

= 2π i
∫Q1

Q2

ωk, 1 ≤ k ≤ g, (4.19)

where the path of integration from Q2 to Q1 does not intersect the cycles a1, . . . , ag, b1, . . . , bg. We
then set

e(3)
2,j (Q0) = e(3)

2,j (Q0, x, x0, tr, t0,r) =
∫P∞j

Q0

ω
(3)
ν̂0(x0,t0,r),ν̂0(x,tr)

, 1 ≤ j ≤ 3 (4.20)

and

e(3)
3,j (Q0) = e(3)

3,j (Q0, x, x0, tr, t0,r) =
∫P∞j

Q0

ω
(3)
ξ̂0(x0,t0,r),ξ̂0(x,tr)

, 1 ≤ j ≤ 3, (4.21)

where the paths of integration are chosen to be the same as the one in the Abel map (4.6).
Denote by θ (z) the Riemann theta function associated with Kg equipped with the above

homology basis [6]:
θ (z) =

∑
N∈Zg

exp(π i〈Nτ , N〉 + 2π i〈N, z〉), (4.22)

where z = (z1, . . . , zg) ∈ C
g is a complex vector, and 〈·, ·〉 stands for the Hermitian inner product on

C
g:

〈z, w〉 =
g∑

j=1

ziw̄j, z = (z1, . . . , zg) ∈ C
g, w = (w1, . . . , wg) ∈ C

g. (4.23)

The Riemann theta function is even and quasi-periodic. More precisely, it satisfies

θ (z1, . . . , zj−1, −zj, zj+1, . . . , zg) = θ (z), 1 ≤ j ≤ g (4.24)

and
θ (z + N + Lτ ) = exp(−π i〈Lτ , L〉 − 2π i〈L, z〉)θ (z), (4.25)

where z = (z1, . . . , zg) ∈ C
g, N = (N1, . . . , Ng) ∈ Z

g and L = (L1, . . . , Lg) ∈ Z
g. For brevity, define the

function z : Kg × σ gKg → C
g by

z(P, Q) = M − A(P) +
g∑

j=1

DQ1,...,Qg (Qj)A(Qj), (4.26)

where P ∈Kg, Q = (Q1, . . . , Qg) ∈ σ gKg, σ gKg denotes the gth symmetric power of Kg [7], and
M = (M1, . . . , Mg) is a vector of Riemann constants [6,8]:

Mj = 1
2

(1 + τjj) −
g∑

l=1, l�=j

∫
al

ωl(P)
∫P

Q0

ωj, 1 ≤ j ≤ g. (4.27)

By Riemann’s vanishing theorem [8,9], the function θ (z(P, Q)) has exactly g zeros Q1, . . . , Qg if the
divisor D = Q1 + · · · Qg is non-special.

Introduce three particular points in the gth symmetric power σ gKg:

μ̂(x, tr) = (μ̂1(x, tr), . . . , μ̂g(x, tr)), (4.28)

ν̂(x, tr) = (ν̂1(x, tr), . . . , ν̂g(x, tr)), (4.29)

ξ̂ (x, tr) = (ξ̂1(x, tr), . . . , ξ̂g(x, tr)) (4.30)

and denote the corresponding three particular divisors in Div(Kg) by

Dμ̂(x,tr) =
g∑

j=1

μ̂j(x, tr), Dν̂(x,tr) =
g∑

j=1

ν̂j(x, tr) and D
ξ̂ (x,tr)

=
g∑

j=1

ξ̂j(x, tr). (4.31)
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Theorem 4.1 (Theta function representations of the Baker–Akhiezer functions). Let Ωμ ⊂ C
2

be an open and connected set, (x0, t0,r), (x, tr) ∈Ωμ and P = (λ, y) ∈Kg\{P∞i , 1 ≤ i ≤ 3}. Suppose that Kg

is non-singular and Dμ̂(x,tr) or Dν̂(x,tr) or D
ξ̂ (x,tr)

is non-special for (x, tr) ∈Ωμ. Then, the Baker–Akhiezer

functions have the following theta function representations:

ψ1(P, x, x0, tr, t0,r)

= θ (z(P, μ̂(x, tr)))θ (z(P∞3 , μ̂(x0, t0,r)))

θ (z(P∞3 , μ̂(x, tr)))θ (z(P, μ̂(x0, t0,r)))
exp

((
e(2)

2,3(Q0) −
∫P

Q0

Ω
(2)
2

)
(x − x0)

+
(

ẽ(2)
r,3(Q0) −

∫P

Q0

Ω̃
(2)
r

)
(tr − t0,r)

)
, (4.32)

ψ2(P, x, x0, tr, t0,r)

= θ (z(P, ν̂(x, tr)))θ (z(P∞1 , ν̂(x0, t0,r)))
θ (z(P∞1 , ν̂(x, tr)))θ (z(P, ν̂(x0, t0,r)))

exp

((
e(2)

2,1(Q0) −
∫P

Q0

Ω
(2)
2

)
(x − x0)

+
(

ẽ(2)
r,1(Q0) −

∫P

Q0

Ω̃
(2)
r

)
(tr − t0,r) +

(
e(3)

2,1(Q0) −
∫P

Q0

ω
(3)
ν̂0(x0,t0,r),ν̂0(x,tr)

))
(4.33)

and ψ3(P, x, x0, tr, t0,r)

= θ (z(P, ξ̂ (x, tr)))θ (z(P∞2 , ξ̂ (x0, t0,r)))

θ (z(P∞2 , ξ̂ (x, tr)))θ (z(P, ξ̂ (x0, t0,r)))
exp

((
e(2)

2,2(Q0) −
∫P

Q0

Ω
(2)
2

)
(x − x0)

+
(

ẽ(2)
r,2(Q0) −

∫P

Q0

Ω̃
(2)
r

)
(tr − t0,r) +

(
e(3)

3,2(Q0) −
∫P

Q0

ω
(3)
ξ̂0(x0,t0,r),ξ̂0(x,tr)

))
, (4.34)

where the paths of integration are the same as the one in the Abel map (4.6).

Proof. Let Ψ1,Ψ2 and Ψ3 denote the right-hand sides of (4.32), (4.33) and (4.34), respectively.
By theorem 4.4 in [1], ψ1 has the simple zeros μ̂1(x, tr), . . . , μ̂g(x, tr) and the simple poles
μ̂1(x0, t0,r), . . . , μ̂g(x0, t0,r), ψ2 has the simple zeros ν̂0(x, tr), ν̂1(x, tr), . . . , ν̂g(x, tr) and the simple
poles ν̂0(x0, t0,r), ν̂1(x0, t0,r), . . . , ν̂g(x0, t0,r), and ψ3 has the simple zeros ξ̂0(x, tr), ξ̂1(x, tr), . . . , ξ̂g(x, tr)
and the simple poles ξ̂0(x0, t0,r), ξ̂1(x0, t0,r), . . . , ξ̂g(x0, t0,r). They all have three essential singularities
at P∞1 , P∞2 , P∞3 . By Riemann’s vanishing theorem [8], we know that Ψi, 1 ≤ i ≤ 3, have the
same properties as ψi, 1 ≤ i ≤ 3, respectively. Thus, the Riemann-Roch theorem tells us that
Ψi/ψi = γi, 1 ≤ i ≤ 3, where γi, 1 ≤ i ≤ 3, are constants depending on P. Using the asymptotic
properties of ψi and Ψi, 1 ≤ i ≤ 3, one has

Ψ1

ψ1
=
ζ→0

exp(−2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ ))
exp(−2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ ))

=
ζ→0

1 + O(ζ ) as P → P∞3 ,

Ψ2

ψ2
=
ζ→0

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ ))
exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))

=
ζ→0

1 + O(ζ ) as P → P∞1

and
Ψ3

ψ3
=
ζ→0

exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ ))
exp(ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))

=
ζ→0

1 + O(ζ ) as P → P∞2 .

These show that γi = 1, 1 ≤ i ≤ 3. Therefore, Ψi =ψi, 1 ≤ i ≤ 3. This completes the proof of the
theorem. �

Using the linear equivalences [9,10]

DP∞3 ,ν̂h1 (x,tr),...,ν̂g(x,tr) ∼DP∞1 ,μ̂h1 (x,tr),...,μ̂g(x,tr),

DP∞3 ,ξ̂h2 (x,tr),...,ξ̂g(x,tr)
∼DP∞2 ,μ̂h2 (x,tr),...,μ̂g(x,tr)

and DP∞1 ,ξ̂h3 (x,tr),...,ξ̂g(x,tr)
∼DP∞2 ,ν̂h3 (x,tr),...,ν̂g(x,tr),
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which are due to (3.31), (3.32) and (3.34), we obtain

A(P∞3 ) +
g∑

j=h1

A(ν̂j(x, tr)) =A(P∞1 ) +
g∑

j=h1

A(μ̂j(x, tr)),

A(P∞3 ) +
g∑

j=h2

A(ξ̂j(x, tr)) =A(P∞2 ) +
g∑

j=h2

A(μ̂j(x, tr))

and A(P∞1 ) +
g∑

j=h3

A(ξ̂j(x, tr)) =A(P∞2 ) +
g∑

j=h3

A(ν̂j(x, tr)),

respectively. Define the Abel–Jacobi coordinates

ρ(1)(x, tr) =A(Dμ̂(x,tr)) =
g∑

j=1

∫ μ̂j(x,tr)

Q0

ω, (4.35)

ρ(2)(x, tr) =A(Dν̂(x,tr)) =
g∑

j=1

∫ ν̂j(x,tr)

Q0

ω, (4.36)

ρ(3)(x, tr) =A(D
ξ̂ (x,tr)

) =
g∑

j=1

∫ ξ̂j(x,tr)

Q0

ω (4.37)

and then we have

θ (z(P, μ̂(x, tr))) = θ (M − A(P) + ρ(1)(x, tr)),

θ (z(P, ν̂(x, tr))) = θ (M − A(P) + ρ(2)(x, tr))

and θ (z(P, ξ̂ (x, tr))) = θ (M − A(P) + ρ(3)(x, tr)).

The Abel–Jacobi coordinates can be linearized on the Riemann surface Kg as follows.

Theorem 4.2 (Straightening out of the flows). Let (x, tr), (x0, t0,r) ∈ C
2 and u = (p1, p2, q1, q2)T

solve the rth four-component AKNS equations (2.10). Suppose that Kg is non-singular and Dμ̂(x,tr) or
Dν̂(x,tr) or D

ξ̂ (x,tr)
is non-special. Then, we have

ρ(1)(x, tr) = ρ(1)(x0, t0,r) + U(2)
2 (x − x0) + Ũ

(2)
2,r(t − t0,r) (mod Tg), (4.38)

A(ν̂0(x, tr)) + ρ(2)(x, tr) =A(ν̂0(x0, t0,r)) + ρ(2)(x0, t0,r)

+ U(2)
2 (x − x0) + Ũ

(2)
2,r(t − t0,r) (mod Tg) (4.39)

and A(ξ̂0(x, tr)) + ρ(3)(x, tr) =A(ξ̂0(x0, t0,r)) + ρ(3)(x0, t0,r)

+ U(2)
2 (x − x0) + Ũ

(2)
2,r(t − t0,r) (mod Tg). (4.40)

Proof. In order to prove the theorem, we introduce three meromorphic differentials

Ωj(x, x0, tr, t0,r) = ∂

∂λ
ln(ψj(P, x, x0, tr, t0,r)) dλ, 1 ≤ j ≤ 3. (4.41)

Let us first prove (4.38). From the theta function representation (4.32) for ψ1, one infers

Ω1(x, x0, tr, t0,r) = −(x − x0)Ω (2)
2 − (tr − t0,r)Ω̃

(2)
r +

g∑
j=1

ω
(3)
μ̂j(x,tr),μ̂j(x0,t0,r)

+ ω̃, (4.42)

 on July 31, 2017http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


17

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20170233

...................................................

where ω̃ is a holomorphic differential on Kg, which can be expressed by

ω̃=
g∑

j=1

hjωj, (4.43)

hj ∈ C being constants, 1 ≤ j ≤ g.
Since ψ1(P, x, x0, tr, t0,r) is single-valued on Kg, all a- and b-periods of Ω1 are integer multiples

of 2π i and thus

2π ilk =
∫

ak

Ω1(x, x0, tr, t0,r) =
∫

ak

ω̃= hk, 1 ≤ k ≤ g,

for some lk ∈ Z. Similarly, for some nk ∈ Z, we have

2π ink =
∫

bk

Ω1(x, x0, tr, t0,r)

= −(x − x0)
∫

bk

Ω
(2)
2 − (tr − t0,r)

∫
bk

Ω̃
(2)
r +

g∑
j=1

∫
bk

ω
(3)
μ̂j(x,tr),μ̂j(x0,t0,r)

+
∫

bk

ω̃

= −(x − x0)
∫

bk

Ω
(2)
2 − (tr − t0,r)

∫
bk

Ω̃
(2)
r + 2π i

g∑
j=1

∫ μ̂j(x,tr)

μ̂j(x0,t0,r)
ωk + 2π i

g∑
j=1

lj

∫
bk

ωj

= −2π i(x − x0)U(2)
2,k − 2π i(tr − t0,r)Ũ

(2)
r,k

+ 2π i

⎛
⎝ g∑

j=1

∫ μ̂j(x,tr)

Q0

ωk −
g∑

j=1

∫ μ̂j(x0,t0,r)

Q0

ωk

⎞
⎠+ 2π i

g∑
j=1

ljτjk, 1 ≤ k ≤ g.

Thus, we arrive at

N = −(x − x0)U(2)
2 − (tr − t0,r)Ũ

(2)
r +

g∑
j=1

∫ μ̂j(x,tr)

Q0

ω −
g∑

j=1

∫ μ̂j(x0,t0,r)

Q0

ω + Lτ , (4.44)

where N = (n1, . . . , ng) ∈ Z
g and L = (l1, . . . , lg) ∈ Z

g. The equation (4.44) exactly tells the first
equality in (4.38).

Similarly, we can prove (4.39) and (4.40) by using the other two meromorphic differentials
Ω2 and Ω3, respectively. The only difference is to change

∑g
j=1 ω

(3)
μ̂j(x,tr),μ̂j(x0,t0,r)

into∑g
j=0 ω

(3)
ν̂j(x,tr),ν̂j(x0,t0,r)

or
∑g

j=0 ω
(3)
ξ̂j(x,tr),ξ̂j(x0,t0,r)

on the right-hand side of (4.42), which brings the terms

A(ν̂0(x, tr)) and A(ν̂0(x0, t0,r)) in (4.39), and A(ξ̂0(x, tr)) and A(ξ̂0(x0, t0,r)) in (4.40). The proof is
completed. �

Now, we are able to present theta function representations of solutions of the rth four-
component AKNS equations (2.10).

Theorem 4.3 (Theta function representations of solutions). Let Ωμ ⊂ C
2 be an open and

connected set, (x0, t0,r), (x, tr) ∈Ωμ and P = (λ, y) ∈Kg\{P∞i , 1 ≤ i ≤ 3}. Suppose that Kg is non-singular
and Dμ̂(x,tr) or Dν̂(x,tr) or D

ξ̂ (x,tr)
is non-special for (x, tr) ∈Ωμ. Then, the solution u = (p1, p2, q1, q2)T of

the rth four-component AKNS equations (2.10) has the following theta function representations:

p1(x, tr) = p1(x0, t0,r)
θ (z(P∞1 , μ̂(x, tr)))θ (z(P∞3 , μ̂(x0, t0,r)))

θ (z(P∞3 , μ̂(x, tr)))θ (z(P∞1 , μ̂(x0, t0,r)))

× exp((e(2)
2,3(Q0) − e(2)

2,1(Q0))(x − x0) + (ẽ(2)
r,3(Q0) − ẽ(2)

r,1(Q0))(tr − t0,r)), (4.45)

p2(x, tr) = p2(x0, t0,r)
θ (z(P∞2 , μ̂(x, tr)))θ (z(P∞3 , μ̂(x0, t0,r)))

θ (z(P∞3 , μ̂(x, tr)))θ (z(P∞2 , μ̂(x0, t0,r)))

× exp((e(2)
2,3(Q0) − e(2)

2,2(Q0))(x − x0) + (ẽ(2)
r,3(Q0) − ẽ(2)

r,2(Q0))(tr − t0,r)) (4.46)
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and

q1(x, tr) = q1(x0, t0,r)
θ (z(P∞3 , ν̂(x, tr)))θ (z(P∞1 , ν̂(x0, t0,r)))
θ (z(P∞1 , ν̂(x, tr)))θ (z(P∞3 , ν̂(x0, t0,r)))

× exp((e(2)
2,1(Q0) − e(2)

2,3(Q0))(x − x0) + (ẽ(2)
r,1(Q0) − ẽ(2)

r,3(Q0))(tr − t0,r)

+ e(3)
2,1(Q0, x, x0, tr, t0,r) − e(3)

2,3(Q0, x, x0, tr, t0,r)), (4.47)

q2(x, tr) = q2(x0, t0,r)
θ (z(P∞3 , ξ̂ (x, tr)))θ (z(P∞2 , ξ̂ (x0, t0,r)))

θ (z(P∞2 , ξ̂ (x, tr)))θ (z(P∞3 , ξ̂ (x0, t0,r)))

× exp((e(2)
2,2(Q0) − e(2)

2,3(Q0))(x − x0) + (ẽ(2)
r,2(Q0) − ẽ(2)

r,3(Q0))(tr − t0,r)

+ e(3)
3,2(Q0, x, x0, tr, t0,r) − e(3)

3,3(Q0, x, x0, tr, t0,r)). (4.48)

Proof. Based on the asymptotic properties of Ω (2)
2 and Ω̃ (2)

r in (4.12) and (4.13), and following
theorem 4.1, we can expand the Baker–Akhiezer functions near the indicated points at infinity as
follows:

ψ1 =
ζ→0

θ (z(P∞1 , μ̂(x, tr)))θ (z(P∞3 , μ̂(x0, t0,r)))

θ (z(P∞3 , μ̂(x, tr)))θ (z(P∞1 , μ̂(x0, t0,r)))

× exp((e(2)
2,3(Q0) − e(2)

2,1(Q0))(x − x0) + (ẽ(2)
r,3(Q0) − ẽ(2)

r,1(Q0))(tr − t0,r)

+ ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ )), as P → P∞1 ,

ψ1 =
ζ→0

θ (z(P∞2 , μ̂(x, tr)))θ (z(P∞3 , μ̂(x0, t0,r)))

θ (z(P∞3 , μ̂(x, tr)))θ (z(P∞2 , μ̂(x0, t0,r)))

× exp((e(2)
2,3(Q0) − e(2)

2,2(Q0))(x − x0) + (ẽ(2)
r,3(Q0) − ẽ(2)

r,2(Q0))(tr − t0,r)

+ ζ−1(x − x0) + ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ )), as P → P∞2

and

ψ2 =
ζ→0

θ (z(P∞3 , ν̂(x, tr)))θ (z(P∞1 , ν̂(x0, t0,r)))
θ (z(P∞1 , ν̂(x, tr)))θ (z(P∞3 , ν̂(x0, t0,r)))

exp((e(2)
2,1(Q0) − e(2)

2,3(Q0))(x − x0)

+ (ẽ(2)
r,1(Q0) − ẽ(2)

r,3(Q0))(tr − t0,r) + (e(3)
2,1(Q0) − e(3)

2,3(Q0))

− 2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ )), as P → P∞3 ,

ψ3 =
ζ→0

θ (z(P∞3 , ξ̂ (x, tr)))θ (z(P∞2 , ξ̂ (x0, t0,r)))

θ (z(P∞2 , ξ̂ (x, tr)))θ (z(P∞3 , ξ̂ (x0, t0,r)))
exp((e(2)

2,2(Q0) − e(2)
2,3(Q0))(x − x0)

+ (ẽ(2)
r,2(Q0) − ẽ(2)

r,3(Q0))(tr − t0,r) + (e(3)
3,2(Q0) − e(3)

3,3(Q0))

− 2ζ−1(x − x0) − 2ζ−r(tr − t0,r) + O(ζ ))(1 + O(ζ )), as P → P∞3 .

Now, comparing with the asymptotic behaviours of ψ1 and ψ2 and ψ3 established in (3.10), (3.20)
and (3.30), respectively, we obtain the Riemann theta function presentations of p1, p2, q1 and q2 in
(4.45)–(4.48) immediately. This completes the proof. �

5. Concluding remarks
The present study, consisting of two parts, is dedicated to the development of explicit Riemann
theta function representations of algebro-geometric solutions to entire soliton hierarchies.
This is the second part. In this part, we straightened out all soliton flows under the Abel–
Jacobi coordinates through determining zeros and poles of the Baker–Akhiezer functions, and
constructed the Riemann theta function representations for algebro-geometric solutions to the
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four-component AKNS equations from checking asymptotic behaviours of the Baker–Akhiezer
functions at the points at infinity.

We point out that we can similarly construct algebro-geometric solutions to a linear
combination of different AKNS equations in the four-component AKNS soliton hierarchy,
which just increases asymptotic complexity [11–13]. Various choices of linear combinations of
Lax matrices lead to different algebro-geometric solutions to soliton hierarchies. However, it
needs further investigation how to apply higher-order algebraic curves in finding algebro-
geometric solutions to soliton equations. Higher-order matrix spectral problems [14–16] generate
tremendous difficulty in computing algebro-geometric solutions. More components in the vector
of eigenfunctions will cause complicated situations while deriving asymptotic expansions for the
Baker–Akhiezer functions.

Two other interesting directions for further study are reductions and a density property
of algebro-geometric solutions. Reducing algebro-geometric solutions tells various classes of
exact solutions to soliton equations [9]. Two such classes of analytical solutions on the real
field are quasi-periodic wave solutions [17] and lump solutions [18–20]. The study of lump
solutions by bilinear techniques also brings us to an important question in multilinear algebra:
how to determine positive definiteness (or positive semidefiniteness) for hypermatrices of even
orders? For example, when does a real fourth-order hypermatrix, A = (aijkl)n×n×n×n, satisfy∑n

i,j,k,l=1 aijklxixjxkxl > 0 (or ≥ 0) for all non-zero vectors (x1, . . . , xn) ∈ R
n? The density property

tells us about the computability of exact solutions to soliton equations via approximations.
Commuting Lie symmetries, inherited from a recursion operator of a soliton hierarchy, yields an
infinite number of one-parameter Lie groups of solutions to each equation in the hierarchy [21].
We conjecture that those infinitely many one-parameter Lie groups of solutions, starting from
equilibria and algebro-geometric solutions, form a dense subset of solutions in the solution set of
each equation in the underlying soliton hierarchy, under the uniform norm [22].
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