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Abstract. This paper aims to study lump waves formed by nonlinearity and
dispersion in a spatial symmetric generalized KP model in (2+1)-dimensions. To an
associated Hirota bilinear form of the model equation, positive quadratic waves are
computed to generate lump waves by symbolic computation with Maple. It is shown
that critical points of the positive quadratic waves are located on a straight line in the
spatial space, whose coordinates travel at constant speeds. Optimal values of the cor-
responding lump waves are explicitly worked out, not depending on time, either. The
dispersion terms and the nonlinear terms jointly create the lump waves.
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1. INTRODUCTION

Closed-form solutions are nearly always desirable, because they help develop
general solutions to problems. Unfortunately, closed-form solutions are not always
possible. Many scientists concern themselves with finding closed-form solutions to
open problems, and in lieu of that, proving whether or not a closed-form solution
is possible. In soliton theory and nonlinear optics, multiple wave solutions, includ-
ing solitons and lump waves, can be determined by conducting computer-based ap-
proaches. Nonlinearity and dispersion come together to form such nonlinear disper-
sive waves.

The Hirota direct method [1] and the inverse scattering transform [2] are among
powerful mathematical techniques used in the context of soliton theory and integrable
equations. The Hirota direct method can be used as a basic approach to solitons and
lump waves, particularly in (2+1)- and (3+1)-dimensional nonlinear wave equations
[3]-[6]. The inverse scattering technique is viewed as a generalization of the Fourier
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transform to deal with nonlinear problems. It is targeted at solving Cauchy problems
of nonlinear equations with Lax pairs [7] and exploring long-time asymptotics of
solitonless solutions [8].

Let R be a polynomial in time t and two space variables x,y. A (2+1)-dimen-
sional Hirota bilinear differential equation is defined by

R(Dt,Dx,Dy)g ·g = 0, (1)

where Dt,Dx and Dy are the Hirota bilinear derivatives [1]:

Dm
t D

n
xD

k
yg ·g=

( ∂
∂t
− ∂

∂t′
)m( ∂

∂x
− ∂

∂x′
)n( ∂

∂y
− ∂

∂y′
)k
g(t,x,y)g(t′,x′,y′)

∣∣
t′=t,x′=x,y′=y

,

m,n,k being nonnegative integers. From Hirota bilinear forms, nonlinear partial
differential equations with a scalar dependent variable u are determined usually by
taking use of the logarithmic derivative transformations

u= 2(lng)xx, u= 2(lng)yy, u= 2(lng)xy, u= 2(lng)x, u= 2(lng)y. (2)

In view of the Hirota bilinear method, an N -soliton solution (see, e.g., [3, 9]) can be
expressed as

g =
∑
λ=0,1

exp(
N∑
i=1

λiζi+
∑
i<j

λiλjcij), (3)

with
∑

λ=0,1 denoting the sum over all possibilities for λ1,λ2, · · · ,λN being either 0
or 1, and the phase shifts cij and the wave variables ζi being given by

exp(cij) =−
R(ωj−ωi,ki−kj , li− lj)
R(ωj+ωi,ki+kj , li+ lj)

, 1≤ i < j ≤N, (4)

and
ζi = kix+ liy−ωit+ ζi,0, 1≤ i≤N. (5)

To determine an N -soliton solution, we need to impose the dispersion conditions

R(−ωi,ki, li) = 0, 1≤ i≤N, (6)

but the constant phase shifts ζi,0 could be arbitrary. By taking the dispersion cond-
tions (6) into consideration, an algorithm to show if such a function g in (3) solves
the Hirota bilinear equation (1) is carefully formulated, together with illustrative ex-
amples, in [9, 10].

Recent extensive studies explore lump waves (and rogue waves) in nonlinear
integrable models, resembling solitons, and they describe diverse interesting nonlin-
ear phenomena [11]. Lump waves are formulated by using rational functions, which
are localized in all directions in space (see, e.g., [11, 12]). The KPI model equation
possesses diverse lump waves (see, e.g., [4]), and its specific lump waves are derived
from its solitons by conducting long wave limits [13]. On the other hand, lump waves
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also exist in nonlinear nonintegrable models, which include a few generalized (2+1)-
dimensional KP, BKP and KP-Boussinesq model equations [14]. While lump waves
refer to coherent structures in nonlinear models, they ocurr in linear models in higher
dimensions as well, arising from linear superposition principles (see, e.g., [15]).

A powerful ansatz for lump waves is to search for positive quadratic wave solu-
tions to bilinear equations [4, 11]. Lump waves to nonlinear model equations are de-
rived from positive quadratic waves by the logarithmic derivative transformations. In
this paper, we would like to construct lump waves in a spatial symmetric generalized
(2+1)-dimensional KP model via such an analytical ansatz using quadratic functions.
We first present a Hirota bilinear form for the considered nonlinear model equation.
The introduced spatial symmetric generalized (2+1)-dimensional KP model contains
two nonlinear terms and five second-order dispersion terms. The nonlinearity terms
and the dispersion terms are managing forces during the formulation of lump waves.
The lump waves will be computed by conducting symbolic computation with com-
puter algebra systems. Their characteristic dynamical properties, including critical
points and optimal values, will be analyzed. A few concluding remarks will be pro-
vided in the last Section.

2. A SPATIAL SYMMETRIC GENERALIZED KP MODEL

Let α,β and γi, 1 ≤ i ≤ 3, be real constants. To study lump waves created
jointly by nonlinearity and dispersion, we introduce and consider a spatial symmetric
generalized KP model equation:

F (u) = α(6uxvx+6uxxv+uxxxx+6uywy+6uyyw+uyyyy)

+β(4uuxy+4vywx+uxuy+uyyv+uxxw+vxwy+uxxyy)

+γ1(utx+uty)+γ2(uxx+uyy)+γ3uxy = 0, (7)

where vy = ux,wx = uy,px = v,qy = w. The example with α = 1, β = 0, γ1 =
−γ2 = 1 and γ3 = 0 of this nonlinear model contains the (2+1)-dimensional spatial
symmetric KP model equation [18]:

6uxvx+6uxxv+uxxxx+6uywy+6uyyw+uyyyy+utx+uty−uxx−uyy = 0, (8)

with vy = ux and wx = uy, which is a symmetric generalization of the (2+1)-di-
mensional KdV model [16, 17]. It is direct to check that the general model doesn’t
possess N -solitons (see, e.g., [9] for examples of N -solitons).

With symbolic computation, we can show that the logarithmic derivative trans-
formations

u= 2(lng)xy, v = 2(lng)xx, w = 2(lng)yy, p= 2(lng)x, q = 2(lng)y, (9)

transforms the above spatial symmetric generalized (2+1)-dimensional KP model
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equation (7) into a Hirota bilinear equation:

R(g) = α(D4
x+D

4
y)+βD

2
xD

2
y+γ1(DtDx+DtDy)+γ2(D

2
x+D

2
y)+γ3DxDy)g ·g

= 2[α(gxxxxg−4gxxxgx+3g2xx+gyyyyg−4gyyygy+3g2yy)

+β(gxxyyg−2gxxygy−2gxyygx+gxxgyy+2g2xy)

+γ1(gtxg−gtgx+gtyg−gtgy)+γ2(gxxg−g2x+gyyg−g2y)+γ3(gxyg−gxgy)]
= 0, (10)

where Dt,Dx and Dy are the Hirota bilinear derivatives [1]. Actually, the precise
relation between the nonlinear model equation and the bilinear model equation reads

F (u) =
[R(g)
g2

]
xy
, (11)

where u,v,w,p,q are determined through g in (9). Such links also exist in a spatial
symmetric KP model [18] and a spatial symmetric HSI model [19]. It is now clear
that if g is a solution to the bilinear model equation (10), then u,v,w,p,q defined by
(9) solve the spatial symmetric generalized (2+1)-dimensional KP model equation
(7). We would like to explore a class of lump waves in this nonlinear model below.

3. LUMP WAVES FORMED BY NONLINEARITY AND DISPERSION

We would now like to construct lump waves for the spatial symmetric general-
ized (2+1)-dimensional KP model equation (7), through conducting symbolic com-
putations. We remark that it is direct to check that the above general nonlinear model
equation does not pass the three-soliton test (see, e.g., [9] for examples).

Following an ansatz on lump waves in (2+1)-dimensions [4], we compute pos-
itive quadratic wave solutions

g = ζ21 + ζ
2
2 +a9, ζ1 = a1x+a2y+a3t+a4, ζ2 = a5x+a6y+a7t+a8, (12)

to the Hirota bilinear equation (10). The parameters ai, 1≤ i≤ 9, are real constants,
which need to be determined (see, e.g., [4, 11] for illustrative examples). This forms
general lump waves of lower order in (2+1)-dimensions [11]. An essential step is to
conduct symbolic computations to work out the involved constant parameters ai, 1≤
i≤ 9.

We input g by (12) into the Hirota bilinear equation (10) and then obtain a
system of algebraic equations on the parameters. With computation by computer
algebra systems, we solve the resulting system for a3,a7 and a9, and a set of solutions

(c) 2024 RRP 76(0) 108 - v.2.0*2024.7.7 —ATG



5 Lump waves and their dynamics of a spatial symmetric generalized KP model Article no. 108

reads

a3 =−
{(a1+a2)[(a5+a6)2+a1a2]+a1(a21−2a26)+a2(a

2
2−2a25)}γ2

[(a1+a2)2+(a5+a6)2]γ1

− [a1(a
2
2+a

2
6)+a2(a

2
1+a

2
5)]γ3

[(a1+a2)2+(a5+a6)2]γ1
,

a7 =−
{(a5+a6)[(a1+a2)2+a5a6]+a5(a25−2a22)+a6(a

2
6−2a21)}γ2

[(a1+a2)2+(a5+a6)2]γ1

− [a5(a
2
2+a

2
6)+a6(a

2
1+a

2
5)]γ3

[(a1+a2)2+(a5+a6)2]γ1
,

a9 =−
3α[(a21+a

2
5)

2+(a22+a
2
6)

2][(a1+a2)
2+(a5+a6)

2]

(a1a6−a2a5)2(2γ2−γ3)

−β[3(a1a2+a5a6)
2+(a1a6−a2a5)2][(a1+a2)2+(a5+a6)

2]

(a1a6−a2a5)2(2γ2−γ3)
.

(13)
All other parameters can be arbitrarily taken.

The two frequency parameters, a3 and a7, represent a class of dispersion re-
lations in nonlinear dispersive waves in (2+1)-dimensions, and the constant term
parameter, a9, shows a complicated relation with the wave numbers, which is crucial
in generating lump waves within the Hirota bilinear formulation. A kind of higher-
order dispersion relations appearing in lump waves has also been presented for the
second model of the integrable KP hierarchy [20], and specific nonlinear dynamical
properties have been explored in various generalized KP models (see, e.g., [21, 22]).

All the above expressions for the wave frequencies and the constant term in (13)
are simplified by computations with computer algebra systems. A direct observation
is that if

a1+a2 = a5+a6 = 0, (14)
then

a1a6−a2a5 = 0. (15)
Moreover, based on (13), the parameter a9 is positive if and only if

a10(2γ2−γ3)< 0, (16)

where a10 is defined by

a10 = 3α[(a21+a
2
5)

2+(a22+a
2
6)

2]+β[3(a1a2+a5a6)
2+(a1a6−a2a5)2]. (17)

Therefore, to formulate lump waves by means of the logarithmic derivative transfor-
mations, we need to impose the basic conditions:

γ1 6= 0, a10(2γ2−γ3)< 0, (18)
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and
a1a6−a2a5 6= 0, (19)

The two conditions (18) and (19) guarantee the analyticity of the resulting solutions
of u,v,w in the whole spatial and temporal space, and the condition (19) ensures the
localness of the solutions of u,v,w in all spatial directions. Therefore, such solutions
u,v,w present lump waves, under the two basic conditions (18) and (19).

The condition (18) can be satisfied, when we impose either

γ1 6= 0, α(2γ2−γ3)< 0, β(2γ2−γ3)≤ 0. (20)

or
γ1 6= 0, α(2γ2−γ3)≤ 0, β(2γ2−γ3)< 0. (21)

The conditions determined by (20) and (21) involves the coefficients, α,β, of the
nonlinear terms and the coefficients, γ1,γ2,γ3, of the dispersion terms. If 2γ2−γ3 >
0, then we require α < 0 and β ≤ 0 or α ≤ 0 and β < 0, and if 2γ2− γ3 < 0, we
require α > 0 and β ≥ 0 or α ≥ 0 and β > 0, to satisfy (20) or (21). Therefore, the
nonlinearity and the dispersion jointly govern lump waves for the model equation (7),
but the nonlinearity does not affect the speeds of the two single waves in the lumps,
based on (13). Moreover, the condition on the dispersion terms

γ1(2γ2−γ3) 6= 0 (22)

is always required in the formulating process of the lump waves.
There are two special cases, which still possess lump waves. One corresponds

to β = 0 and the other, α= 0. Recently, various multi-component integrable nonlin-
ear Schrödinger models or modified Korteweg-de Vries models have been explored
(see, e.g., [23–25]). It would be of great interest to check if there exist lump waves in
(2+1)-dimensional generalizations of those integrable models in (1+1)-dimensions.

4. DYNAMICAL CHARACTERISTICS

Let us consider dynamical characteristic properties of the lump waves com-
puted in the previous Section.

4.1. LINE OF CRITICAL POINTS

Let us first determine critical points of the quadratic function f defined by (12).
To this end, we solve a system of two equations:

∂g

∂x
(t,x(t),y(t)) = 0,

∂g

∂y
(t,x(t),y(t)) = 0.

Upon considering that f is quadratic, this leads precisely to

a1ζ1+a5ζ2 = 0, a2ζ1+a6ζ2 = 0.
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Therefore, because of the condition by (19), we have

ζ1 = a1x+a2y+a3t+a4 = 0, ζ2 = a5x+a6y+a7t+a8 = 0. (23)

Solving this linear system for x and y, we obtain all critical points of the multivariate
quadratic function f :

x(t) =
[(a1+a2)

2+(a5+a6)
2−2(a22+a

2
6)]γ2+(a22+a

2
6)γ3

[(a1+a2)2+(a5+a6)2]γ1
t

+
a2a8−a4a6
a1a6−a2a5

, (24)

y(t) =− [(a1−a2)2+(a5−a6)2−2(a22+a
2
6)]γ2− (a21+a

2
5)γ3

[(a1+a2)2+(a5+a6)2]γ1
t

− a1a8−a4a5
a1a6−a2a5

, (25)

at an arbitrarily fixed time t.
Evidently, those critical points form a characteristic line, whose two spatial

coordinates travel at constant speeds. Moreover, we can show that all those points
(x(t),y(t)) determined above are also critical points of the three lump waves u,v and
w by (9).

4.2. ANALYTICITY CONDITION

Taking (23) into consideration, we find that the sum of two squares, namely,
the function g−a9 vanishes at all critical points determined by (24) and (25). As a
consequence, we see that g > 0 if and only if a9 > 0. The sufficiency is obvious, and
the necessity is due to that g = 0 at the critical points if a9 = 0 and g = 0 at any point
determined by the circle ζ21 + ζ

2
2 =−a9 if a9 < 0.

Consequently, u,v,w defined by (9) are analytic in R3 if and only if the param-
eter a9 must be positive, γ1 6= 0 and (19) is satisfied. The necessary and sufficient
condition to guarantee the positiveness of a9 was presented in Section 3, which can
be satisfied by either

α(2γ2−γ3)< 0,β(2γ2−γ3)≤ 0, (26)

or

α(2γ2−γ3)≤ 0,β(2γ2−γ3)< 0. (27)
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4.3. OPTIMAL VALUES

By applying the second partial derivative test in calculus, the both lump waves,
v and w, have a peak at the critical points (x(t),y(t)), because we can work out that

vxx =−
24(a21+a

2
5)

2(a1a6−a2a5)4(2γ2−γ3)2

a210[(a1+a2)
2+(a5+a6)2]2

< 0,

vxxvyy−v2xy =
192(a21+a

2
5)

2(a1a6−a2a5)10(2γ2−γ3)4

a410[(a1+a2)
2+(a5+a6)2]4

> 0,

(28)

and
wxx =−

8[(a1a6−a2a5)2+3(a1a2+a5a6)
2](a1a6−a2a5)4(2γ2−γ3)2

a210[(a1+a2)
2+(a5+a6)2]2

< 0,

wxxwyy−w2
xy =

192(a22+a
2
6)

2(a1a6−a2a5)10(2γ2−γ3)4

a410[(a1+a2)
2+(a5+a6)2]4

> 0,

(29)
where a10 is defined by (17).

In an analogous way, we can determine that
uxx =−

2(a21+a
2
5)(a1a6−a2a5)4(a1a2+a5a6)(2γ2−γ3)2

a210[(a1+a2)
2+(a5+a6)2]2

,

uxxuyy−u2xy =
64a11(a1a6−a2a5)10(2γ2−γ3)4

a410[(a1+a2)
2+(a5+a6)2]4

,

(30)

where a10 is given by (17) and a11 is defined by

a11 = 3(a1a2+a5a6)
2− (a1a6−a2a5)2. (31)

Accordingly, the lump wave u has the minimum (or maximum) points (x(t),y(t)),
when a1a2 + a5a6 < 0 (or a1a2 + a5a6 > 0) and a11 > 0; u has the saddle points
(x(t),y(t)), when a11 < 0; and the second partial derivative test is inconclusive,
when a11 = 0.

Moreover, we can compute the optimal values of v,w and u at the critical points
(x(t),y(t)) as follows:

vmaximum =−4(a21+a
2
5)(a1a6−a2a5)2(2γ2−γ3)

a10[(a1+a2)2+(a5+a6)2]
, (32)

wmaximum =−4(a22+a
2
6)(a1a6−a2a5)2(2γ2−γ3)

a10[(a1+a2)2+(a5+a6)2]
, (33)

uoptimum =−4(a1a6−a2a5)2(2γ2−γ3)(a1a2+a5a6)
a10[(a1+a2)2+(a5+a6)2]

, (34)
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where a10 is given by (17). Consequently, we observe that all optimal values are all
constants along the characteristic line of critical points, which do not depend on time
t (see also, e.g., [18, 19] for more examples). Therefore, the peak and the valley of
the lump waves along the characteristic line continue to be the same. On the other
hand, upon observing those three formulas for the optimal values, we find that any
of the lump waves of u,v,w may not decay, when the two directions (a1,a2) and
(a5,a6) becomes parallel to each other, namely, a1a6−a2a5 goes to zero.

5. CONCLUDING REMARKS

A spatial symmetric generalized (2+1)-dimensional KP model was analyzed
and its lump waves were computed by conducting symbolic computations with com-
puter algebra systems. Dynamical characteristic properties of the resulting lump
waves were explored, including critical points and optimal values, along with an ex-
ploration on the effects of the nonlinear terms and the dispersion terms.

Various studies exhibit a remarkable richness of lump waves across a wide
range of disciplines, reflecting their significance in understanding physical phenom-
ena in linear wave models [15], and nonlinear (2+1)-dimensional nonintegrable mod-
els (see, e.g., [26]-[30]) and (3+1)-dimension nonintegrable models (see, e.g., [21,
31]). Both the Hirota bilinear forms and the generalized bilinear forms are used as
the basis for formulations of lump waves [11]. Moreover, there are abundant interac-
tion solutions between lump waves and other interesting waves, both homoclinic and
heteroclinic, in (2+1)-dimensonal integrable models (see, e.g., [32–34]).

It is known that N -solitons have been systematically studied by Riemann-
Hilbert problems for local and nonlocal integrable models obtained by groups re-
ductions (see, e.g., [35]-[39]). It is of much interest to explore if there exist lump
waves in (2+1)-dimensional generalizations of reduced integarble models (see, e.g.,
[40–42]), both local and nonlocal.

The richness of lump waves underscores their importance across diverse fields
of study, offering insights into fundamental principles of wave propagation, coher-
ence, and nonlinear dynamics. Understanding and harnessing the properties of lump
waves will advance our understanding of nonlinear dispersive waves in physical and
engineering sciences.
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