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) ) ) solutions to soliton hierarchies. In this part, we
trigonal curve, Baker—Akhiezer function, straighten out all flows in soliton hierarchies under
algebro-geometric solution the Abel-Jacobi coordinates associated with Lax
pairs, upon determining the Riemann theta function
representations of the Baker—Akhiezer functions,
and generate algebro-geometric solutions to soliton
hierarchies in terms of the Riemann theta functions,
through observing asymptotic behaviours of the
Baker—Akhiezer functions. We emphasize that we
analyse the four-component AKNS soliton hierarchy
in such a way that it leads to a general theory of
trigonal curves applicable to construction of algebro-
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geometric solutions of an arbitrary soliton hierarchy.

1. Introduction

This is a study on Riemann theta function representations
of algebro-geometric solutions to soliton hierarchies.
It consists of two parts. In the first part [1], we
introduced a class of trigonal curves generated from
linear combinations of Lax matrices in the zero
curvature formulation, analysed general properties
of meromorphic functions defined as ratios of the
Baker—Akhiezer functions, including derivative relations
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between derivatives of the characteristic variables with respect to time and space, and determined
zeros and poles of the Baker—Akhiezer functions and their Dubrovin-type dynamical equations.

This is the second part, comprising five sections. In §2, we present basic notation and
background, introduced and discussed in the first part [1], on the four-component AKNS
soliton hierarchy, trigonal curves and the Baker—Akhiezer functions, which will be needed in
the subsequent sections of this part. In §3, we explore asymptotic properties for the three
Baker—Akhiezer functions in the four-component AKNS case at the points at infinity. In §4, we
straighten out all the flows of the four-component AKNS soliton hierarchy under the Abel-Jacobi
coordinates, and construct algebro-geometric solutions of the whole soliton hierarchy by use
of the Riemann theta functions according to the asymptotic properties of the Baker-Akhiezer
functions. In the last section, we present a few concluding remarks and open questions related to
lump solitons and soliton hierarchies.

2. Notation and background
(a) Four-component AKNS hierarchy

The four-component AKNS soliton hierarchy is associated with the following 3 x 3 matrix
spectral problem:

2k p1op2 v
Ur=Uy=Uw )y, U=Ujsxs=| ¢ *» 0], ¥=[v2], (2.1)
2 0 2 v3
where 1 is a spectral parameter and u is a four-component potential
u=@a")', p=@uLp), 9=01,9)" (22)

As usual, we solve the stationary zero curvature equation Wy = [U, W], corresponding to (2.1),
to obtain a formal series solution W:

A T A i

where al¥l are scalar functions, and b, ¥l are vector functions and dl¥l are matrix functions
assumed to be represented by

oM = @b}, M= INT and d¥ = @), k= 0. 2.4)
All the involved functions above are recursively defined by
bl =0, =0, a0=_2 4O—=1,=diag(1,1), (2.50)
R = 1(—pl gkl — gMlp), - k>0, (2.5b)
el = LM _ gkl glklgy - k>0 (2.5¢)
and a,E"] =pclkl — plklg, d&k] =g — ¥y, k=1, (2.5d)

where we take constants of integration to be zero:
Wilu=0=0, k=>1. (2.6)
For all integers r > 0, we have introduced the following Lax matrices:
r
Vi =y, ) = (V}]?])3X3 =Wy =Y Wi, r=0, 2.7)

k=0
to formulate the temporal spectral problems

vy, =V = v, 0y, r>o. (2.8)
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The compatibility conditions of (2.1) and (2.8), i.e. the zero curvature equations
u, - vil 4, vil=o, r=o0 (2.9)

generate the four-component AKNS soliton hierarchy
T _aplr+11T
3b
Uy, = [Pq} =K, = [ 2 dr1] } , r>0. (2.10)
tr

The Lax matrices above have a relation

r+1 r+1
VI = S W = = W = v Wiy, 120, (2.11)
k=0 k=0

which allows us to determine asymptotic properties of the Baker—Akhiezer functions recursively
in the next section. Obviously, the first two nonlinear systems in the four-component AKNS
soliton hierarchy (2.10) read

Pity =—3Pixe — 2171 +p2q2)pil and iy, = 3[Givx — 200191 + p22)qi], 1<i<2,  (2.12)
Pits = sPixee — 3101 + P202)Pix — (P11 + P2xd2)pil, 1<i<2 (2.13a)
and Gits = 5[qixee — 3101 + P202)0ix — 3(P191x + P22x)qi], 1<i<2, (2.13b)

which are the four-component versions of the AKNS systems of nonlinear Schrédinger equations
and modified Korteweg—de Vries equations, respectively.
A bi-Hamiltonian formulation of the four-component AKNS equations (2.10) is determined by
8Hy1 , OH,

u, =Ky =JGy =] =" =ML, rz1, (2.14)

where the Hamiltonian functions are defined by

-~ 1
Hi= 1 J @alk1l gl td _ gty gy, k> 1 (2.15)
and the Hamiltonian operators | and M, forming a Hamiltonian pair, by
1 0 =3I
J= |:312 0 j| (2.16a)
and
2
plo~lp+ (p o~ 1p)T (8 - Zpia_lqi) L —pfa~iq"
M= ) i=1 (2.16b)
(3 - Zpia‘lm> L—qd'p g0~ 1g" + (g~ 1g")T
i=1

(b) Riemann surfaces and Baker—Akhiezer functions
For each integer n > 1, we have taken a linear combination of the Lax matrices
n
Wi = wlt(y, 1) = (w}]ﬂl)g,x 5= kz a VI, (2.17)
=0

where the Lax matrices VIKl, 0 <k <1, are given by (2.7) and o, 0 <k < 1, are arbitrary constants
but a # 0, to introduce a trigonal curve /Cq of degree m = 3n as follows:

K¢ =1{P=(%y) € C*|det(yls — W) =0}. (2.18)

The compactified Riemann surface, still denoted by K¢, consists of points satisfying F,(1,y) =0
and the three points at infinity: {Pec,, Poo,, Pocs } (see [1] for details).
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We have also introduced the vector of associated Baker-Akhiezer functions v (P, x, x, tr, to,)
through

Y (P, x,x0, ty, to,r) = U(u(x, tr), A(P))Y (P, x, x0, tr, tor), (2.19)
Vi, (P, X, X0, b, to,r) = VI (ux, t:), AP (P, x, X0, tr, to,1), (2.20)
W u(x, t), \(P) W (P, x, X0, tr, to,) = y(P)W (P, x, X0, tr, to ) (2.21)
and vi(P, x0, %0, tor to,) =1, 1<i<3, (2.22)

where x, t;, xq, to,-, A(P), y(P) € C and P = (,y) € K¢\{Poo,, Pooy, P, }- Associated with the Baker-
Akhiezer functions, a set of meromorphic functions are defined by

‘//I(P X, X0, tr, tO r)

= ;i(P, x,x0, ty, D O 1<id,j<3. 2.23
&ij = &4i(P, x, x0, tr, to,r) = Wi(P, %, x0, by I, Y =iLj= (2.23)
The property (2.21) leads to
yw [n] +C[m] FE]m] y2w[” yA[m] +B[m]
[] [m] Y = T BN T [m] ’ (2.24)
yW].k +Az‘j YWy yCij +Dl-]- Eij
with
[m] _ pllpplnl _ pplndpylnl
Al.]?" = W].[’ Wy — wj,:’ Wi, (2.25)
B = Wil wIwi] — witwl) + witlwiwlil — wiiwi), (2.26)
C[m ][lm], D[m] B][Zﬂ]r (2.27)
[m] (2 plnl . winlwlel el ol [n]\2 0]
Ei" = Wil YW + WEWIR W — W) — (Wi Wi (2.28)
and F[’"] Ej[l'”], (2.29)

where {i,],k} ={1,2,3}. We know from Lemma 3.1 in [1] that the meromorphic functions bij, 1<
i,j <3, defined above, satisfy the following Riccati-type equations

bij = (Ui — Ujp)ij + Ui + Uiy — Uji¢i2]' — Ujkdij (2.30)
and
B, = (Vi = Vi + VI Vg — Vg2 — vilg,01, (2.31)
where {i, ], k} ={1,2,3}.
To deal with asymptotic properties of the Baker-Akhiezer functions v;, 1 <i < 3, we have set
10 = Ungi+ Ungoi + Ui and 1) =Vilgy+ Voo + Viley, 12i<3. @32
Obviously, the properties (2.19) and (2.20) lead to

N
and
VinlBroxo b lon) _jop 1y 1<i<s, (2.34)
vi(P, x, xo0, tr, to,r)
respectively. Then, we have the basic conservation laws
a= (%) - (‘”T)t —¢9,, 1<i=3, (2.35)

from which infinitely many conservation laws can be generated by observing Laurent series of the
conserved quantities J ,) 1 <i <3, and the conserved fluxes I( % ,1<i<3ati=oo(or =1"1=0).
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Finally, based on the basic conservation laws in (2.35), we know that (2.33) and (2.34) imply the
expressions for the Baker—Akhiezer functions ;, 1 <i <3:

X to,r

X . t .
Wi(P, %, x0, b, o) = eXp (J 15-”<P,x',t7)dx/+J Iﬁ”(P,xo,t’)dt’), 1=i<3.  (236)
0

3. Asymptotic behaviours

In order to generate algebro-geometric solutions in terms of the Riemann theta functions, we need
to explore asymptotic properties of the three Baker-Akhiezer functions ;, 1 <i <3, at the three
points at infinity.

(a) Asymptotics of the first Baker—Akhiezer function

We first start with determining asymptotic properties of the meromorphic functions ¢»1 and ¢3;
at the points at infinity.

Lemma 3.1. Let u=(p1,p2,q1,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL, Suppose that P € Kg\{Poo,, Poc,, Pocy} and (x, t,) € C2. Then

3 _
EC’WM#ﬂLmUrO@z), as P — Po,,
1
¢1(P, x, ty) ;jo k2,0 + K218 + O(§2), as P — Py, (3.1)
_ 2 _
—%15 - qlgf'xfz— T Pl;; p2q1q2{3+0(§4), as P — Poo,
and
x10 + x11¢ + 02, as P — Poo,,
3 1. P2x—P1P2K20 2
&31(P, x, t;) = p2§ + p + x21¢ +0O(9), as P — Py, (3.2)
_ 2 _
—%ZC - %xiz - P ng; PINT 5 L 0@t), asP— Po,,
where

Pixio)x=r192, Pix1,1)x= _%(p%PZ,xXLO —p1p1ap2 + P‘;'th +P3p2g2 — P1PLax + Pix),

1
K11 = Q(P%Pz,xm,o — P1P1,xP2X1,0 — 317%292)(1,1 + P?fh + P%Pzﬂiz — P1P1xx + Pix)
1

and

K
(P2k2,0)x =p291,  (p2Kk21)x = %(PlPZPZ,xKZ,O — P15 — P1P5q1 — P%‘h + Pap2x — P%,x),

1
xX21= —Trﬁ(mpzpz,m,o - pl,xp%KZ,O + 3P1P§K2,1 - P1P§L]1 - P%LIZ + p2p2xx — P%,x)-
2

Proof. We begin with the following three ansatzes:

21 o k1,218 H i +1pc 2 +00L3),  ¢m (o X0 +x1,1¢ +0(¢?), asP— Poy;

—0

91 arely +i218 +0(3), o = X218+ x20 + 1218 +O(?),  asP— Pos,;

—0

and ¢ o K318 + k3082 + k3383 +0(Lh),

¢31(= X318 + X328 + x338° +0(¢*), as P— Pooy;

—0

€ET0/L0 “SLb ¥ 205§ 20ig BioBulysiigndiaaposjeforeds:


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on July 31, 2017

where the coefficients, Kij and Xij, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) withi=2,3and j=1, i.e.

¢y =q1 + 3ro1 — P163; — padoida1 and  d31c =g + 3rdz1 — Préo1dn — Padd (3.3)

and comparing the three lowest powers ¢! in each resulting equation, where i goes either from —2
to 0, or from —1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions Kij and
Xij» which yields the asymptotic properties in (3.1) and (3.2). The proof is completed. |

To determine asymptotic properties of the Baker—Akhiezer function y; at the points at infinity,

we now analyse
W = Uy + Unpgon + Usadsr = —2) + proon + pagan (3.4)

and
10 = VI -+ Vg + Vigan. (35)

Lemma 3.2. Let u=(p1,p2,q1,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL, Suppose that P € Kg\{Poo,, Poc, Pocs} and (x, t,) € C2. Then

¢t P 22X 1 0(¢), asP— Py,
D, x,ty) = {14 P2 (3.6)
r X Ly t50 ¢ +p7+o(§)r as P — Po,, :

271+ 0(¢), s P — P,

and
¢ p;* +0@), asP— P,
@t = Yo ”;f +0(C), asP— Po,, (37)
—2¢7" +0(¢), as P — Pyo,.

Proof. First, based on (3.4), we obtain (3.6) directly from lemma 3.1.
Second, note that the first compatibility condition in (2.35) reads

B-(32) ~(2),

and that from (2.11), we obtain
Vil oty g1l el syl gl ang s i — vl g gl

and thus, we have

1(1)1 — }\,I(l) + a[7’+1] + b[7+1]¢ + b r+1]¢ (39)
Now, based on (3.8) and (3.9), we can verify (3.7) from (3.6) by the mathematical induction. The
proof is completed. |

We can then show the asymptotic behaviour of the Baker—Akhiezer function vy at the points
at infinity.

Theorem 3.3. Let u=(p1,p2,q1,q2)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL Suppose that P € Kg\{Poo,, Pocy, Pocy} and (x, t,) € C2. Then

1//1 (Pr X, X0, tr/ tO,r)
St _ _
PO eI — x0) + £l — o) + O)), a5 P Pooy,
p1(xo, tor)
o % exp(¢ L — x0) + £ " (t — tos) + O()), a5 P— Pocy, (3.10)

exp(—2¢ "1 (x — x0) — 207 (t, — to,) + O(2)), as P — Po,.
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Proof. The first formula in (2.36) on the Baker—Akhiezer function v gives

X (1) ty 1
Y1(P, X, X0, r, to,r) = exp J ( (P,x’,tr)dx’+J @, xo,t)dt' |,

Xo to,r

where ]51) and 19) are defined by (3.4) and (3.5). Based on lemma 3.2, this expression generates the

asymptotic properties of 1 in (3.10). The proof is completed.

(b) Asymptotics of the second Baker—Akhiezer function

We now start with determining asymptotic properties of the meromorphic functions ¢12 and ¢z,

at the points at infinity.

Lemma 3.4. Let u=(p1,p2,q1,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =

AL Suppose that P € ICo\{Poo,, Pooy, Pooy } and (x, tr) € C2. Then

1 2 1
B+ (%Xu - gm,x> £+ k138 + 0, as P Pa,,
1 2 3
$12(P,x,t;) = { FP2X2-1+ k218 + k228" + O, as P — Po,,
=0
3 Qe | NP0 — 01, — P19} — P20592
—*C_l-l-%-l- - L 3 ! ! ¢+ 0(¢?), asP— Py,
n 1 347
and
X118 + )(1,2C2 +0(g3), as P— Poo,,
-1 2
X2,-18 7+ x2,0 + x21¢ + O(&7), as P — Pqo,,
¢32(P1x1 t}') Cio 02
1 1
g (q—2> t+g [(q—z) 4 T (@) ];2+O(;3), as P — P,
n 3\m x 9 1/ xx q1 \q1/x
where
—1 -1 1
X11,x = 3P192, X12x = 5(P292 — P191)X11 — 5P1x492,
K13 = —3P2xX11 + 3P2x12 — P (P101 + P2d2) + P1x
and
__1 2 _ 1 1 1
X2,-1x=—3P291X3,—1, K2, =—gP2xX2-1+ 3P2X20 + 3P1,
K22 = —%Plpzlh X2,-1— %P%QZXZ,A + %PZ,xxXZ,fl - %Pz,xm,o + %szm - %Pl,x,
X2,0x + 59201 X2,-1%2,0 — %Pz,xthxzz,_l + X1 — p232)x2,-1 =0,
2 1 2.2 1.2 2 1 2 1 2
X21x + 3P291X2,-1X2,1 — 37P1P291X5,—1 — 37P29192X5,—1 T+ 27P2xxq1 X5, 1 + 3P291 X5 1
- %PZ,x(hXZ,leZ,O + %Plfhxz,o - %quzxz,o + %PZ,xquZ,fl - %Pl,xﬂh X2,~1— %Plﬂlz =0

Proof. Similarly, we begin with the following three ansatzes:
$12 {zokl,lf +k128% +x13¢8° + 0@,
#32 ;foxm; +x12¢2+ 03, asP— Po;

P12 = Ko+ K218 + K0t 4+ 0(c),
=0

(3.11)

(3.12)
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#32 {jOXZ,fléh_l +x20 + x21¢ +0(¢?), asP—> Py
¢ = k316 30+ k31 +O(E?)
¢—0
and #32 S0 /30 +x31¢ + 3262+ 0(3), asP— Pu,;

where the coefficients, Kjj and Xij, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) withi=1,3 and j =2, i.e.

P12y = —3rp12 +p1 + P22 — (dh, and  dxx=qad12 — (1012632, (3.13)

and comparing the three lowest powers ¢! in each resulting equation, where i goes either from —2
to 0, or from —1 to 1, or from 0 to 2, we obtain a set of relations on the coefficient functions Kij and
Xij» which leads to the asymptotic properties in (3.11) and (3.12). This proves the lemma. |

To determine asymptotic properties of the Baker-Akhiezer function v, at the points at infinity,
we now analyse

( ) = U ¢12 + Unp + Unsdps =q1912 + 4 (3.14)

and
12 = Vilg1a + VI + Vi, (3.15)

Lemma 3.5. Let u=(p1,p2,q91,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL Suppose that P € Kg\{Poo,, Pocy, Pocy} and (x, t,) € C2. Then

T+ 0(0), as P — Py,
P xt) = e+ +0@),  asP— P, (3.16)
0 214 qql 2 4+ 0(¢), asP— Poo,
and
"+ 0(2), as P — Py,
12, x, t,) o ¢ oD +0), as P — P, (3.17)

2T q; b1 O@), asP— P,

where p£2) = %Pzth X2,—1 and Cfr,x = p” , with xp,—1 being defined in lemma 3.4.

Proof. The proof is similar. First, based on (3.14), we obtain (3.16) directly from lemma 3.4.
Second, note that the second compatibility condition in (2.35) reads

2 Yot Yo x 2
1= <%)x = ( o ) =12 (3.18)
and that from (2.11), we get
V[r+1] }‘V%] + c[{H], V£r2+1] _ M/zz + d[r+1] and V£r3+1] AV£’3] + d[r+1]
and this leads to
1(2)1 _ M(Z) + C[7+1]¢ + d[r+1] r+1]¢ (3.19)

Now, based on (3.18) and (3.19), we can prove (3.17) from (3.16) by mathematical induction. This
completes the proof. |

We can then prove the asymptotic behaviour of the Baker-Akhiezer function 1 at the points
at infinity as follows.
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Theorem 3.6. Let u=(p1,p2,q1,q2)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
A~L. Suppose that P € Kg\{Poo,, Poc,, Pocy} and (x, t,) € C2. Then

WZ(P/ x/ xO/ ti’/ tO,?’)
exp(¢ ~Hx — x0) + ¢ T (t — to,) + O()), as P — Poo,,
X tr
exp (J pP(P,x, ) dx’ + j o\ 2(P,x0,1) ¥’
= %o for (3.20)
SO e = x0) + ¢~ fo) + OQ)) as P - Pu,,
,t

) (=201 (x = x0) = 26" — to) + OF)), a5 P —> Pocy,
q1(xo, to,r)

where p;z) and ar(z) are defined in lemma 3.5.

Proof. Similarly, the second formula in (2.36) presents

X tr
Yo (P, X, X0, b, to ) = eXp (J £2>(P,x/,tr>dx’+J 152’(P,xo,t’)dt’>,

X0 fo,r
where ]£2) and are given by (3.14) and (3.15). This expression generates the asymptotic
properties of the Baker-Akhiezer function v, in (3.20), based on lemma 3.5. The proof is
completed. |

@

(c) Asymptotics of the third Baker—Akhiezer function

We thirdly start with determining asymptotic properties of the meromorphic functions ¢13 and
¢o3 at the points at infinity.

Lemma 3.7. Let u=(p1,p2,q91,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL Suppose that P € Kg\{Poo,, Pocy, Pocy} and (x, t,) € C2. Then

%m x1,-1 + k118 + k1282 + 0(E3), as P — Py,
hb it =, Pet (%xm = épz,;:) ¢ + 12303 + O(c%), a5 P Pocy, (31
—%;*1 n %x n 92025 — q%,xs—q;zqg - png; 4O, 5P Pa,
and
X1,-18 71+ x10 + x1,1¢ + O@?), as P — Pooy,
PPt =, X218 + x2282 + 0(3), as P— Pocy, (322)
£} (2) o1 [8), 5 (8]} wr-re
where

1
X210 = 3P201 X225 = 3(P101 — P202)X21 — §P2.441,

K23 =—8P1ax21 + 3P1x22 — P23 + P2g2) + P2
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and
—_1 2 —_1 1 1
X1,-1x = —3P192X1, -1, K11 =—gP1,xX1,-1 + 3P1X1,0 + 3P2,
K12 = —%Plpzthm,—l - %P%th)(l,—l + %Pl,xx)(l,—l - %Pl,x)(l,o + %Plxm - %Pz,x,
X101 + 3P102X1,-1X1,0 — %Pl,xtilez,_l + 3(p2q2 — P1q)x1,-1 =0,
2 1 2.2 1.2 2 1 2 1 2
X11x T 5P192X1,-1X1,1 — 37P1P292X1,—1 — 27P19192X1,—1 + a7PLaxq2X1,—1 + 3P192X1,—1
- %Pl,xqz)ﬁ,—l)(l,o + %Pzthxm - %qum,o + %Pl,xlh)ﬂ,—l - %Pz,x172)(1,—1 - %Pz!h =0.
Proof. Similarly, we begin with the following three ansatzes:
$13 = K10+ K118 + K187 +O(3),
=0
$23 {jOXLfl{_l + x10 + x11¢ + O(@?), asP— Pu,;
_ 2 3 4
13 = K218 + k220" + 2387 + O(87),
=0
$23 = X218 + x2282 +0(¢%), asP— Puoy;
=0
and #13 {jOKs,—M*l + 30+ k318 + O(L?),

$23 S0 X30 + 1318 + x3202 +0(E3), asP— Pos,;

where the coefficients, «ij and x;j, are functions to be determined. Substituting those expansions
into the Riccati-type equations (2.30) withi=1,2 and j =3, i.e.

P13 = —3Ad13 + P13 + P2 — 2d3y  and  $o3x = 1613 — (2013623, (3.23)

and comparing the three lowest powers ¢! in each resulting equation, where i goes either from —2
to 0, or from —1 to 1, or from 0 to 2, we get a set of relations on the coefficient functions Kij and
Xij, which engenders the asymptotic properties in (3.21) and (3.22). The proof is completed. W

In order to determine asymptotic properties of the Baker—Akhiezer function v3 at the points at
infinity, we similarly analyse

P = Usi¢1s + Usads + Uss = qais + 2 (3.24)
and
19 = Vi3 + Vs + VI, (3.25)

Lemma 3.8. Let u=(p1,p2,q91,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
AL Suppose that P € Kg\{Poo,, Pocy, Pocy} and (x, t,) € C2. Then

4o +0@),  asP— P,
Op,x,1;) = {¢7+00), 35 P> Pooy, (3:26)
{%O qz[x

_24-—1 4 12x
q2

+0(¢), asP— P,

and
¢ +0Y +0@),  asP—Px,,
Pt = 1600 wP = P 627

-2+ q;*t +0(), asP— Poo,,
2

where ,053) = %plqzm,,l and ar(i) = pfi)y, with x1,—1 being defined in lemma 3.7.
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Proof. Similarly, first based on (3.24), we obtain (3.26) directly from lemma 3.7.
Second, note that the third compatibility condition in (2.35) reads

-(3),-(3),
and that from (2.11), we obtain
YUl oyl dritl - ylelp pl] el g plenl gl el
and this tells us
19, =3P + S gy + gy + by, (3.29)

Finally, based on (3.28) and (3.29), we can verify (3.27) from (3.26) by mathematical induction.
This completes the proof. |

We can then show the following asymptotic behaviour of the Baker-Akhiezer function 3 at
the points at infinity.

Theorem 3.9. Let u=(p1,p2,q1,92)" satisfy the rth four-component AKNS equations (2.10) and ¢ =
A~ L. Suppose that P € Ke\{Pooy, Pooy, Peoy } and (x, tr) € C2. Then

¢3 (p/ x/ xO/ tr/ tO,?’)

X tr
exp (J PP, ¥, tr)dx/+j o /(P,x0,1) ¥
X0 to,r

] A e T — 1) + 00) PP
=0 lexp(¢~Hx — x0) + ¢ " (tr — to,) + O2)), as P — P, '
qo(x, tr)

exp(—2¢ 1 (x — x0) — 20" (tr — to,) + O(¢)), as P — P,

q2(x0, to,r)

where pﬁe’) and a,@) are defined in lemma 3.8.

Proof. Similarly, the third formula in (2.36) reads

t
V3(P,x,x0,tr, 10 r) = €Xp (J ](3)(P, X, tr)dx’ + J

tO,r

19, xo,t) dt’) ,

where ]53) and I,(,3) are determined by (3.24) and (3.25). Based on lemma 3.8, this expression
generates the asymptotic properties of the Baker—Akhiezer function 3 in (3.30). The proof is
completed. [ ]

Now, note that a meromorphic function on a compact Riemann surface has the same number
of zeros and poles. Therefore, in view of lemma 3.1, lemma 3.4 and lemma 3.7, and from the
expressions in (2.24) for the meromorphic functions ¢;, 1<i,j<3, we can assume that their
divisors are given by

(@21(P, %, £1)) =Dp__ iy, (e),.0.0500) = PPgfny (o), ooig (i) (3.31)
(#31(P, x, ) = mea B (o) Be(ity) Db, iy (o) ofig () (3.32)
(@12(P, X, 1)) = Dp iy ()oig () ~ PPy iy (o), B ) (3.33)
(@32(P, X 1) =Dp_ & (o), Aalt) ™ PPacy s (Wh) - ig(ity)s (3.34)
(@13(P, X, 1)) = Dp iy (b iigot) ~ P 8y (), fiolot) (3.35)

and (923(P, x, t))) = DPDQZ,ﬁh3 ()i (Xt) — mellghg (x,t,),...,ég(x,t,-)’ (3.36)
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for some natural numbers h;, 1<i<3. The case of I; >1 for some 1<i<3 could happen,
particularly wheny = —Agnl / W][]:' ], and EE}"] and Z(AEJ'.%])2 + W][;(1 ]Bg"] have common zeros, or when
y= —Cll;n]/Wl[]?], and Fl[.].m] and 2(Cl[-]-m])2 + WI[;:]DI[.JM have common zeros, where {i, j, k} = {1,2,3}.

4. Algebro-geometric solutions

In order to straighten out the corresponding flows in the soliton hierarchy (2.10), we equip Kg
with a homology basis of a-cycles: ay, ..., ag, and b-cycles: by, ..., bg, which are independent and
have intersection numbers as follows:

ajoar=0, bjoby=0 and ajoby=34y 1<jk=<g

In what follows, we will choose the following set as our basis for the space of holomorphic
differentials on g [2,3]:

(4.1)

5 1 A=1da, 1<I<deg(Sm)—1,
0= 5
"7 32(P) + S |y(P)A-desSn) di, deg(Sum) <1<y,

which are ¢ linearly independent holomorphic differentials on /Cq. By using the above homology
basis, the period matrices A = (Aj) and B = (Bj) can be constructed as

Akj:J @ and Bkj:J o, 1<jk=<g (4.2)
a b;

It is possible to show that matrices A and B are invertible [4]. So, we can define the matrices C
and t by C= A~ and t = A~1B. The matrix 7 can be shown to be symmetric (t; = ), and it has
a positive-definite imaginary part (Im t > 0) [5-7]. If we normalize @}, 1 </ <g, into a new basis
w=(w1,...,0):

8
a)j = Z C]’l(;)lr 1 §j =g (4.3)
I=1
where C = (Cjj)gxg, then we obtain
8
J wj:ZCﬂJ' L?)l=5]'k and J' Wj = Tjk, 1§j,k§g. (4.4)
a =1 a by

To compute the b-periods of Abelian differentials of the second kind, we assume that
oo
o =, ; 0ki(Poo)t'ds, asP—Po, 1<k=g 1<j<3, (4.5)

where oy 1(P;), I > 0, are constants.
Now, let 7¢ be the period lattice 7; = {z € C8 |[z=N + Lt, N, L € Z3}. The complex torus 7 =
C8/ 7T, is called the Jacobian variety of K. The Abel map A: g — % is defined as follows:

P P
AP) = (J w1, ..,JQ wg> (mod Tg), (4.6)

where Qq € Ky is a fixed base point. We take the natural linear extension of the Abel map to the
space of divisors Div(Ky):

A mbr) = Y mAPy), (47)

where P, Py € Kq.
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Let a)gj)/ /(P),1<j<3and!>2, denote the normalized Abelian differential of the second kind,
being holomorphic on K¢\ {Peo n and possessing the asymptotic property:

0@ (P) = 7' +0(1)d¢, asP—Ps, 1<j<3,1>2. (4.8)
js =0 /
The adopted normalization condition is
OO/',]

J 0P =0, 1<k<g 1<j<3,1>2 (4.9)
a

@
OO]‘,l
of the Baker-Akhiezer functions ¥, 1 <j <3, we introduce the following Abelian differentials of
the second kind

and (4.8) implies that the residues of w_ ; at P, are all zero. Based on the asymptotic properties

2 _ @ ) 2)
" =wp atwp = 20p o (4.10)
and
5@) _ . () @) @)
2,7 = T0p r41 TTOp 1 — erPMS,r+1' (4.11)

Then for .Qéz), we have the asymptotic expansions

) ~ 1+ e}(Qo) + 0(), asP— Po,,
[ 22 = 1=+ B +00), aspPa, (4.12)
2071+ &5(Q0) +0(),  asP— P,

and for f)r(z), we have the asymptotic expansions:

_ ~(2
, —7 +82(Qu) + 0(), as P P,
~(2 ~
Jo, 27 =] =< + Q) +0), 5P Py (@.13)
0
207 +89(Qo) + 0(),  as P— Puc,,

where the paths of integration are chosen to be the same as the one in the Abel map (4.6). Define
the b-periods of the differentials 952) and f?ﬁz), respectively, by

@ ® ® @_ 1 ®
Uy =(Usy, . Uyy), Upp=5— L 2, 1<k<g (4.14)
k
and
~(2) ~(2 ~(2 ~2 ~(2
a’ =@?,...,a%), uj,j:z J 6P 1<k<g (4.15)
’ / 1 Jby

Through the relationship between the normalized meromorphic differential of the second kind
and the normalized holomorphic differentials wy, 1 <k <g, we can derive that

2
US) = 0k0(Pocy) + 0k0(Pocy) — 20k0(Pocy), 1<k <g (4.16)
and
~(2
U2 = 01 (Pocy) + 0k (Pocy) — 20k4(Pec;), 1<k <g. (4.17)

Let wgl)le stand for the normalized Abelian differential of the third kind, holomorphic
on K¢\{Q1,Q2} and with simple poles at Q; with residues (=", 1=1,2. The adopted
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normalization condition reads

@  _
Lk 0, 0, = 0, 1<k<g (4.18)
and, thus,
®) (@
er 000 = 2n1J wy, 1<k<g (4.19)
3 Q

where the path of integration from Q5 to Q1 does not intersect the cycles ay, ..., ag, by, ..., bg. We
then set

P.,
6(233((20) = e(z?(Qo,x, xo, tr to,r) = JQ "o 1<j<3 (4.20)
0

w> .
Vo (x0,t0,), Do (xtr)”
and

Poo.
3) _ 0 I N ) .
€3, (Qo) = 3,;(Qo, % %o, trs tor) = JQU Dot ooty L =153 (4.21)

where the paths of integration are chosen to be the same as the one in the Abel map (4.6).
Denote by 6(z) the Riemann theta function associated with K¢ equipped with the above
homology basis [6]:

0@ =) exp(ri(Nz,N) +27i(N, 2)), (422)
NeZs

wherez =(z1,...,2¢) € C¢ is a complex vector, and (-, -) stands for the Hermitian inner product on
CS:

8
w =) zwj, z=(21,...,2) €C5, w=(wy,... wg)eC. (4.23)
j=1

The Riemann theta function is even and quasi-periodic. More precisely, it satisfies
0(z1, .., 2j-1,—Zj, Zjy1, .- -, Zg) =0(2), 1=<j=<g (4.24)
and
0(z+ N + Lt) =exp(—wi(Lz, L) — 27i(L, 2))0(2), (4.25)
where z=(z1,...,24) € C§, N=(Ny,...,Ng) € Z3 and L= (L4, ..., Lg) € Z3. For brevity, define the

function z: K¢ x 08/Cy — C8 by

8
z2(P,Q)=M— A(P)+ Y _Dq,,..0,(QAWQ), (4.26)
j=1

where P e g, Q=(Q1,...,Qq) € 08K, 08¢ denotes the gth symmetric power of K¢ [7], and
M=(Mjy,...,My) is a vector of Riemann constants [6,8]:

8 P
1 .
Mj=30+5) - 3 ,LI“”(P)JQO% lsj=g (4.27)
I=1, I#]

By Riemann’s vanishing theorem [8,9], the function 6(z(P, Q)) has exactly ¢ zeros Q1, . .., Qq if the
divisor D = Q1 + - - - Qg is non-special.
Introduce three particular points in the gth symmetric power o8/Cq:

Al tr) = (a(x, b), - g (x, 1)), (4.28)
D(x, tr) = (D1(x, tr), . .., Dg(x, 1)), (4.29)
B t) =it Gl ) (4.30)
and denote the corresponding three particular divisors in Div(Kg) by
8 g 8
Dt = > Ao t), Dygyy=»_ 0i(xt) and D) = > Ex ). (4.31)

j=1 j=1 j=1
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Theorem 4.1 (Theta function representations of the Baker-Akhiezer functions). Let 2, C C?
be an open and connected set, (xo, to,r), (x, tr) € 2, and P = (A, y) € K¢\ {Poo;, 1 <7 < 3}. Suppose that Kq
is non-singular and Dy 4,) 0 Dy(x 1) OF DE( 1,) is non-special for (x, t;) € $2.. Then, the Baker-Akhiezer
functions have the followzng theta function representations:

‘ﬁl (P/ X, xO/ tf/ tO,V)

_ Ol A DIEPoey 0, 10,)) o
= 0GP, A5, OGP, 0, t0,) ((323@ "JQO 2 )("‘xO)

( #2(Qo) - JQ fzﬁ”) (t, — to,r)> , (4.32)

WZ(P/ xl xO/ tV/ tO,r)

_ 0P, 53, 1P (e(Pocy, w0, to,)) <<e;2;<g) J 99) x— 70)
Qo

 0(Pocy, D0, 1))OGP, 2(x0, f0,))

<(2)(Qo) jQO fzﬁ”) (tr—to,r)+(621(Q )—J wiﬁim,to,>,ao<x,t,>)> (433)

ﬂnd 1//3(131 X, xO/ trr tO r)

QL(P f(x t)))0(z (Pooz/“;(xO/ to, r))) ) ) _
T 0&(Poos, £, 1)OEP, £ (30, 0y) ((E“(Q) JQO G| e x)

<<2’<Q> jQO fzﬁ”) (fr—fo,r)‘f'(egg(Qo)—JQo ‘”gim,to,»,go(x,t,)))' (4.34)

where the paths of integration are the same as the one in the Abel map (4.6).

Proof. Let ¥1,¥, and ¥3 denote the right-hand sides of (4.32), (4.33) and (4.34), respectively.
By theorem 4.4 in [1], ¥y has the simple zeros [1(x,t),...,fig(x,t;) and the simple poles
1 (xo, tos), - - -, fig(xo, to,r), ¥2 has the simple zeros Do(x, tr), b1(x, tr), ..., Dg(x, t) and the simple
poles Do (xo, to,r), Y1(x0, to,r), - - -, Dg(x0, to,r), and Y3 has the simple zeros &o(x, t,), £1(x, tr), . . ., Eg(x, tr)
and the simple poles &y(xo, to,r), §1(x0, to,r), - - -, §g(x0, to,r)- They all have three essential singularities
at Poo;, Pooy, Pooy- By Riemann’s vanishing theorem [8], we know that ¥;, 1 <i<3, have the
same properties as y;, 1<i<3, respectively. Thus, the Riemann-Roch theorem tells us that
/Y=y, 1<i<3, where y;, 1 <i<3, are constants depending on P. Using the asymptotic
properties of ¥; and ¥;, 1 <i <3, one has

o exp(—2¢ 1 (x — x0) — 207" (t, — to,r) + O())(1 + O(¢))
Y1 ¢—0 exp(—2¢ 1 (x — xp) — 27 (t, — to,) + O())
¥ _ exp(¢ ~1x — x0) + ¢ "ty — to,) + O(0))(1 + O(¢))
Yo ¢—0 eXp(Cil(X —x0)+ ¢t — tor) + 0(2))
v exp(¢ 1 (x — x0) + £ " (t — to,) + O())(1 + O(7))
Y3 =0 exp(¢~1(x — x0) + ¢ " (tr — to,) + O(Z))

These show that y; =1, 1 <i <3. Therefore, ¥; = v;, 1 <i <3. This completes the proof of the
theorem. |

:01 +0() asP— Py,

:01 +0() asP— Py,

and

:01 +0(¢) asP — P,

Using the linear equivalences [9,10]
Dpooyﬁhl (x,t,),...,ﬁg(x,t,) ~ Dpocl//’)vhl (x/tr)/nvllg(x/tr)'
mea Fny o) g t) Db,y iy (), eig )

and Py iy ()i t) ™ PPocs iy o) gt}
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which are due to (3.31), (3.32) and (3.34), we obtain

8 8
APo;) + Y AGj(x, 1)) = APocy) + Y ARy(x, 1)),
j=}11 j=l’l1

8 &
APocy) + ) AGj(x, 1) = A(Poy) + D A(f(x, 1))

j=ha j=ha
8 R 8
and APoc) + D AGi(x, 1) = APoc,) + ) AWj(x, 1),
j=hs j=hs

respectively. Define the Abel-Jacobi coordinates

. 8 iyt
PV 1) = ADaes) = ZJ o (4.35)
]‘:1 QO
2 8 13]‘(xrtr)
ot = AP =3[ o (436)
j=1 Qo
(3) 8 éj(x/tV)
P t) = A(Dgpp ) = Z JQ ® (4.37)
& “la

and then we have
0(z(P, Ax, 1)) =6 (M — AP) + pM(x, 1),
6(z(P, D(x, 1)) = 6(M — A(P) + p*(x, 1))
and 6(z(P, E(x, 1)) =6 (M — AP) + p°)(x, 1,)).
The Abel-Jacobi coordinates can be linearized on the Riemann surface /Cg as follows.

Theorem 4.2 (Straightening out of the flows). Let (x,t;), (xo,to,) € C2 and u= (p1,v2, 91, qz)T
solve the rth four-component AKNS equations (2.10). Suppose that Kg is non-singular and Dy ) or
Dixty) 0 Dy is non-special. Then, we have B

PV 1) = pV(xo, to,) + UL (x — x0) + USH(t — to,) (mod Ty),  (4.38)

A(bo(x, 1)) + p@ (x, 1) = Ao (xo, to,)) + p@ (xo, to,r)
+ U (x — x0) + Us At — to,1) (mod Ty) (4.39)

and Ao, 1) + pO(x, 1) = Ao(xo, o)) + o (xo, to,r)
+ UP (x — x0) + Ut — to,1) (mod Ty). (4.40)

Proof. In order to prove the theorem, we introduce three meromorphic differentials

d
Qj(x/ xO/ tl’/ tO,F) = 87 ln(W](Pr xl xO/ tl’/ tO,r)) d)“/ 1 S] S 3 (441)

Let us first prove (4.38). From the theta function representation (4.32) for 1, one infers

8
2 ~(2 3 ~
@150, b 0,) =~ = 30257 = (tr = t0)DY + Y0000 oy TE (442)
=1
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where @ is a holomorphic differential on ICg, which can be expressed by

8
b=y o, (4.43)
j=1

hj € C being constants, 1 <j <g.
Since 1 (P, x, xo, tr, to,r) is single-valued on Kg, all a- and b-periods of £ are integer multiples
of 27ri and thus

2l = J

ak

Ql(x,xo,tr,to,r)=J o=h, 1<k<g,

ak

for some I € Z. Similarly, for some 1y € Z, we have

2ring = J 21(x, x0, tr, tor)

by

(2) (2) -
=) 2| @ +ZJ Bletrionin * |, @
k k

by

- s ﬂ/(x,t,)
= —(x—xp) Jb 2% —(t: —to,) Jb 2@ +ori ZJ
k k

j=1 ,a/‘(xO:tO,y)

8
wk + 27 Z l; J wj
j=1 B

= —2ri(x — x)UY) — 2mi(ty — to,) U

8 it (xtr) 3 aj(xo,to,r) s
+27‘[i(2j/ wk—ZJQ/ a)k)-i-ZﬂiZl]“L'jk, 1<k<g.
o ‘

j=17Q j=1

Thus, we arrive at

8 . 8
) aj(xty) Aj(xo,to,r)
N=—( =l =t~ to)7 + 30 [ - ZJ wtle, (444

j=1"Q0 j=1

where N =(ny,...,1ng) €Z8 and L=(ly,...,ly) € Z8. The equation (4.44) exactly tells the first
equality in (4.38).

Similarly, we can prove (4.39) and (4.40) by using the other two meromorphic differentials
§2, and 23, respectively. The only difference is to change 23

=1 P b, 05 (0, ko)

W@ _— . . .
Z ”7 (x’ Di(oter) © or Y% =0 g/ (ot o) on th? right-hand 51d? of (4.42), which brings the terms
Ado(x, 1)) and A(o(xo, to,)) in (4.39), and A(o(x, 1)) and Ao(xo,to,) in (4.40). The proof is
completed. ™

into

Now, we are able to present theta function representations of solutions of the rth four-
component AKNS equations (2.10).

Theorem 4.3 (Theta function representations of solutions). Let $2, C C? be an open and
connected set, (xo, tor), (x, t) € 2, and P = (A, y) € Ke\{Poo,, 1 <1 < 3}. Suppose that K¢ is non-singular
and D@(x,t,) o1 Dy(xt,) OF Dé'(x,tr) is non-special for (x,t;) € §2,,. Then, the solution u = (pl,pz,ql,qz)T of
the rth four-component AKNS equations (2.10) has the following theta function representations:
0(2(Pooy , A%, £1)))0 (2(Poos, 1(x0, to,r)))
6(2(Poos, (x, 11)))0 (2(Poc; , (X0, to,r)))

x exp((e53(Qo) — €57(Q0)(x — x0) + (€3(Qo) — 27 (Q)(tr — to,1)), (4.45)

G(Z(POOZI ﬁ(x/ t?’)))e(g(POOy E(XOI tO,T)))
0(2(Pocs, (1(x, £)))6(2(Poc,, f1(X0, to,r)))

x exp((€53(Qo) — €53(Qu))(x — x0) + E2(Q0) — £3(Qu))(tr — to)) (4.46)

p1(x, tr) = p1(xo0, to,r)

Pz(x/ tr) = PZ(XO/ tO,?’)
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and

0(z(Pocs, D(x, £)))0 (2(Poc,, D(x0, to,r)))
0(2(Poo;, D(x, £)))0 (2(Pocs, D(x0, to,r)))

x exp((e5](Qo) — e53(Qo))(x — x0) + (&7(Qo) — EA(Qu))(tr — to,r)
+ 62 1(QO/ x, xg, tr, to, ) — 62 3(Q0/ x, xo, tr, to, ) (4.47)

) — (o0 o )e(z(Pooq,ax E))O(2(Posy, € (x0, to 1))
o " 0(2Pos,y, £ (x, )0 (2(Poss, £ (x0, o))

x exp((e53(Qo) — €53(Q0))(x — x0) + (&2(Qo) — £3(Qo)(tr — to,y)

+ 63 z(QO/ X, x0, tr, to,r) — 63 3(Q0/ x, X0, tr, to,r))- (4.48)

q1(x, tr) = q1(x0, to,r)

Proof. Based on the asymptotic properties of .Qéz) and .(~2,(2) in (4.12) and (4.13), and following
theorem 4.1, we can expand the Baker—Akhiezer functions near the indicated points at infinity as
follows:

0EPosy, 1%, 1)))O(2(Pos, f1(x0, o,1)))
1 e 20 6(2(Pogy, A, 1)))8(2(Poc,, X0, o))

x exp((e53(Qo) — €51(Q0))(x — x0) + (&3(Qo) — 273 (Qo)(tr — to,y)
+ ¢ = x0) + ¢t — to,) + O(Q))(1 + O)), as P — Pe,,

N O(Z(POOZ/E(XI tV)))Q(Z(POOyé(xOI t(),l’)))
20 0(z(Poss, [(x, 1)))0 (2(Pos,, f1(x0, to,r)))

x exp((€3(Qo) — €53(Q0))(x — x0) + (€3(Q0) — £3(Q)(tr — to,y)
+ 7 M = x0) + ¢t — to,) + O+ OF)), asP— Pu,

and

gy OE(Poos, 5 )0 (E(Posy, 230, o))
2120 8(&(Pooy, (%, )0 (Pocs, (X0, t0,)

+ @2(Qo) — #2(Qo)(tr — to) + (€51(Qo) — €54(Q0)
=207 x —x0) = 207" (tr — to,) + OO)(1 + O()), as P— Pecy,
- 8(z(Pocs, (3, 1))(EPocy E (30, t0,))
£50 0oy, 6, 1))0E(Pocs E(x0, 0,)
+@2(Qo) — 22(Qo)(tr — to) + (€53(Qo) — €53(Q0)
— 207 (x = x0) = 207" (tr — to) + O(O)(1 + O)), as P— Pe,.

exp((e5](Qo) — €53(Qu)( — x0)

xp((e53(Qo) — €53(Q0))(x — xo)

Now, comparing with the asymptotic behaviours of 1 and vy and 3 established in (3.10), (3.20)
and (3.30), respectively, we obtain the Riemann theta function presentations of p1,p2, 41 and g, in
(4.45)—(4.48) immediately. This completes the proof. |

5. Concluding remarks

The present study, consisting of two parts, is dedicated to the development of explicit Riemann
theta function representations of algebro-geometric solutions to entire soliton hierarchies.
This is the second part. In this part, we straightened out all soliton flows under the Abel-
Jacobi coordinates through determining zeros and poles of the Baker—Akhiezer functions, and
constructed the Riemann theta function representations for algebro-geometric solutions to the
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four-component AKNS equations from checking asymptotic behaviours of the Baker—Akhiezer
functions at the points at infinity.

We point out that we can similarly construct algebro-geometric solutions to a linear
combination of different AKNS equations in the four-component AKNS soliton hierarchy,
which just increases asymptotic complexity [11-13]. Various choices of linear combinations of
Lax matrices lead to different algebro-geometric solutions to soliton hierarchies. However, it
needs further investigation how to apply higher-order algebraic curves in finding algebro-
geometric solutions to soliton equations. Higher-order matrix spectral problems [14-16] generate
tremendous difficulty in computing algebro-geometric solutions. More components in the vector
of eigenfunctions will cause complicated situations while deriving asymptotic expansions for the
Baker—Akhiezer functions.

Two other interesting directions for further study are reductions and a density property
of algebro-geometric solutions. Reducing algebro-geometric solutions tells various classes of
exact solutions to soliton equations [9]. Two such classes of analytical solutions on the real
field are quasi-periodic wave solutions [17] and lump solutions [18-20]. The study of lump
solutions by bilinear techniques also brings us to an important question in multilinear algebra:
how to determine positive definiteness (or positive semidefiniteness) for hypermatrices of even
orders? For example, when does a real fourth-order hypermatrix, A=(aijk1)nxnxnxn, satisfy
Z;fj,k,lzl ajjaxiXjxxx; > 0 (or > 0) for all non-zero vectors (x1,...,xn) € R"? The density property
tells us about the computability of exact solutions to soliton equations via approximations.
Commuting Lie symmetries, inherited from a recursion operator of a soliton hierarchy, yields an
infinite number of one-parameter Lie groups of solutions to each equation in the hierarchy [21].
We conjecture that those infinitely many one-parameter Lie groups of solutions, starting from
equilibria and algebro-geometric solutions, form a dense subset of solutions in the solution set of
each equation in the underlying soliton hierarchy, under the uniform norm [22].
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