Trigonal curves and algebro-geometric solutions to soliton hierarchies II

Wen-Xiu Ma1,2,3,4

1Department of Mathematics, Zhejiang Normal University, Jinhua 321004, People’s Republic of China
2College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, People’s Republic of China
3Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA
4Department of Mathematical Sciences, North-West University, Mmabatho 2735, South Africa

This is a continuation of a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. In this part, we straighten out all flows in soliton hierarchies under the Abel–Jacobi coordinates associated with Lax pairs, upon determining the Riemann theta function representations of the Baker–Akhiezer functions, and generate algebro-geometric solutions to soliton hierarchies in terms of the Riemann theta functions, through observing asymptotic behaviours of the Baker–Akhiezer functions. We emphasize that we analyse the four-component AKNS soliton hierarchy in such a way that it leads to a general theory of trigonal curves applicable to construction of algebro-geometric solutions of an arbitrary soliton hierarchy.

1. Introduction

This is a study on Riemann theta function representations of algebro-geometric solutions to soliton hierarchies. It consists of two parts. In the first part [1], we introduced a class of trigonal curves generated from linear combinations of Lax matrices in the zero curvature formulation, analysed general properties of meromorphic functions defined as ratios of the Baker–Akhiezer functions, including derivative relations...
between derivatives of the characteristic variables with respect to time and space, and determined zeros and poles of the Baker–Akhiezer functions and their Dubrovin-type dynamical equations.

This is the second part, comprising five sections. In §2, we present basic notation and background, introduced and discussed in the first part [1], on the four-component AKNS soliton hierarchy, trigonal curves and the Baker–Akhiezer functions, which will be needed in the subsequent sections of this part. In §3, we explore asymptotic properties for the three Baker–Akhiezer functions in the four-component AKNS case at the points at infinity. In §4, we straighten out all the flows of the four-component AKNS soliton hierarchy under the Abel–Jacobi coordinates, and construct algebro-geometric solutions of the whole soliton hierarchy by use of the Riemann theta functions according to the asymptotic properties of the Baker–Akhiezer functions. In the last section, we present a few concluding remarks and open questions related to lump solitons and soliton hierarchies.

2. Notation and background

(a) Four-component AKNS hierarchy

The four-component AKNS soliton hierarchy is associated with the following 3×3 matrix spectral problem:

$$\psi_x = U\psi = U(u, \lambda)\psi, \quad U = (U_{ij})_{3 \times 3} = \begin{bmatrix} -2\lambda & p_1 & p_2 \\ q_1 & \lambda & 0 \\ q_2 & 0 & \lambda \end{bmatrix}, \quad \psi = \begin{bmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{bmatrix},$$ \hspace{1cm} (2.1)

where λ is a spectral parameter and u is a four-component potential

$$u = (p, q^T)^T, \quad p = (p_1, p_2), \quad q = (q_1, q_2)^T.$$ \hspace{1cm} (2.2)

As usual, we solve the stationary zero curvature equation $W_t = [U, W]$, corresponding to (2.1), to obtain a formal series solution W:

$$W = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \sum_{k=0}^{\infty} W_k \lambda^{-k}, \quad W_k = W_k(u) = \begin{bmatrix} d^[k] & b^[k] \\ e^[k] & c^[k] \end{bmatrix}, \quad k \geq 0,$$ \hspace{1cm} (2.3)

where $d^[k]$ are scalar functions, and $b^[k], c^[k]$ are vector functions and $d^[k]$ are matrix functions assumed to be represented by

$$b^[k] = (b_1^[k], b_2^[k]), \quad c^[k] = (c_1^[k], c_2^[k])^T \quad \text{and} \quad d^[k] = (d_0^[k])_{2 \times 2}, \quad k \geq 0.$$ \hspace{1cm} (2.4)

All the involved functions above are recursively defined by

$$b^[0] = 0, \quad c^[0] = 0, \quad d^[0] = -2, \quad d^[0] = I_2 = \text{diag}(1, 1),$$ \hspace{1cm} (2.5a)

$$b^[k+1] = \frac{1}{3} \left(-b^[k] + pd^[k] - d^[k]p \right), \quad k \geq 0,$$ \hspace{1cm} (2.5b)

$$c^[k+1] = \frac{1}{3} \left(c^[k] - qd^[k] + d^[k]q \right), \quad k \geq 0,$$ \hspace{1cm} (2.5c)

and

$$a^[k] = pc^[k] - b^[k]q, \quad d^[k] = qd^[k] - c^[k]p, \quad k \geq 1,$$ \hspace{1cm} (2.5d)

where we take constants of integration to be zero:

$$W_k|_{u=0} = 0, \quad k \geq 1.$$ \hspace{1cm} (2.6)

For all integers $r \geq 0$, we have introduced the following Lax matrices:

$$V^r = V^r(u, \lambda) = (V^r_{ij})_{3 \times 3} = (\lambda^r W)_+ = \sum_{k=0}^{r} W_k \lambda^{-k}, \quad r \geq 0,$$ \hspace{1cm} (2.7)

to formulate the temporal spectral problems

$$\psi_t = V^r \psi = V^r(u, \lambda)\psi, \quad r \geq 0.$$ \hspace{1cm} (2.8)
The compatibility conditions of (2.1) and (2.8), i.e. the zero curvature equations

\[U_t - V_x^{[r]} + [U, V^{[r]}] = 0, \quad r \geq 0 \]

(2.9)
generate the four-component AKNS soliton hierarchy

\[u_t = \begin{bmatrix} p^T \\ q \end{bmatrix}, \quad K_r = \begin{bmatrix} -3b^{[r+1]T} \\ 3c^{[r+1]} \end{bmatrix}, \quad r \geq 0. \]

(2.10)

The Lax matrices above have a relation

\[V^{[r+1]} = \sum_{k=0}^{r+1} W_k \lambda^{r-k+1} = \lambda \sum_{k=0}^{r+1} W_k \lambda^{r-k} = \lambda V^{[r]} + W_{r+1}, \quad r \geq 0, \]

(2.11)

which allows us to determine asymptotic properties of the Baker–Akhiezer functions recursively in the next section. Obviously, the first two nonlinear systems in the four-component AKNS which allows us to determine asymptotic properties of the Baker–Akhiezer functions recursively

The compactified Riemann surface, still denoted by \(\mathcal{K}_g \), consists of points satisfying \(\mathcal{F}_m(\alpha, y) = 0 \) and the three points at infinity: \(\{ P_{\infty_1}, P_{\infty_2}, P_{\infty_3} \} \) (see [1] for details).

\(\mathcal{F}_m(\alpha, y) = 0 \)
We have also introduced the vector of associated Baker–Akhiezer functions \(\psi(P,x,x_0,t_r,t_{0r}) \) through
\[
\psi_i(P,x,x_0,t_r,t_{0r}) = U(u(x,t_r),\lambda(P)) \psi(P,x,x_0,t_r,t_{0r}),
\]
\[
\psi_{i'}(P,x,x_0,t_r,t_{0r}) = V^{[r]}(u(x,t_r),\lambda(P)) \psi(P,x,x_0,t_r,t_{0r}),
\]
and
\[
\psi_i(P,x,x_0,t_r,t_{0r}) = y(P) \psi(P,x,x_0,t_r,t_{0r})
\]
where \(x, t_r, x_0, t_{0r}, \lambda(P), y(P) \in \mathbb{C} \) and \(P = (\lambda, y) \in \mathcal{K}_g \setminus \{P_{\infty_1}, P_{\infty_2}, P_{\infty_3}\} \). Associated with the Baker–Akhiezer functions, a set of meromorphic functions are defined by
\[
\phi_{ij} = \phi_{ij}(P,x,x_0,t_r,t_{0r}) = \frac{\psi_i(P,x,x_0,t_r,t_{0r})}{\psi_j(P,x,x_0,t_r,t_{0r})}, \quad 1 \leq i, j \leq 3.
\]
The property (2.21) leads to
\[
\phi_{ij} = \frac{y W^{[n]}_{ik} + C^{[n]}_{ij}}{y W^{[n]}_{jk} + A^{[n]}_{ij}} = \frac{F^{[n]}_{ij}}{E^{[n]}_{ij}} = \frac{y^2 W^{[n]}_{jk} - y A^{[n]}_{ij} + B^{[n]}_{ij}}{E^{[n]}_{ij}},
\]
with
\[
A^{[n]}_{ij} = W^{[n]}_{ji} W^{[n]}_{ik} - W^{[n]}_{jk} W^{[n]}_{ii},
\]
\[
B^{[n]}_{ij} = W^{[n]}_{jk} (W^{[n]}_{jj} W^{[n]}_{kk} - W^{[n]}_{jk} W^{[n]}_{kj}) + W^{[n]}_{ji} (W^{[n]}_{ji} W^{[n]}_{kk} - W^{[n]}_{ji} W^{[n]}_{kj}),
\]
\[
C^{[n]}_{ij} = A^{[n]}_{ji}, \quad B^{[n]}_{ji} = B^{[n]}_{ij},
\]
\[
E^{[n]}_{ij} = (W^{[n]}_{ji})^2 W^{[n]}_{ki} + W^{[n]}_{ji} W^{[n]}_{jk} (W^{[n]}_{ii} - W^{[n]}_{kk}) - (W^{[n]}_{ji})^2 W^{[n]}_{ik},
\]
and
\[
F^{[n]}_{ij} = E^{[n]}_{ij},
\]
where \(\{i,j,k\} = \{1,2,3\} \). We know from Lemma 3.1 in [1] that the meromorphic functions \(\phi_{ij}, 1 \leq i,j \leq 3 \), defined above, satisfy the following Riccati-type equations
\[
\phi_{ij,x} = (U_{ii} - U_{jj}) \phi_{ij} + U_{ij} + U_{ik} \phi_{kj} - U_{ji} \phi_{ji}^2 - U_{jk} \phi_{ij} \phi_{kj}
\]
and
\[
\phi_{ij,t_r} = (V^{[r]}_{ii} - V^{[r]}_{jj}) \phi_{ij} + V^{[r]}_{ij} + V^{[r]}_{ik} \phi_{kj} - V^{[r]}_{ji} \phi_{ji}^2 - V^{[r]}_{jk} \phi_{ij} \phi_{kj},
\]
where \(\{i,j,k\} = \{1,2,3\} \).

To deal with asymptotic properties of the Baker–Akhiezer functions \(\psi_i, 1 \leq i \leq 3 \), we have set
\[
\tilde{f}^{(i)}_{r} = U_{i1} \phi_{1i} + U_{i2} \phi_{2i} + U_{i3} \phi_{3i} \quad \text{and} \quad \tilde{f}^{(i)}_{r'} = V^{[r]}_{i1} \phi_{1i} + V^{[r]}_{i2} \phi_{2i} + V^{[r]}_{i3} \phi_{3i}, \quad 1 \leq i \leq 3.
\]
Obviously, the properties (2.19) and (2.20) lead to
\[
\frac{\psi_i x(P,x,x_0,t_r,t_{0r})}{\psi_i(P,x,x_0,t_r,t_{0r})} = \tilde{f}^{(i)}_{r}(P,x,t_r), \quad 1 \leq i \leq 3
\]
and
\[
\frac{\psi_i x(P,x,x_0,t_r,t_{0r})}{\psi_i(P,x,x_0,t_r,t_{0r})} = \tilde{f}^{(i)}_{r'}(P,x,t_r), \quad 1 \leq i \leq 3,
\]
respectively. Then, we have the basic conservation laws
\[
\tilde{f}^{(i)}_{r,x} = \left(\frac{\psi_{i' r}}{\psi_{i'}} \right)_x = \left(\frac{\psi_{i x}}{\psi_i} \right)_{t_r} = \tilde{f}^{(i)}_{r,t_r}, \quad 1 \leq i \leq 3,
\]
from which infinitely many conservation laws can be generated by observing Laurent series of the conserved quantities \(\tilde{f}^{(i)}_{r}, 1 \leq i \leq 3 \), and the conserved fluxes \(\tilde{f}^{(i)}_{r'}, 1 \leq i \leq 3 \), at \(\lambda = \infty \) (or \(\zeta = \lambda^{-1} = 0 \)).
Finally, based on the basic conservation laws in (2.35), we know that (2.33) and (2.34) imply the expressions for the Baker–Akhiezer functions \(\psi_i, \ 1 \leq i \leq 3 \):

\[
\psi_i(P, x, x_0, t_r, t_{0,r}) = \exp \left(\int_{x_0}^{x} f_{1r}^{(0)}(P, x', t_r) \, dx' + \int_{t_{0,r}}^{t_r} f_{1r}^{(0)}(P, x_0, t') \, dt' \right), \quad 1 \leq i \leq 3.
\]

(2.36)

3. Asymptotic behaviours

In order to generate algebro-geometric solutions in terms of the Riemann theta functions, we need to explore asymptotic properties of the three Baker–Akhiezer functions \(\psi_i, \ 1 \leq i \leq 3 \), at the three points at infinity.

(a) Asymptotics of the first Baker–Akhiezer function

We first start with determining asymptotic properties of the meromorphic functions \(\phi_{21} \) and \(\phi_{31} \) at the points at infinity.

Lemma 3.1. Let \(u = (p_1, p_2, q_1, q_2)^T \) satisfy the rth four-component AKNS equations (2.10) and \(\xi = \lambda^{-1} \). Suppose that \(P \in \mathbb{C}^4 \setminus \{P_\infty, P_\infty, P_\infty\} \) and \((x, t_r) \in \mathbb{C}^2 \). Then

\[
\phi_{21}(P, x, t_r) \sim \begin{cases}
\frac{3}{p_1} \xi^{-1} + \frac{p_1 x_0 - p_1 p_2 x_1}{p_1^2} + \kappa_{1,1} \xi + O(\xi^2), & \text{as } P \to P_\infty, \\
\kappa_{2,0} + \kappa_{2,1} \xi + O(\xi^2), & \text{as } P \to P_{\infty_2}, \\
-\frac{q_2}{3} \xi^{-1} - \frac{q_2 x - q_2 x_0 - p_2 q_1 q_2}{27} \xi^3 + O(\xi^4), & \text{as } P \to P_{\infty_3},
\end{cases}
\]

(3.1)

and

\[
\phi_{31}(P, x, t_r) \sim \begin{cases}
\chi_{1,0} + \chi_{1,1} \xi + O(\xi^2), & \text{as } P \to P_\infty, \\
\frac{3}{p_2} \xi^{-1} + \frac{p_2 x - p_1 p_2 \kappa_{2,0}}{p_2^2} + \chi_{2,1} \xi + O(\xi^2), & \text{as } P \to P_{\infty_2}, \\
-\frac{q_2}{3} \xi^{-1} - \frac{q_2 x - q_2 x_0 - p_2 q_1 q_2}{27} \xi^3 + O(\xi^4), & \text{as } P \to P_{\infty_3},
\end{cases}
\]

(3.2)

where

\[
(p_1 \chi_{1,0})_x = p_1 q_2, \quad (p_1 \chi_{1,1})_x = \frac{\chi_{1,0}}{p_1} (p_1 p_2 x_1 - p_1 p_1 x_2 + p_1 q_1 + p_1^2 q_2 - p_1 p_1 x_1 + p_1 x_1),
\]

\[
\kappa_{1,1} = \frac{1}{3 p_1^3} (p_1^2 p_2 x_1 - p_1 p_1 x_2 + p_1 q_1 + p_1^2 q_2 - p_1 p_1 x_1 + p_1 x_1)
\]

and

\[
(p_2 \chi_{2,0})_x = p_2 q_1, \quad (p_2 \chi_{2,1})_x = \frac{\chi_{2,0}}{3 p_2} (p_1 p_2 p_2 x_2 - p_1 x_2 - p_1 p_2 q_1 p_1^2 q_2 + p_2 x_2 - p_2^2 x_2),
\]

\[
\chi_{2,1} = -\frac{1}{3 p_2^3} (p_1 p_2 p_2 x_2 - p_1 x_2 - p_1 p_2 q_1 p_1^2 q_2 + p_2 x_2 - p_2^2 x_2).
\]

Proof. We begin with the following three ansatzes:

\[
\phi_{21} \sim \kappa_{1,1}^{-1} \xi^{-1} + \kappa_{1,0} + \kappa_{1,2} \xi + O(\xi^3), \quad \phi_{31} \sim \chi_{1,0} + \chi_{1,1} \xi + O(\xi^2), \quad \text{as } P \to P_\infty;
\]

\[
\phi_{21} \sim \kappa_{2,0} + \kappa_{2,1} \xi + O(\xi^2), \quad \phi_{31} \sim \chi_{2,1}^{-1} + \chi_{2,0} + \chi_{2,1} \xi + O(\xi^2), \quad \text{as } P \to P_{\infty_2};
\]

and

\[
\phi_{21} \sim \kappa_{3,1} \xi + \kappa_{3,2} \xi^2 + O(\xi^3), \quad \phi_{31} \sim \chi_{3,1} \xi + \chi_{3,2} \xi^2 + O(\xi^3), \quad \text{as } P \to P_{\infty_3}.
\]
where the coefficients, κ_{ij} and χ_{ij}, are functions to be determined. Substituting those expansions into the Riccati-type equations (2.30) with $i = 2, 3$ and $j = 1$, i.e.

$$\phi_{21, x} = q_1 + 3\lambda \phi_2 - p_1 \phi_2^2 - p_2 \phi_2 \phi_3 \quad \text{and} \quad \phi_{31, x} = q_2 + 3\lambda \phi_3 - p_1 \phi_2 \phi_3 - p_2 \phi_3^2 \quad (3.3)$$

and comparing the three lowest powers ξ^i in each resulting equation, where i goes either from -2 to 0, or from -1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions κ_{ij} and χ_{ij}, which yields the asymptotic properties in (3.1) and (3.2). The proof is completed.

To determine asymptotic properties of the Baker–Akhiezer function ψ_1 at the points at infinity, we now analyse

$$j^{(1)}_r = U_{11} + U_{12} \phi_2 + U_{13} \phi_3 = -2\lambda + p_1 \phi_2 + p_2 \phi_3 \quad (3.4)$$

and

$$j^{(1)}_r = V^{[r]}_{11} + V^{[r]}_{12} \phi_2 + V^{[r]}_{13} \phi_3. \quad (3.5)$$

Lemma 3.2. Let $u = (p_1, p_2, q_1, q_2)^T$ satisfy the rth four-component AKNS equations (2.10) and $\xi = \lambda^{-1}$. Suppose that $P \in K_2 \setminus \{P_0, P_1, P_2, P_3\}$ and $(x, t_r) \in \mathbb{C}^2$. Then

$$j^{(1)}_r (P, x, t_r) = \begin{cases} \xi^{-1} + \frac{p_{1,x}}{p_1} + O(\xi), & \text{as } P \to P_{1,1} \
\xi^{-1} + \frac{p_{2,x}}{p_2} + O(\xi), & \text{as } P \to P_{2,2} \
-2\xi^{-1} + O(\xi), & \text{as } P \to P_{3,3} \end{cases} \quad (3.6)$$

and

$$l^{(1)}_r (P, x, t_r) = \begin{cases} \xi^{-r} + \frac{p_{1,t_r}}{p_1} + O(\xi), & \text{as } P \to P_{1,1} \
\xi^{-r} + \frac{p_{2,t_r}}{p_2} + O(\xi), & \text{as } P \to P_{2,2} \
-2\xi^{-r} + O(\xi), & \text{as } P \to P_{3,3} \end{cases} \quad (3.7)$$

Proof. First, based on (3.4), we obtain (3.6) directly from Lemma 3.1.

Second, note that the first compatibility condition in (2.35) reads

$$l^{(1)}_r = \left(\frac{\psi_{1,t_r}}{\psi_1} \right)_x = \left(\frac{\psi_{1,x}}{\psi_1} \right)_t = j^{(1)}_r \quad (3.8)$$

and that from (2.11), we obtain

$$V^{[r+1]}_{11} = \lambda V^{[r]}_{11} + d^{[r+1]}_1, \quad V^{[r+1]}_{12} = \lambda V^{[r]}_{12} + b^{[r+1]}_1 \quad \text{and} \quad V^{[r+1]}_{13} = \lambda V^{[r]}_{13} + b^{[r+1]}_2$$

and thus, we have

$$l^{(1)}_r = \lambda l^{(1)}_r + d^{[r+1]} + b^{[r+1]}_1 \phi_2 + b^{[r+1]}_2 \phi_3. \quad (3.9)$$

Now, based on (3.8) and (3.9), we can verify (3.7) from (3.6) by the mathematical induction. The proof is completed.

We can then show the asymptotic behaviour of the Baker–Akhiezer function ψ_1 at the points at infinity.

Theorem 3.3. Let $u = (p_1, p_2, q_1, q_2)^T$ satisfy the rth four-component AKNS equations (2.10) and $\xi = \lambda^{-1}$. Suppose that $P \in K_2 \setminus \{P_0, P_1, P_2, P_3\}$ and $(x, t_r) \in \mathbb{C}^2$. Then

$$\psi_1 (P, x, x_0, t_r, t_0) \begin{cases} \frac{p_1(x, t_r)}{p_1(x_0, t_0)} \exp(\xi^{-1}(x - x_0) + \xi^{-r}(t_r - t_0) + O(\xi)), & \text{as } P \to P_{0,1} \\
\frac{p_2(x, t_r)}{p_2(x_0, t_0)} \exp(\xi^{-1}(x - x_0) + \xi^{-r}(t_r - t_0) + O(\xi)), & \text{as } P \to P_{0,2} \\
\exp(-2\xi^{-1}(x - x_0) - 2\xi^{-r}(t_r - t_0) + O(\xi)), & \text{as } P \to P_{0,3} \end{cases} \quad (3.10)$$
Proof. The first formula in (2.36) on the Baker–Akhiezer function ψ_1 gives

$$
\psi_1(P, x, x_0, t_r, t_0, r) = \exp \left(\int_{x_0}^{x} f^{(1)}_{r}(P, x', t_r) \, dx' + \int_{t_0}^{t_r} f^{(1)}_r(P, x_0, t') \, dt' \right),
$$

where $f^{(1)}_r$ and $f^{(1)}_{r'}$ are defined by (3.4) and (3.5). Based on lemma 3.2, this expression generates the asymptotic properties of ψ_1 in (3.10). The proof is completed.

(b) Asymptotics of the second Baker–Akhiezer function

We now start with determining asymptotic properties of the meromorphic functions ϕ_{12} and ϕ_{32} at the points at infinity.

Lemma 3.4. Let $u = (p_1, p_2, q_1, q_2)^T$ satisfy the rth four-component AKNS equations (2.10) and $\xi = \lambda^{-1}$. Suppose that $P \in K_\xi \setminus \{P_\infty, P_{\infty_2}, P_{\infty_3}\}$ and $(x, t_r) \in \mathbb{C}^2$. Then

$$
\phi_{12}(P, x, t_r) \sim \begin{cases}
\frac{p_1}{3} \xi + \left(\frac{p_2}{3} x_{1,1} - \frac{1}{g} p_{1,x} \right) \xi^2 + \kappa_{1,3} \xi^3 + O(\xi^4), & \text{as } P \to P_\infty, \\
\frac{1}{3} p_2 x_{2,-1} + \kappa_{1,2} \xi + \kappa_{2,2} \xi^2 + O(\xi^3), & \text{as } P \to P_{\infty_2}, \quad (3.11) \\
- \frac{3}{q_1} \xi^{-1} + \frac{q_1 x}{q_1^2} + \frac{q_1 q_{1,xx} q_1 - q_1^2 q_{1,xx} - p_1 q_1^2 - p_2 q_1^2 q_2}{3 q_1^3} \xi + O(\xi^2), & \text{as } P \to P_{\infty_3}
\end{cases}
$$

and

$$
\phi_{32}(P, x, t_r) \sim \begin{cases}
\frac{q_2}{q_1} + \frac{1}{3} \left(\frac{q_2}{q_1} \right)_x \xi + \frac{1}{g} \left(\frac{q_2}{q_1} \right)_{xx} + \frac{q_1 x}{q_1} \left(\frac{q_2}{q_1} \right)_x \xi^2 + O(\xi^3), & \text{as } P \to P_{\infty},
\end{cases}
$$

where

$$
\begin{align*}
\lambda_{1,1} & = \frac{1}{3} p_1 q_2, \quad \lambda_{1,2} = \frac{1}{3} (p_2 q_2 - q_1 p_1) x_{1,1} - \frac{1}{3} p_{1,x} q_2, \\
\kappa_{1,3} & = - \frac{1}{3} p_2 x_{1,x} + \frac{1}{3} p_2 x_{1,2} - \frac{1}{3} p_1 (p_2 q_1 + p q_2) + \frac{1}{3} p_{1,xx},
\end{align*}
$$

and

$$
\begin{align*}
x_{2,-1} & = - \frac{1}{3} p_2 q_1 x_{2,-1}, \quad \kappa_{2,1} = - \frac{1}{3} p_{2,x} x_{2,-1} + \frac{1}{3} p_2 x_{2,0} + \frac{1}{3} p_1, \\
\kappa_{2,2} & = - \frac{1}{3} p_1 p_2 q_1 x_{2,-1} - \frac{1}{3} p_2 x_{2,0} x_{2,-1} + \frac{1}{3} p_{2,xx} x_{2,-1} - \frac{1}{3} p_{2,x} x_{2,0} + \frac{1}{3} p_2 x_{2,1} - \frac{1}{3} p_{1,x}, \\
x_{2,0} & = \frac{3}{8} p_2 x_{2,-1} x_{2,0} - \frac{1}{4} p_{2,x} q_1 x_{2,-1}^2 + \frac{1}{4} (p_1 q_1 - p_2 q_2) x_{2,-1} = 0, \\
x_{2,1} & = \frac{3}{8} p_2 x_{2,-1} x_{2,1} - \frac{1}{4} p_1 p_2 q_1 x_{2,-1}^2 - \frac{1}{4} p_{2,xx} q_1 x_{2,-1}^2 + \frac{1}{4} p_{2,x} q_1 x_{2,-1}^2 + \frac{1}{4} p_2 q_1 x_{2,-1}^2 \\
& - \frac{1}{8} p_{2,xx} q_1 x_{2,-1} x_{2,0} + \frac{1}{8} p_1 q_1 x_{2,0} = \frac{1}{8} p_2 q_2 x_{2,0} + \frac{1}{8} p_{2,xx} q_1 x_{2,-1} - \frac{1}{8} p_1 q_1 x_{2,-1} - \frac{1}{8} p_1 q_2 = 0.
\end{align*}
$$

Proof. Similarly, we begin with the following three ansatzes:

$$
\begin{align*}
\phi_{12} & \sim \kappa_{1,1} \xi + \kappa_{1,2} \xi^2 + \kappa_{1,3} \xi^3 + O(\xi^4), \\
\phi_{32} & \sim \kappa_{2,1} = \kappa_{2,2} + \xi^2 + O(\xi^3), \quad \text{as } P \to P_{\infty}, \\
\phi_{12} & \sim \kappa_{2,0} + \kappa_{2,1} \xi + \kappa_{2,2} \xi^2 + O(\xi^3),
\end{align*}
$$

Proof.
and comparing the three lowest powers we now analyse where the coefficients, κ_{ij} and χ_{ij}, are functions to be determined. Substituting those expansions into the Riccati-type equations (2.30) with $i = 1, 3$ and $j = 2$, i.e.

$$\phi_{12,x} = -3\lambda \phi_{12} + p_1 + p_2 \phi_{32} - q_1 \phi_{12}^2 \quad \text{and} \quad \phi_{32,x} = q_2 \phi_{12} - q_1 \phi_{12} \phi_{32}, \quad (3.13)$$

and comparing the three lowest powers ξ^i in each resulting equation, where i goes either from -2 to 0, or from -1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions κ_{ij} and χ_{ij}, which leads to the asymptotic properties in (3.11) and (3.12). This proves the lemma.

To determine asymptotic properties of the Baker–Akhiezer function ψ_2 at the points at infinity, we now analyse

$$f_r^{(2)} = U_{21} \phi_{12} + U_{22} + U_{23} \phi_{32} = q_1 \phi_{12} + \lambda \quad (3.14)$$

and

$$f_r^{(2)} = V_{21} \phi_{12} + V_{22} + V_{23} \phi_{32}. \quad (3.15)$$

Lemma 3.5. Let $u = (p_1, p_2, q_1, q_2)^T$ satisfy the rth four-component AKNS equations (2.10) and $\xi = \lambda^{-1}$. Suppose that $P \in K_3 \setminus \{P_{\infty_1}, P_{\infty_2}, P_{\infty_3}\}$ and $(x, t_r) \in \mathbb{C}^2$. Then

$$f_r^{(2)}(P, x, t_r) = \begin{cases} \xi^{-1} + O(\xi), & \text{as } P \to P_{\infty_1}, \\ \xi^{-1} + \rho_r^{(2)} + O(\xi), & \text{as } P \to P_{\infty_2}, \\ -2 \xi^{-1} + q_{1r}^x + O(\xi), & \text{as } P \to P_{\infty_3} \end{cases} \quad (3.16)$$

and

$$f_r^{(2)}(P, x, t_r) = \begin{cases} \xi^{-r} + O(\xi), & \text{as } P \to P_{\infty_1}, \\ \xi^{-r} + \sigma_r^{(2)} + O(\xi), & \text{as } P \to P_{\infty_2}, \\ -2 \xi^{-r} + q_{1,rt_r}^x + O(\xi), & \text{as } P \to P_{\infty_3} \end{cases} \quad (3.17)$$

where $\rho_r^{(2)} = \frac{1}{2} p_2 q_1 \chi_{2,-1}$ and $\sigma_r^{(2)} = P_{r,xt_r}$, with $\chi_{2,-1}$ being defined in lemma 3.4.

Proof. The proof is similar. First, based on (3.14), we obtain (3.16) directly from lemma 3.4.

Second, note that the second compatibility condition in (2.35) reads

$$f_{r,x}^{(2)} = \left(\frac{\psi_{2,x}}{\psi_2} \right) = \left(\frac{\psi_{2,x}}{\psi_2} \right)_{t_r} = f_r^{(2)} \quad (3.18)$$

and that from (2.11), we get

$$V_{21}^{[r+1]} = \lambda V_{21}^{[r]} + e_{1}^{[r+1]} \quad \text{and} \quad V_{22}^{[r+1]} = \lambda V_{22}^{[r]} + d_{11}^{[r+1]}$$

and this leads to

$$f_r^{(2)} + e_{1}^{[r+1]} \phi_{12} + d_{11}^{[r+1]} \phi_{32}. \quad (3.19)$$

Now, based on (3.18) and (3.19), we can prove (3.17) from (3.16) by mathematical induction. This completes the proof.

We can then prove the asymptotic behaviour of the Baker–Akhiezer function ψ_2 at the points at infinity as follows.
Theorem 3.6. Let \(u = (p_1, p_2, q_1, q_2)^T \) satisfy the \(r \)th four-component AKNS equations (2.10) and \(\xi = \lambda^{-1} \). Suppose that \(P \in \mathcal{K}_G \setminus \{ P_{\infty_1}, P_{\infty_2}, P_{\infty_3} \} \) and \((x, t_r) \in \mathbb{C}^2 \). Then

\[
\psi_2(P, x, x_0, t_r, t_0, r) = \begin{cases}
\exp(\xi^{-1}(x - x_0) + \xi^{-r}(t_r - t_0, r) + O(\xi)), & \text{as } P \to P_{\infty_1}, \\
\exp(\int_{x_0}^{x} \rho_r(2)P, x', t_r) \, dx' + \int_{t_0}^{t_r} \sigma_r(2)(P, x_0, t') \, dt' \\
\quad + \xi^{-1}(x - x_0) + \xi^{-r}(t_r - t_0, r) + O(\xi)), & \text{as } P \to P_{\infty_2}, \\
\frac{q_1(x, t_r)}{q_1(x_0, t_0, r)} \exp(-2\xi^{-1}(x - x_0) - 2\xi^{-r}(t_r - t_0, r) + O(\xi)), & \text{as } P \to P_{\infty_3},
\end{cases}
\tag{3.20}
\]

where \(\rho_r(2) \) and \(\sigma_r(2) \) are defined in lemma 3.5.

Proof. Similarly, the second formula in (2.36) presents

\[
\psi_2(P, x, x_0, t_r, t_0, r) = \exp\left(\int_{x_0}^{x} f_r(2)(P, x', t_r) \, dx' + \int_{t_0}^{t_r} l_r(2)(P, x_0, t') \, dt'\right),
\]

where \(f_r(2) \) and \(l_r(2) \) are given by (3.14) and (3.15). This expression generates the asymptotic properties of the Baker–Akhiezer function \(\psi_2 \) in (3.20), based on lemma 3.5. The proof is completed. \(\blacksquare \)

(c) Asymptotics of the third Baker–Akhiezer function

We thirdly start with determining asymptotic properties of the meromorphic functions \(\phi_{13} \) and \(\phi_{23} \) at the points at infinity.

Lemma 3.7. Let \(u = (p_1, p_2, q_1, q_2)^T \) satisfy the \(r \)th four-component AKNS equations (2.10) and \(\xi = \lambda^{-1} \). Suppose that \(P \in \mathcal{K}_G \setminus \{ P_{\infty_1}, P_{\infty_2}, P_{\infty_3} \} \) and \((x, t_r) \in \mathbb{C}^2 \). Then

\[
\phi_{13}(P, x, t_r) = \begin{cases}
\frac{1}{3}p_1 x_{1,-1} + \kappa_{1,1} \xi + \kappa_{1,2} \xi^2 + O(\xi^3), & \text{as } P \to P_{\infty_1}, \\
\frac{p_2}{3} \xi^2 + \left(\frac{p_1}{3} x_{2,1} - \frac{1}{3}P_2, x\right) \xi^2 + \kappa_{2,3} \xi^3 + O(\xi^4), & \text{as } P \to P_{\infty_2}, \\
-\frac{3}{q_2} \xi^{-1} + \frac{q_2, x}{q_2} + \frac{q_2 q_2, xx - q_2, x - p_2 q_2^2 - p_1 q_1 q_2^2}{3q_2^3} \xi + O(\xi^2), & \text{as } P \to P_{\infty_3},
\end{cases}
\tag{3.21}
\]

and

\[
\phi_{23}(P, x, t_r) = \begin{cases}
\chi_{1,-1} \xi^{-1} + \chi_{1,0} + \chi_{1,1} \xi + O(\xi^2), & \text{as } P \to P_{\infty_1}, \\
\chi_{2,1} \xi + \chi_{2,2} \xi^2 + O(\xi^3), & \text{as } P \to P_{\infty_2}, \\
\frac{q_1}{q_2} + \frac{1}{3} \left(\frac{q_1}{q_2}\right)_x \xi + \frac{1}{9} \left[\left(\frac{q_1}{q_2}\right)_x + \frac{q_2, x}{q_2} \left(\frac{q_1}{q_2}\right)_x\right] \xi^2 + O(\xi^3), & \text{as } P \to P_{\infty_3},
\end{cases}
\tag{3.22}
\]

where

\[
\chi_{2,1} = \frac{1}{3}p_2 q_1, \quad \chi_{2,2} = \frac{1}{3}(p_1 q_1 - p_2 q_2) x_{2,1} - \frac{1}{3}p_2, x q_1, \\
\kappa_{2,3} = -\frac{4}{9}p_{1, x} x_{2,1} + \frac{1}{3}p_1 x_{2,2} - \frac{1}{27}p_2 (p_1 q_1 + p_2 q_2) + \frac{1}{27}p_2, x x.
\]
and
\[
\chi_{1,-1,x} = -\frac{3}{4} p_1 q_2 x_{1,-1}, \quad \kappa_{1,1} = -\frac{3}{4} p_1 x_{1,-1} + \frac{1}{3} p_1 x_{1,0} + \frac{1}{3} p_2,
\]
\[
\kappa_{1,2} = -\frac{27}{2} p_1 p_2 q_2 x_{1,-1} - \frac{27}{2} p_1^2 q_1 x_{1,-1} + \frac{27}{2} p_1 x_{1,x} x_{1,-1} - \frac{1}{3} p_1 x_{1,1} - \frac{1}{3} p_2 x_{1,-1},
\]
\[
\chi_{1,0,x} + \frac{3}{2} p_1 q_2 x_{1,-1} x_{1,0} - \frac{1}{9} p_1 x_{1,0} x_{1,0} + \frac{1}{3} (p_2 q_2 - p_1 q_1) x_{1,-1} = 0,
\]
\[
\chi_{1,1,x} + \frac{3}{2} p_1 q_2 x_{1,-1} x_{1,1} - \frac{1}{27} p_1 p_2 q_2 x_{1,-1} - \frac{1}{27} p_1^2 q_1 q_2 x_{1,1} - \frac{1}{27} p_1 x_{1,x} q_2 x_{1,-1} - \frac{1}{3} (p_1 q_2 x_{1,1} x_{1,0} - \frac{1}{9} p_1 x_{1,0} x_{1,1} - \frac{1}{3} p_1 x_{1,0} x_{1,1} - \frac{1}{3} p_2 q_1 = 0.
\]

\textbf{Proof.} Similarly, we begin with the following three ansatzes:
\[
\begin{align*}
\phi_{13} &\quad = \kappa_{1,0} + \kappa_{1,1} \xi + \kappa_{1,2} \xi^2 + O(\xi^3), \\
\phi_{23} &\quad = \chi_{1,-1} \xi^{-1} + \chi_{1,0} + \chi_{1,1} \xi + O(\xi^2), \quad \text{as } P \to P_{\infty}; \\
\phi_{13} &\quad = \kappa_{2,1} \xi + \kappa_{2,2} \xi^2 + \kappa_{2,3} \xi^3 + O(\xi^4),
\end{align*}
\]
\[
\begin{align*}
\phi_{23} &\quad = \chi_{2,1} \xi + \chi_{2,2} \xi^2 + O(\xi^3), \quad \text{as } P \to P_{\infty}; \\
\phi_{13} &\quad = \kappa_{3,1} \xi^{-1} + \kappa_{3,0} + \kappa_{3,1} \xi + O(\xi^2),
\end{align*}
\]
and
\[
\begin{align*}
\phi_{23} &\quad = \chi_{3,0} + \chi_{3,1} \xi + \chi_{3,2} \xi^2 + O(\xi^3), \quad \text{as } P \to P_{\infty};
\end{align*}
\]

where the coefficients, \(\kappa_{ij} \) and \(\chi_{ij} \), are functions to be determined. Substituting those expansions into the Riccati-type equations (2.30) with \(i = 1,2 \) and \(j = 3 \), i.e.
\[
\phi_{13,x} = -3 \lambda \phi_{13} + p_1 \phi_{23} + p_2 - q_2 \phi_{13}^2 \quad \text{and} \quad \phi_{23,x} = q_1 \phi_{13} - q_2 \phi_{13} \phi_{23},
\]
and comparing the three lowest powers \(\xi^i \) in each resulting equation, where \(i \) goes either from \(-2 \) to \(0 \), or from \(-1 \) to \(1 \), or from \(0 \) to \(2 \), we get a set of relations on the coefficient functions \(\kappa_{ij} \) and \(\chi_{ij} \), which engenders the asymptotic properties in (3.21) and (3.22). The proof is completed. \(\blacksquare \)

In order to determine asymptotic properties of the Baker–Akhiezer function \(\psi_{3} \) at the points at infinity, we similarly analyse
\[
\rho_{r}^{(3)} = U_{31} \phi_{13} + U_{32} \phi_{23} + U_{33} = q_2 \phi_{13} + \lambda \quad (3.24)
\]
and
\[
\rho_{r}^{(3)} = V_{31}^{[r]} \phi_{13} + V_{32}^{[r]} \phi_{23} + V_{33}^{[r]} \quad (3.25)
\]

\textbf{Lemma 3.8.} Let \(u = (p_1, p_2, q_1, q_2)^{T} \) satisfy the \(r \)th four-component AKNS equations (2.10) and \(\xi = \lambda^{-1} \). Suppose that \(P \in K_{\xi} \setminus \{P_{\infty}, P_{\infty}, P_{\infty}\} \) and \((x, t_r) \in \mathbb{C}^2 \). Then
\[
\rho_{r}^{(3)}(P, x, t_r) = \begin{cases}
\xi^{-1} + \rho_{r}^{(3)} + O(\xi), & \text{as } P \to P_{\infty}, \\
\xi^{-1} + O(\xi), & \text{as } P \to P_{\infty}, \\
-2 \xi^{-1} + \frac{q_{2,x}}{q_2} + O(\xi), & \text{as } P \to P_{\infty}
\end{cases}
\]
\[
(3.26)
\]
and
\[
\begin{align*}
\rho_{r}^{(3)}(P, x, t_r) = &\begin{cases}
\xi^{-r} + \sigma_{r}^{(3)} + O(\xi), & \text{as } P \to P_{\infty}, \\
\xi^{-r} + O(\xi), & \text{as } P \to P_{\infty}, \\
-2 \xi^{-r} + \frac{q_{2,t}}{q_2} + O(\xi), & \text{as } P \to P_{\infty}
\end{cases}
\end{align*}
\]
\[
(3.27)
\]
where \(\rho_{r}^{(3)} = \frac{1}{2} p_1 q_2 x_{1,-1} \) and \(\sigma_{r,x}^{(3)} = \rho_{r,t_r}^{(3)} \), with \(x_{1,-1} \) being defined in lemma 3.7.
Proof. Similarly, first based on (3.24), we obtain (3.26) directly from lemma 3.7. Second, note that the third compatibility condition in (2.35) reads

\[u_j^{(3)}(t_r) = \left(\frac{\psi_{3j}}{\psi_3} \right)_x = \left(\frac{\psi_{3x}}{\psi_3} \right)_{t_r} = u_j^{(3)}(t_r), \]

(3.28)

and that from (2.11), we obtain

\[V_{31}^{[r+1]} = \lambda V_{31}^{[r]} + c_2^{[r+1]}, \quad V_{32}^{[r+1]} = \lambda V_{32}^{[r]} + d_{21}^{[r+1]} \quad \text{and} \quad V_{33}^{[r+1]} = \lambda V_{33}^{[r]} + d_{22}^{[r+1]} \]

and this tells us

\[u_j^{(3)}(t_r) = \lambda u_j^{(3)}(t_r) + c_2^{[r+1]} \phi_{13} + d_{21}^{[r+1]} \phi_{23} + d_{22}^{[r+1]}. \]

(3.29)

Finally, based on (3.28) and (3.29), we can verify (3.27) from (3.26) by mathematical induction. This completes the proof.

We can then show the following asymptotic behaviour of the Baker–Akhiezer function \(\psi_3 \) at the points at infinity.

Theorem 3.9. Let \(u = (p_1, p_2, q_1, q_2)^T \) satisfy the 4th four-component AKNS equations (2.10) and \(\xi = \lambda^{-1} \). Suppose that \(P \in K_\infty \setminus \{ P_\infty, P_\infty, P_\infty \} \) and \((x, t_r) \in \mathbb{C} \). Then

\[\psi_3(P, x, x_0, t_r, t_0, r) = \begin{cases} \exp \left(\int_{x_0}^{x} \rho_3^{(3)}(P, x', t_r) \, dx' + \int_{t_0}^{t_r} \sigma_3^{(3)}(P, x_0, t') \, dt' \right) \times \frac{q_2(x, t_r)}{q_2(x_0, t_0, r)} \exp(-2\xi^{-1}(x - x_0) - 2\xi^{-r}(t_r - t_0, r) + O(\xi)), & \text{as } P \to P_\infty, \end{cases} \]

(3.30)

where \(\rho_3^{(3)} \) and \(\sigma_3^{(3)} \) are defined in lemma 3.8.

Proof. Similarly, the third formula in (2.36) reads

\[\psi_3(P, x, x_0, t_r, t_0, r) = \exp \left(\int_{x_0}^{x} u_j^{(3)}(t_r) \, dx' + \int_{t_0}^{t_r} l_r^{(3)}(P, x_0, t') \, dt' \right), \]

where \(u_j^{(3)} \) and \(l_r^{(3)} \) are determined by (3.24) and (3.25). Based on lemma 3.8, this expression generates the asymptotic properties of the Baker–Akhiezer function \(\psi_3 \) in (3.30). The proof is completed.

Now, note that a meromorphic function on a compact Riemann surface has the same number of zeros and poles. Therefore, in view of lemma 3.1, lemma 3.4 and lemma 3.7, and from the expressions in (2.24) for the meromorphic functions \(\phi_{ij} \), \(1 \leq i, j \leq 3 \), we can assume that their divisors are given by

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

and

(3.36)
for some natural numbers h_i, $1 \leq i \leq 3$. The case of $h_i > 1$ for some $1 \leq i \leq 3$ could happen, particularly when $y = -A_{ij}^{[n]} / W_{ik}^{[n]}$ and $E_{ij}^{[n]}$ and $2(A_{ij}^{[n]})^2 + W_{ik}^{[n]}B_{ij}^{[n]}$ have common zeros, or when $y = -C_{ij}^{[m]} / W_{ik}^{[n]}$, and $F_{ij}^{[m]}$ and $2(C_{ij}^{[m]})^2 + W_{ik}^{[n]}D_{ij}^{[m]}$ have common zeros, where $\{i,j,k\} = \{1,2,3\}$.

4. Algebro-geometric solutions

In order to straighten out the corresponding flows in the soliton hierarchy (2.10), we equip K_g with a homology basis of a-cycles: a_1, \ldots, a_g, and b-cycles: b_1, \ldots, b_g, which are independent and have intersection numbers as follows:

$$a_i \circ a_k = 0, \quad b_j \circ b_k = 0 \quad \text{and} \quad a_i \circ b_k = \delta_{jk}, \quad 1 \leq j, k \leq g.$$

In what follows, we will choose the following set as our basis for the space of holomorphic differentials on K_g [2,3]:

$$\tilde{\omega}_l = \frac{1}{3y^2(P) + S_m} \left\{ \begin{array}{ll} \lambda^{l-1} \frac{d \lambda}{y(P) \lambda^{l-\deg(S_m)}}, & 1 \leq l \leq \deg(S_m) - 1, \\ \lambda^l \frac{d \lambda}{\deg(S_m) \leq l \leq g}, & \end{array} \right. \quad (4.1)$$

which are g linearly independent holomorphic differentials on K_g. By using the above homology basis, the period matrices $A = (A_{jk})$ and $B = (B_{jk})$ can be constructed as

$$A_{kj} = \int_{a_k} \tilde{\omega}_j \quad \text{and} \quad B_{kj} = \int_{b_k} \tilde{\omega}_j, \quad 1 \leq j, k \leq g. \quad (4.2)$$

It is possible to show that matrices A and B are invertible [4]. So, we can define the matrices C and τ by $C = A^{-1}$ and $\tau = A^{-1}B$. The matrix τ can be shown to be symmetric ($\tau_{kj} = \tau_{jk}$), and it has a positive-definite imaginary part $\text{Im} \tau > 0$ [5-7]. If we normalize $\tilde{\omega}_j$, $1 \leq j \leq g$, into a new basis $\omega = (\omega_1, \ldots, \omega_g)$:

$$\omega_j = \sum_{l=1}^{g} C_{lj} \tilde{\omega}_l, \quad 1 \leq j \leq g, \quad (4.3)$$

where $C = (C_{ij})_{g \times g}$, then we obtain

$$\int_{a_k} \omega_j = \sum_{l=1}^{g} C_{lj} \int_{a_k} \tilde{\omega}_l = \delta_{jk} \quad \text{and} \quad \int_{b_k} \omega_j = \tau_{jk}, \quad 1 \leq j, k \leq g. \quad (4.4)$$

To compute the b-periods of Abelian differentials of the second kind, we assume that

$$\omega_j = \sum_{l=0}^{\infty} \phi_{kJ}(P_{\infty}) \zeta^l \frac{d \zeta}{\alpha_j}, \quad \text{as} \quad P \to P_{\infty}, \quad 1 \leq j \leq g, \quad 1 \leq j \leq 3, \quad (4.5)$$

where $\phi_{kJ}(P_{\infty})$, $l \geq 0$, are constants.

Now, let T_g be the period lattice $T_g = \{ z \in \mathbb{C}^g \mid z = N + L \tau, \quad N, L \in \mathbb{Z}^g \}$. The complex torus $\mathcal{T}_g = \mathbb{C}^g / T_g$ is called the Jacobian variety of K_g. The Abel map $A: K_g \to \mathcal{T}_g$ is defined as follows:

$$A(P) = \left(\int_{Q_0}^{P} \omega_1, \ldots, \int_{Q_0}^{P} \omega_g \right) \text{ (mod} \ T_g), \quad (4.6)$$

where $Q_0 \in K_g$ is a fixed base point. We take the natural linear extension of the Abel map to the space of divisors $\text{Div}(K_g)$:

$$A \left(\sum n_k P_k \right) = \sum n_k A(P_k), \quad (4.7)$$

where $P, P_k \in K_g$.

Let $\omega_{\infty,j}^{(2)}(P), 1 \leq j \leq 3$ and $l \geq 2$, denote the normalized Abelian differential of the second kind, being holomorphic on $\mathcal{K}_g \setminus \{P_\infty\}$ and possessing the asymptotic property:

$$\omega_{\infty,j}^{(2)}(P) \equiv (\zeta^{-1} + O(1)) d\zeta, \quad \text{as } P \to P_\infty, \quad 1 \leq j \leq 3, \ l \geq 2.$$ \hfill (4.8)

The adopted normalization condition is

$$\int_{a_k} \omega_{\infty,j}^{(2)} = 0, \quad 1 \leq k \leq g, \ 1 \leq j \leq 3, \ l \geq 2$$ \hfill (4.9)

and (4.8) implies that the residues of $\omega_{\infty,j}^{(2)}$ at P_∞ are all zero. Based on the asymptotic properties of the Baker–Akhiezer functions ψ_j, $1 \leq j \leq 3$, we introduce the following Abelian differentials of the second kind:

$$\Omega_2^{(2)} = \omega_{p_\infty,2}^{(2)} + \omega_{p_\infty,2}^{(2)} - 2\omega_{p_\infty,2}^{(2)}$$ \hfill (4.10)

and

$$\tilde{\Omega}_r^{(2)} = r\omega_{p_\infty,r+1}^{(2)} + r\omega_{p_\infty,r+1}^{(2)} - 2r\omega_{p_\infty,r+1}^{(2)}.$$ \hfill (4.11)

Then for $\Omega_2^{(2)}$, we have the asymptotic expansions:

$$\int_{Q_0}^{P} \Omega_2^{(2)} = \begin{cases} -\zeta^{-1} + \epsilon_{2,1}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty, \\ -\zeta^{-1} + \epsilon_{2,2}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty, \\ 2\zeta^{-1} + \epsilon_{2,3}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty. \end{cases}$$ \hfill (4.12)

and for $\tilde{\Omega}_r^{(2)}$, we have the asymptotic expansions:

$$\int_{Q_0}^{P} \tilde{\Omega}_r^{(2)} = \begin{cases} -\zeta^{-r} + \epsilon_{r,1}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty, \\ -\zeta^{-r} + \epsilon_{r,2}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty, \\ 2\zeta^{-r} + \epsilon_{r,3}^{(2)}(Q_0) + O(\zeta), \quad \text{as } P \to P_\infty, \end{cases}$$ \hfill (4.13)

where the paths of integration are chosen to be the same as the one in the Abel map (4.6). Define the b-periods of the differentials $\Omega_2^{(2)}$ and $\tilde{\Omega}_r^{(2)}$, respectively, by

$$U_{2,k}^{(2)} = (U_{2,1}^{(2)}, \ldots, U_{2,g}^{(2)}), \quad U_{2,k}^{(2)} = \frac{1}{2\pi i} \int_{b_k} \Omega_2^{(2)}, \quad 1 \leq k \leq g$$ \hfill (4.14)

and

$$\tilde{U}_{r,k}^{(2)} = (\tilde{U}_{r,1}^{(2)}, \ldots, \tilde{U}_{r,g}^{(2)}), \quad \tilde{U}_{r,k}^{(2)} = \frac{1}{2\pi i} \int_{b_k} \tilde{\Omega}_r^{(2)}, \quad 1 \leq k \leq g.$$ \hfill (4.15)

Through the relationship between the normalized meromorphic differential of the second kind and the normalized holomorphic differentials ω_k, $1 \leq k \leq g$, we can derive that

$$U_{2,k}^{(2)} = \omega_{k,0}(P_\infty) + \omega_{k,0}(P_\infty) - 2\omega_{k,0}(P_\infty), \quad 1 \leq k \leq g$$ \hfill (4.16)

and

$$\tilde{U}_{r,k}^{(2)} = \omega_{k,r}(P_\infty) + \omega_{k,r}(P_\infty) - 2\omega_{k,r}(P_\infty), \quad 1 \leq k \leq g.$$ \hfill (4.17)

Let $\omega_{Q_1,Q_2}^{(3)}$ stand for the normalized Abelian differential of the third kind, holomorphic on $\mathcal{K}_g \setminus \{Q_1, Q_2\}$ and with simple poles at Q_l with residues $(-1)^{l+1}$, $l = 1, 2$. The adopted
normalization condition reads
\[\int_{a_k}^{(3)} \omega_{Q_1, Q_2}^{(3)} = 0, \quad 1 \leq k \leq g \] (4.18)
and, thus,
\[\int_{b_k}^{(3)} \omega_{Q_1, Q_2}^{(3)} = 2\pi i \int_{Q_2}^{Q_1} \omega_k, \quad 1 \leq k \leq g, \] (4.19)
where the path of integration from \(Q_2 \) to \(Q_1 \) does not intersect the cycles \(a_1, \ldots, a_g, b_1, \ldots, b_g \). We then set
\[c_{2g}^{(3)}(Q_0) = \int_{\mathcal{C}}^{(3)}(Q_0, x_0, t_r, t_0, t_r) = \int_{Q_0}^{P_{\infty}} \omega_{(x_0, t_0), (x, t_r)}^{(3)} \] (4.20)
where \(\mathcal{C} \) is a complex vector, and \((\cdot, \cdot) \) stands for the Hermitian inner product on \(\mathbb{C}^g \):
\[\langle \mathcal{C}, \mathcal{W} \rangle = \sum_{j=1}^{g} z_j \overline{w}_j, \quad \mathcal{C} = (z_1, \ldots, z_g) \in \mathbb{C}^g, \quad \mathcal{W} = (w_1, \ldots, w_g) \in \mathbb{C}^g. \] (4.23)

The Riemann theta function is even and quasi-periodic. More precisely, it satisfies
\[\theta(z_{1}, \ldots, z_{j-1}, -z_{j}, z_{j+1}, \ldots, z_{g}) = \theta(z), \quad 1 \leq j \leq g \] (4.24)
and
\[\theta(z + N + L \tau) = \exp(-\pi i (L \tau, L)) \theta(z), \] (4.25)
where \(z = (z_1, \ldots, z_g) \in \mathbb{C}^g, \ N = (N_1, \ldots, N_g) \in \mathbb{Z}^g \) and \(L = (L_1, \ldots, L_g) \in \mathbb{Z}^g \). For brevity, define the function \(z: \mathbb{C}^g \times \sigma^g \mathbb{K}_g \to \mathbb{C}^g \) by
\[z(P, Q) = M - A(P) + \sum_{j=1}^{g} D_{Q_1, \ldots, Q_g} Q_j A(Q_j), \] (4.26)
where \(P \in \mathbb{K}_g, \ Q = (Q_1, \ldots, Q_g) \in \sigma^g \mathbb{K}_g, \ \sigma^g \mathbb{K}_g \) denotes the \(g \)th symmetric power of \(\mathbb{K}_g \) [7], and \(M = (M_1, \ldots, M_g) \) is a vector of Riemann constants [6,8]:
\[M_j = \frac{1}{2}(1 + \tau_{jj}) - \sum_{l=1, l \neq j}^{g} \int_{a_l}^{p} \omega_l(P) \int_{Q_0}^{b_l} \omega_j, \quad 1 \leq j \leq g. \] (4.27)
By Riemann’s vanishing theorem [8,9], the function \(\theta(z, P(Q)) \) has exactly \(g \) zeros \(Q_1, \ldots, Q_g \) if the divisor \(D = Q_1 + \cdots + Q_g \) is non-special.

Introduce three particular points in the \(g \)th symmetric power \(\sigma^g \mathbb{K}_g \):
\[\hat{\mu}(x, t_r) = (\hat{\mu}_1(x, t_r), \ldots, \hat{\mu}_g(x, t_r)), \] (4.28)
\[\hat{v}(x, t_r) = (\hat{v}_1(x, t_r), \ldots, \hat{v}_g(x, t_r)), \] (4.29)
\[\hat{\xi}(x, t_r) = (\hat{\xi}_1(x, t_r), \ldots, \hat{\xi}_g(x, t_r)) \] (4.30)
and denote the corresponding three particular divisors in \(\text{Div}(\mathbb{K}_g) \) by
\[D_{\hat{\mu}(x, t_r)} = \sum_{j=1}^{g} \hat{\mu}_j(x, t_r), \quad D_{\hat{v}(x, t_r)} = \sum_{j=1}^{g} \hat{v}_j(x, t_r) \quad \text{and} \quad D_{\hat{\xi}(x, t_r)} = \sum_{j=1}^{g} \hat{\xi}_j(x, t_r). \] (4.31)
Theorem 4.1 (Theta function representations of the Baker–Akhiezer functions). Let \(\Omega_\mu \subset \mathbb{C}^2 \) be an open and connected set, \((x_0, t_0, r, (x, t)) \in \Omega_\mu \) and \(P = (\alpha, \beta) \in K_\mathbb{C}(P_\infty, 1 \leq i \leq 3) \). Suppose that \(K_\mathbb{C} \) is non-singular and \(D_{\hat{\mu}(x,t)} \) or \(D_{\hat{\nu}(x,t)} \) or \(D_{\hat{\xi}(x,t)} \) is non-special for \((x, t) \in \Omega_\mu \). Then, the Baker–Akhiezer functions have the following theta function representations:

\[
\psi_1(P, x, x_0, t, t_0, r) = \frac{\theta(z(P, \hat{\mu}(x,t)))}{\theta(z(P, \hat{\mu}(x,t)))} \frac{\theta(z(P, \hat{\mu}(x,t)))}{\theta(z(P, \hat{\mu}(x,t)))} \exp\left(\left(c_{2,1}^{(2)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\]

\[
+ \left(c_{r,3}^{(3)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\] \(\psi_2(P, x, x_0, t, t_0, r) = \frac{\theta(z(P, \hat{\nu}(x,t)))}{\theta(z(P, \hat{\nu}(x,t)))} \frac{\theta(z(P, \hat{\nu}(x,t)))}{\theta(z(P, \hat{\nu}(x,t)))} \exp\left(\left(c_{2,1}^{(2)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\]

\[
+ \left(c_{r,1}^{(3)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\] \(\psi_3(P, x, x_0, t, t_0, r) = \frac{\theta(z(P, \hat{\xi}(x,t)))}{\theta(z(P, \hat{\xi}(x,t)))} \frac{\theta(z(P, \hat{\xi}(x,t)))}{\theta(z(P, \hat{\xi}(x,t)))} \exp\left(\left(c_{2,1}^{(2)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\]

\[
+ \left(c_{r,2}^{(3)}(Q_0) - \int_{Q_0}^P \Omega_2^{(2)}(x - x_0)\right) \right)
\]

where the paths of integration are the same as the one in the Abel map (4.6).

Proof. Let \(\psi_1, \psi_2 \) and \(\psi_3 \) denote the right-hand sides of (4.32), (4.33) and (4.34), respectively. By theorem 4.4 in [1], \(\psi_1 \) has the simple zeros \(\hat{\mu}_1(x, t), \ldots, \hat{\mu}_3(x, t) \) and the simple poles \(\hat{\mu}_1(x_0, t_0, r), \ldots, \hat{\mu}_3(x_0, t_0, r) \), \(\psi_2 \) has the simple zeros \(\hat{\nu}_1(x, t), \hat{\nu}_2(x, t), \ldots, \hat{\nu}_3(x, t) \) and the simple poles \(\hat{\nu}_1(x_0, t_0, r), \hat{\nu}_2(x_0, t_0, r), \ldots, \hat{\nu}_3(x_0, t_0, r) \), and \(\psi_3 \) has the simple zeros \(\hat{\xi}_1(x, t), \hat{\xi}_2(x, t), \ldots, \hat{\xi}_3(x, t) \) and the simple poles \(\hat{\xi}_1(x_0, t_0, r), \hat{\xi}_2(x_0, t_0, r), \ldots, \hat{\xi}_3(x_0, t_0, r) \). They all have three essential singularities at \(P_\infty, P_\infty, P_\infty \). By Riemann’s vanishing theorem [8], we know that \(\psi_i, 1 \leq i \leq 3 \), have the same properties as \(\psi_i, 1 \leq i \leq 3 \), respectively. Thus, the Riemann-Roch theorem tells us that \(\psi_1/\psi_i = \gamma_i, 1 \leq i \leq 3 \), where \(\gamma_i, 1 \leq i \leq 3 \), are constants depending on \(P \). Using the asymptotic properties of \(\psi_1 \) and \(\psi_i, 1 \leq i \leq 3 \), one has

\[
\psi_1 = \exp(-2c_1(x - x_0) - 2c_2(x - x_0) + O(\xi)) \frac{1 + O(\xi)}{1 + O(\xi)} = P \rightarrow P_\infty,
\]

\[
\psi_2 = \exp(-2c_1(x - x_0) - 2c_2(x - x_0) + O(\xi)) \frac{1 + O(\xi)}{1 + O(\xi)} = P \rightarrow P_\infty,
\]

and

\[
\psi_3 = \exp(-2c_1(x - x_0) - 2c_2(x - x_0) + O(\xi)) \frac{1 + O(\xi)}{1 + O(\xi)} = P \rightarrow P_\infty.
\]

These show that \(\gamma_i = 1, 1 \leq i \leq 3 \). Therefore, \(\psi_i = \psi_i, 1 \leq i \leq 3 \). This completes the proof of the theorem.

Using the linear equivalences [9,10]

\[
D_{P_\infty, P_\infty}, \hat{\nu}_1(x,t), \ldots, \hat{\nu}_3(x,t) \sim D_{P_\infty, P_\infty}, \hat{\mu}_1(x,t), \ldots, \hat{\mu}_3(x,t),
\]

\[
D_{P_\infty, P_\infty}, \hat{\nu}_1(x,t), \ldots, \hat{\nu}_3(x,t) \sim D_{P_\infty, P_\infty}, \hat{\mu}_1(x,t), \ldots, \hat{\mu}_3(x,t),
\]

and

\[
D_{P_\infty, P_\infty}, \hat{\nu}_1(x,t), \ldots, \hat{\nu}_3(x,t) \sim D_{P_\infty, P_\infty}, \hat{\nu}_1(x,t), \ldots, \hat{\nu}_3(x,t),
\]
which are due to (3.31), (3.32) and (3.34), we obtain

\[A(P_{\infty}) + \sum_{j=1}^{g} A(\hat{\nu}(x, t, r)) = A(P_{\infty}) + \sum_{j=1}^{g} A(\hat{\mu}(x, t, r)), \]

\[A(P_{\infty}) + \sum_{j=h_2}^{g} A(\hat{\xi}(x, t, r)) = A(P_{\infty}) + \sum_{j=h_2}^{g} A(\hat{\mu}(x, t, r)), \]

and

\[A(P_{\infty}) + \sum_{j=h_3}^{g} A(\hat{\xi}(x, t, r)) = A(P_{\infty}) + \sum_{j=h_3}^{g} A(\hat{\nu}(x, t, r)), \]

respectively. Define the Abel–Jacobi coordinates

\[\rho^{(1)}(x, t, r) = A(D_{\hat{\nu}(x, t, r)}) = \sum_{j=1}^{g} \int_{Q_0} \omega, \quad (4.35) \]

\[\rho^{(2)}(x, t, r) = A(D_{\hat{\xi}(x, t, r)}) = \sum_{j=1}^{g} \int_{Q_0} \omega, \quad (4.36) \]

\[\rho^{(3)}(x, t, r) = A(D_{\hat{\xi}(x, t, r)}) = \sum_{j=1}^{g} \int_{Q_0} \omega \quad (4.37) \]

and then we have

\[\theta(\zeta(P, \hat{\mu}(x, t, r))) = \theta(M - A(P) + \rho^{(1)}(x, t, r)), \]

\[\theta(\zeta(P, \hat{\xi}(x, t, r))) = \theta(M - A(P) + \rho^{(2)}(x, t, r)) \]

and

\[\theta(\zeta(P, \hat{\xi}(x, t, r))) = \theta(M - A(P) + \rho^{(3)}(x, t, r)). \]

The Abel–Jacobi coordinates can be linearized on the Riemann surface \(\mathcal{K}_g \) as follows.

Theorem 4.2 (Straightening out of the flows). Let \((x, t, r), (x_0, t_0, r) \in \mathbb{C}^2 \) and \(u = (p_1, p_2, q_1, q_2)^T \) solve the \(r \)th four-component AKNS equations (2.10). Suppose that \(\mathcal{K}_g \) is non-singular and \(D_{\hat{\nu}(x, t, r)} \) or \(D_{\hat{\xi}(x, t, r)} \) is non-special. Then, we have

\[\rho^{(1)}(x, t, r) = \rho^{(1)}(x_0, t_0, r) + \frac{U_1}{\lambda}(x - x_0) + \frac{U_2}{\lambda}(t - t_0, r) \quad (\text{mod} \ T_g), \quad (4.38) \]

\[\Lambda(\hat{\nu}(x, t, r)) + \rho^{(2)}(x, t, r) = \Lambda(\hat{\nu}(x_0, t_0, r)) + \rho^{(2)}(x_0, t_0, r) \]

\[+ \frac{U_1}{\lambda}(x - x_0) + \frac{U_2}{\lambda}(t - t_0, r) \quad (\text{mod} \ T_g), \quad (4.39) \]

and

\[\Lambda(\hat{\xi}(x, t, r)) + \rho^{(3)}(x, t, r) = \Lambda(\hat{\xi}(x_0, t_0, r)) + \rho^{(3)}(x_0, t_0, r) \]

\[+ \frac{U_1}{\lambda}(x - x_0) + \frac{U_2}{\lambda}(t - t_0, r) \quad (\text{mod} \ T_g). \quad (4.40) \]

Proof. In order to prove the theorem, we introduce three meromorphic differentials

\[\Omega_j(x, x_0, t_0, r) = \frac{\partial}{\partial \lambda} \ln(\psi_j(P, x, x_0, t_0, r)) d\lambda, \quad 1 \leq j \leq 3. \quad (4.41) \]

Let us first prove (4.38). From the theta function representation (4.32) for \(\psi_1 \), one infers

\[\Omega_1(x, x_0, t_r, t_0, r) = -(x - x_0)\Omega_2^{(2)}(t_r - t_0, r) + \sum_{j=1}^{g} \omega^{(3)}_{\mu_j(x, t_r), \hat{\mu}_j(x_0, t_0, r)} + \tilde{\omega}, \quad (4.42) \]
where \(\tilde{\omega} \) is a holomorphic differential on \(\mathcal{K}_g \), which can be expressed by

\[
\tilde{\omega} = \sum_{j=1}^{g} h_j \omega_j, \tag{4.43}
\]

\(h_j \in \mathbb{C} \) being constants, \(1 \leq j \leq g \).

Since \(\psi_1(P, x, x_0, t_r, t_{0,r}) \) is single-valued on \(\mathcal{K}_g \), all \(a \)- and \(b \)-periods of \(\Omega_1 \) are integer multiples of \(2\pi i \) and thus

\[
2\pi i l_k = \int_{a_k} \Omega_1(x, x_0, t_r, t_{0,r}) = \int_{a_k} \tilde{\omega} = h_k, \quad 1 \leq k \leq g,
\]

for some \(l_k \in \mathbb{Z} \). Similarly, for some \(n_k \in \mathbb{Z} \), we have

\[
2\pi i n_k = \int_{b_k} \Omega_1(x, x_0, t_r, t_{0,r})
\]

\[
= -(x - x_0) \int_{b_k} \Omega_2^{(2)} - (t_r - t_{0,r}) \int_{b_k} \Omega_2^{(2)} + \sum_{j=1}^{g} \int_{b_k} \omega_j^{(3)} \mu_j(x, t_r) \mu_j(x_0, t_{0,r}) + \int_{b_k} \tilde{\omega}
\]

\[
= -(x - x_0) \int_{b_k} \Omega_2^{(2)} - (t_r - t_{0,r}) \int_{b_k} \Omega_2^{(2)} + 2\pi i \sum_{j=1}^{g} \int_{b_k} \mu_j(x, t_r) \omega_j \mu_j(x_0, t_{0,r}) + 2\pi i \sum_{j=1}^{g} \int_{b_k} \omega_j
\]

\[
= -2\pi i(x - x_0)U_2^{(2)} - 2\pi i(t_r - t_{0,r})\hat{U}^{(2)}_r,
\]

\[
+ 2\pi i \left(\sum_{j=1}^{g} \int_{Q_0} \mu_j(x, t_r) \omega_j - \sum_{j=1}^{g} \int_{Q_0} \mu_j(x_0, t_{0,r}) \omega_j \right) + 2\pi i \sum_{j=1}^{g} \int_{Q_0} \mu_j(x_0, t_{0,r}) \omega_j + \pi \tau,
\]

Thus, we arrive at

\[
\mathcal{N} = -(x - x_0)U_2^{(2)} - (t_r - t_{0,r})\hat{U}^{(2)}_r + \sum_{j=1}^{g} \int_{Q_0} \mu_j(x, t_r) \omega_j - \sum_{j=1}^{g} \int_{Q_0} \mu_j(x_0, t_{0,r}) \omega_j + \pi \tau,
\tag{4.44}
\]

where \(\mathcal{N} = (n_1, \ldots, n_g) \in \mathbb{Z}^g \) and \(\pi = (l_1, \ldots, l_g) \in \mathbb{Z}^g \). The equation (4.44) exactly tells the first equality in (4.38).

Similarly, we can prove (4.39) and (4.40) by using the other two meromorphic differentials \(\Omega_2 \) and \(\Omega_3 \), respectively. The only difference is to change \(\sum_{j=0}^{g} \omega_j^{(3)} \mu_j(x, t_r) \mu_j(x_0, t_{0,r}) \) into \(\sum_{j=0}^{g} \omega_j^{(3)} \xi_j(x, t_r) \xi_j(x_0, t_{0,r}) \) or \(\sum_{j=0}^{g} \omega_j^{(3)} \xi_j(x, t_r) \xi_j(x_0, t_{0,r}) \) on the right-hand side of (4.42), which brings the terms \(\mathcal{A}(\tilde{v}_0(x, t_r)) \) and \(\mathcal{A}(\tilde{v}_0(x_0, t_{0,r})) \) in (4.39), and \(\mathcal{A}(\hat{\xi}_0(x, t_r)) \) and \(\mathcal{A}(\hat{\xi}_0(x_0, t_{0,r})) \) in (4.40). The proof is completed.

Now, we are able to present theta function representations of solutions of the \(r \)th four-component AKNS equations (2.10).

Theorem 4.3 (Theta function representations of solutions). Let \(\Omega_\mu \subset \mathbb{C}^2 \) be an open and connected set, \((x_0, t_0, r), (x, t_r) \in \Omega_\mu \) and \(P = (\lambda, \gamma) \in \mathcal{K} \setminus \{ P_\infty \} \). Suppose that \(\mathcal{K}_g \) is non-singular and \(\mathcal{D}(\lambda, \gamma) \) is non-singular for \((x, t_r) \in \Omega_\mu \). Then, the solution \(u = (p_1, p_2, q_1, q_2)^T \) of the \(r \)th four-component AKNS equations (2.10) has the following theta function representations:

\[
p_1(x, t_r) = p_1(x_0, t_0, r) \frac{\theta(z(P_\infty, \mu(x, t_r))) \theta(z(P_\infty, \mu(x_0, t_{0,r})))}{\theta(z(P_\infty, \mu(x_0, t_{0,r}))) \theta(z(P_\infty, \mu(x, t_r)))} \times \exp\left((e_{r,3}^{(2)}(Q_0) - e_{r,3}^{(2)}(x_0, t_r)) (x - x_0) + (e_{r,3}^{(2)}(x_0, t_{0,r}) - e_{r,3}^{(2)}(Q_0))(t_r - t_{0,r}) \right),
\tag{4.45}
\]

\[
p_2(x, t_r) = p_2(x_0, t_0, r) \frac{\theta(z(P_\infty, \mu(x, t_r))) \theta(z(P_\infty, \mu(x_0, t_{0,r})))}{\theta(z(P_\infty, \mu(x_0, t_{0,r}))) \theta(z(P_\infty, \mu(x, t_r)))} \times \exp\left((e_{r,2}^{(2)}(Q_0) - e_{r,2}^{(2)}(x_0, t_r)) (x - x_0) + (e_{r,2}^{(2)}(x_0, t_{0,r}) - e_{r,2}^{(2)}(Q_0))(t_r - t_{0,r}) \right)
\tag{4.46}
\]
and
\[
q_1(x, t_r) = q_1(x_0, t_{0,r}) \frac{\theta(\xi(P_{\infty}, \hat{\mu}(x, t_r)))}{\theta(\xi(P_{\infty}, \hat{\mu}(x_0, t_{0,r}))} \left(\frac{\tilde{\xi}(P_{\infty}, \tilde{\mu}(x, t_r))}{\tilde{\xi}(P_{\infty}, \tilde{\mu}(x_0, t_{0,r}))} \right) \times \exp((\epsilon_{2,1}^{(2)}(Q_0) - \epsilon_{2,2}^{(2)}(Q_0))(x - x_0) + (\epsilon_{r,1}^{(2)}(Q_0) - \tilde{\epsilon}_{r,2}^{(2)}(Q_0))(t_r - t_{0,r})
+ e_1^{(3)}(Q_0, x, x_0, t_r, t_{0,r}) - e_2^{(3)}(Q_0, x, x_0, t_r, t_{0,r}),
\]

(4.47)

and
\[
q_2(x, t_r) = q_2(x_0, t_{0,r}) \frac{\theta(\xi(P_{\infty}, \hat{\mu}(x, t_r)))}{\theta(\xi(P_{\infty}, \hat{\mu}(x_0, t_{0,r}))} \left(\frac{\tilde{\xi}(P_{\infty}, \tilde{\mu}(x, t_r))}{\tilde{\xi}(P_{\infty}, \tilde{\mu}(x_0, t_{0,r}))} \right) \times \exp((\epsilon_{2,1}^{(2)}(Q_0) - \epsilon_{2,2}^{(2)}(Q_0))(x - x_0) + (\epsilon_{r,1}^{(2)}(Q_0) - \tilde{\epsilon}_{r,2}^{(2)}(Q_0))(t_r - t_{0,r})
+ e_1^{(3)}(Q_0, x, x_0, t_r, t_{0,r}) - e_2^{(3)}(Q_0, x, x_0, t_r, t_{0,r}).
\]

(4.48)

Proof. Based on the asymptotic properties of \(\Omega_2^{(2)} \) and \(\Omega_r^{(2)} \) in (4.12) and (4.13), and following theorem 4.1, we can expand the Baker–Akhiezer functions near the indicated points at infinity as follows:

\[
\begin{align*}
\psi_1 &= \frac{\theta(\xi(P_{\infty}, \hat{\mu}(x, t_r)))}{\theta(\xi(P_{\infty}, \hat{\mu}(x_0, t_{0,r}))} \times \exp((\epsilon_{2,1}^{(2)}(Q_0) - \epsilon_{2,2}^{(2)}(Q_0))(x - x_0) + (\epsilon_{r,1}^{(2)}(Q_0) - \tilde{\epsilon}_{r,2}^{(2)}(Q_0))(t_r - t_{0,r})
+ \zeta^{-1}(x - x_0) + \zeta^{-r}(t_r - t_{0,r}) + O(\zeta)(1 + O(\zeta)), \quad \text{as } P \to P_{\infty},
\end{align*}
\]

and

\[
\begin{align*}
\psi_2 &= \frac{\theta(\xi(P_{\infty}, \hat{\mu}(x, t_r)))}{\theta(\xi(P_{\infty}, \hat{\mu}(x_0, t_{0,r}))} \times \exp((\epsilon_{2,1}^{(2)}(Q_0) - \epsilon_{2,2}^{(2)}(Q_0))(x - x_0) + (\epsilon_{r,1}^{(2)}(Q_0) - \tilde{\epsilon}_{r,2}^{(2)}(Q_0))(t_r - t_{0,r})
+ \zeta^{-1}(x - x_0) + \zeta^{-r}(t_r - t_{0,r}) + O(\zeta)(1 + O(\zeta)), \quad \text{as } P \to P_{\infty},
\end{align*}
\]

Now, comparing with the asymptotic behaviours of \(\psi_1 \) and \(\psi_2 \) and \(\psi_3 \) established in (3.10), (3.20) and (3.30), respectively, we obtain the Riemann theta function presentations of \(p_1, p_2, q_1 \) and \(q_2 \) in (4.45)–(4.48) immediately. This completes the proof.

5. Concluding remarks

The present study, consisting of two parts, is dedicated to the development of explicit Riemann theta function representations of algebro-geometric solutions to entire soliton hierarchies. This is the second part. In this part, we straightened out all soliton flows under the Abel–Jacobi coordinates through determining zeros and poles of the Baker–Akhiezer functions, and constructed the Riemann theta function representations for algebro-geometric solutions to the
four-component AKNS equations from checking asymptotic behaviours of the Baker–Akhiezer functions at the points at infinity.

We point out that we can similarly construct algebro-geometric solutions to a linear combination of different AKNS equations in the four-component AKNS soliton hierarchy, which just increases asymptotic complexity [11–13]. Various choices of linear combinations of Lax matrices lead to different algebro-geometric solutions to soliton hierarchies. However, it needs further investigation how to apply higher-order algebraic curves in finding algebro-geometric solutions to soliton equations. Higher-order matrix spectral problems [14–16] generate tremendous difficulty in computing algebro-geometric solutions. More components in the vector of eigenfunctions will cause complicated situations while deriving asymptotic expansions for the Baker–Akhiezer functions.

Two other interesting directions for further study are reductions and a density property of algebro-geometric solutions. Reducing algebro-geometric solutions tells various classes of exact solutions to soliton equations [9]. Two such classes of analytical solutions on the real field are quasi-periodic wave solutions [17] and lump solutions [18–20]. The study of lump solutions by bilinear techniques also brings us to an important question in multilinear algebra: how to determine positive definiteness (or positive semidefiniteness) for hypermatrices of even orders? For example, when does a real fourth-order hypermatrix, $A = (a_{ijkl})_{n \times n \times n \times n}$, satisfy $\sum_{i,j,k,l=1}^{n} a_{ijkl}x_i x_j x_k x_l > 0$ (or ≥ 0) for all non-zero vectors $(x_1, \ldots, x_n) \in \mathbb{R}^n$? The density property tells us about the computability of exact solutions to soliton equations via approximations. Commuting Lie symmetries, inherited from a recursion operator of a soliton hierarchy, yields an infinite number of one-parameter Lie groups of solutions to each equation in the hierarchy [21]. We conjecture that those infinitely many one-parameter Lie groups of solutions, starting from equilibria and algebro-geometric solutions, form a dense subset of solutions in the solution set of each equation in the underlying soliton hierarchy, under the uniform norm [22].

Data accessibility. This work does not have any experimental data.

Competing interests. There are no competing interests.

Funding. This work was in part supported by National Natural Science Foundation of China grants nos. 11371326, 11371086 and 11301331, NSF under the grant no. DMS-1664561, and the Distinguished Professorships by Shanghai University of Electric Power and Shanghai Second Polytechnic University.

Acknowledgements. The authors would like to thank S. T. Chen, X. Gu, S. Manukure, M. Mcanally, Y. Sun, F. D. Wang, J. Yu and Y. Zhou for their valuable discussions.

References

