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Abstract. We aim to construct a Liouville integrable Hamiltonian hierarchy
from a specific matrix spectral problem with four potentials through the zero curvature
formulation. The Liouville integrability of the resulting hierarchy is exhibited by a
bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of
novel four-component coupled Liouville integrable nonlinear Schrödinger equations
and modified Korteweg-de Vries equations are presented.
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1. INTRODUCTION

Zero curvature equations play a crucial role in various fields of mathematics
and physics, particularly in the study of integrable models [1, 2]. These equations are
also known as the Yang-Baxter equations and were widely studied in the context of
statistical mechanics and quantum field theory. Usually, an infinite sequence of zero
curvature equations produces a hierarchy of integrable models, yielding a sufficient
number of conserved quantities that enable the models to be solved analytically. Each
zero curvature equation involves a pair of spectral matrices, which could satisfy some
certain Riccati relation that ensures the existence of these conserved quantities.

The importance of zero curvature equations lies in their ability to provide a
unifying framework for the study of integrable models. To construct integable mod-
els within the zero curvature formulation, it is crucial to form an appropriate infi-
nite sequence of pairs of spatial and temporal spectral matrices. Let us take an n-
dimensional potential: u = (u1, · · · ,un)T and, as usual, use λ to denote the spectral
parameter.
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First, we use a loop matrix algebra g̃ to formulate a spatial spectral matrix:

M=M(u,λ) = f0(λ) +u1f1(λ) + · · ·+unfn(λ), (1)

where f1, · · · ,fn are linear independent elements in g̃ and f0 is a pseudo-regular
element in g̃. The pseudo-regular property reads

[Keradf0 ,Keradf0 ] = 0, Keradf0⊕ Imadf0 = g̃.

This characteristic property guarantees that we can solve the stationary zero curvature
equation:

Zx = i[M,Z], (2)

among Laurent series matrices Z =
∑

s≥0λ
−sZ [s] in the loop algebra g̃.

Second, we take the temporal spectral matrices

N [r] = (λrZ)+ + ∆r =

r∑
s=0

λr−sZ [s] + ∆r, r ≥ 0, (3)

where ∆r ∈ g̃, r ≥ 0, to generate an integrable hierarchy through the zero curvature
equations:

Mtr −N [r]
x + i[M,N r]] = 0, r ≥ 0. (4)

These equations are the compatibility conditions of the spatial and temporal matrix
spectral problems:

−iφx =Mφ, −iφtr =N [r]φ, r ≥ 0. (5)

Finally, the Liouville integrability can be explored by using the trace identity
[3, 4]:

δ

δu

∫
tr
(
Z
∂M
∂λ

)
dx= λ−γ

∂

∂λ
λγ tr

(
Z
∂M
∂u

)
, (6)

where δ
δu is the variational derivative with respect to u and γ is the constant deter-

mined by

γ =−λ
2

∂

∂λ
ln |tr(Z2)|. (7)

Various integrable hierarchies are constructed by the zero curvature formu-
lation. The adopted loop algebras are generated from the special linear algebras
(see, e.g., [5–11]), and the special orthogonal algebras (see, e.g., [12–14]). Bi-
Hamiltonian structures [15] exhibit the Liouville integrability of those zero curva-
ture equations. Among integrable hierarchies with two components, p and q, are the
well-known integrable hierarchies the Ablowitz-Kaup-Newell-Segur hierarchy [5],
the Kaup-Newell hierarchy [16], the Wadati-Konno-Ichikawa hierarchy [17] and the
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Heisenberg hierarchy [18]. Their spectral matrices read

M=

[
λ p
q −λ

]
,M=

[
λ2 λp
λq −λ2

]
,M=

[
λ λp
λq −λ

]
,M=

[
λv λp
λq −λv

]
,

(8)
where pq+v2 = 1, respectively.

This paper aims at constructing an integrable hierarchy of four-component
Hamiltonian equations within the zero curvature formulation. By the trace identity,
we establish a bi-Hamiltonian structure for the resulting hierarchy. Two illustrative
examples of four-component coupled integrable nonlinear Schrödinger equations and
modified Korteweg-de Vries equations are presented. The last Section is devoted to
a conclusion, together with some concluding remarks.

2. AN INTEGRABLE HAMILTONIAN HIERARCHY WITH FOUR COMPONENTS

Let δ1 and δ2 be two real numbers satisfying δ21 = δ22 = 1, i.e., δ1, δ2 ∈ {1,−1}.
Within the zero curvature formulation, we consider a matrix spectral problem of the
form:

−iφx =Mφ=M(u,λ)φ,M=



λ v1 v2 v1 v2 0
w1 0 0 0 0 δ1v1
w2 0 0 0 0 δ2v2
w1 0 0 0 0 δ1v1
w2 0 0 0 0 δ2v2
0 δ1w1 δ2w2 δ1w1 δ2w2 −λ

 , (9)

where u is the four-dimensional potential

u= u(x,t) = (v1,v2,w1,w2)
T . (10)

This spectral problem cannot be reduced from the matrix Ablowitz-Kaup-Newell-
Segur spectral problem (see, e.g., [19] for cases of nonlocal reductions).

In order to construct an associated integrable hierarchy, we first solve the sta-
tionary zero curvature equation (2) by searching for a Laurent series solution:

Z =



a b1 b2 b1 b2 0
c1 0 d 0 d δ1b1
c2 −δ1δ2d 0 −δ1δ2d 0 δ2b2
c1 0 d 0 d δ1b1
c2 −δ1δ2d 0 −δ1δ2d 0 δ2b2
0 δ1c1 δ2c2 δ1c1 δ2c2 −a

=
∑
s≥0

λ−sZ [s], (11)
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where the basic objects are assumed to be expanded in Laurent series:

a=
∑
s≥0

λ−sa[s], bj =
∑
s≥0

λ−sb
[s]
j , cj =

∑
s≥0

λ−sc
[s]
j , d=

∑
s≥0

λ−sd[s], i= 1,2. (12)

Obviously, the corresponding stationary zero curvature equation yields the initial
conditions:

a[0]x = 0, b
[0]
1 = b

[0]
2 = c

[0]
1 = c

[0]
2 = 0, d[0]x = 0, (13)

and the recursion relations: b
[s+1]
1 =−ib[s]1,x+v1a

[s] + 2δ1δ2v2d
[s],

b
[s+1]
2 =−ib[s]2,x+v2a

[s]−2v1d
[s],

(14)

 c
[s+1]
1 = ic

[s]
1,x+w1a

[s]−2w2d
[s],

c
[s+1]
2 = ic

[s]
2,x+w2a

[s] + 2δ1δ2w1d
[s],

(15)

and 
d
[s+1]
x = i(w1b

[s+1]
2 − δ1δ2w2b

[s+1]
1 + δ1δ2v1c

[s+1]
2 −v2c[s+1]

1 ),

a
[s+1]
x =−2i(w1b

[s+1]
1 +w2b

[s+1]
2 −v1c[s+1]

1 −v2c[s+1]
2 )

=−2(w1b
[s]
1,x+w2b

[s]
2,x+v1c

[s]
1,x+v2c

[s]
2,x),

(16)

where s≥ 0. To have a unique Laurent series solution, we take the initial values,

a[0] = 1, d[0] = 0, (17)

and choose the constant of integration as zero,

a[s]|u=0 = 0, d[s]|u=0 = 0, s≥ 1. (18)

Then, we can work out that

b
[1]
1 = v1, b

[1]
2 = v2, c

[1]
1 = w1, c

[1]
2 = w2, a

[1] = 0, d[1] = 0;{
b
[2]
1 =−iv1,x, b[2]2 =−iv2,x, c[2]1 = iw1,x, c

[2]
2 = iw2,x,

a[2] =−2v1w1−2v2w2, d
[2] =−δ1δ2v1w2 +v2w1; b

[3]
1 =−v1,xx−2v21w1−4v1v2w2 + 2δ1δ2v

2
2w1,

b
[3]
2 =−v2,xx+ 2δ1δ2v

2
1w2−4v1v2w1−2v22w2, c

[3]
1 =−w1,xx−2v1w

2
1 + 2δ1δ2v1w

2
2−4v2w1w2,

c
[3]
2 =−w2,xx−4v1w1w2 + 2δ1δ2v2w

2
1−2v2w

2
2,
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a[3] = 2i(v1,xw1−v1w1,x+v2,xw2−v2w2,x),

d[3] =−i(δ1δ2v1w2,x−v2w1,x− δ1δ2v1,xw2 +v2,xw1);

and b
[4]
1 = i(v1,xxx+ 6v1v1,xw1 + 6v1v2,xw2−6δ1δ2v2v2,xw1 + 6v1,xv2w2),

b
[4]
2 = i(v2,xxx+ 6v1v2,xw1−6δ1δ2v1v1,xw2 + 6v1,xv2w1 + 6v2v2,xw2), c

[4]
1 =−i(w1,xxx+ 6v1w1w1,x−6δ1δ2v1w2w2,x+ 6v2w1w2,x+ 6v2w1,xw2),

c
[4]
2 =−i(w2,xxx+ 6v1w1w2,x+ 6v1w1,xw2−6δ1δ2v2w1w1,x+ 6v2w2w2,x),

a[4] = 6v21w
2
1−6δ1δ2v

2
1w

2
2 + 24v1v2w1w2−6δ1δ2v

2
2w

2
1 + 6v22w

2
2

+2v1w1,xx+ 2v1,x,xw1 + 2v2w2,xx+ 2v2,xxw2−2v1,xw1,x−2v2,xw2,x,

d[4] =−6(v1w1 +v2w2)(δ1δ2v1w2−v2w1) + δ1δ2v1,xxw2−v2,xxw1

−v2w1,xx+ δ1δ2v1w2,xx− δ1δ2v1,xw2,x+v2,xw1,x.

Based on these computations, we can take ∆r = 0, r ≥ 0, to introduce the
temporal matrix spectral problems:

−iφtr =N [r]φ=N [r](u,λ)φ, N [r] = (λrZ)+ =
r∑
s=0

λsZ [r−s], r ≥ 0, (19)

which are the other parts of Lax pairs of matrix spectral problems in the zero cur-
vature formulation. The compatibility conditions of the spatial and temporal matrix
spectral problems in (9) and (19) are the zero curvature equations in (4). Those equa-
tions generate a four-component integrable hierarchy:

utr =X [r] = (ib
[r+1]
1 , ib

[r+1]
2 ,−ic[r+1]

1 ,−ic[r+1]
2 )T , r ≥ 0, (20)

or more concretely,

v1,tr = ib
[r+1]
1 , v2,tr = ib

[r+1]
2 , w1,tr =−ic[r+1]

1 , w2,tr =−ic[r+1]
2 , r ≥ 0. (21)

As particular examples, this integrable hierarchy contains the coupled inte-
grable nonlinear Schrödinger equations:

iv1,t2 = v1,xx+ 2v21w1 + 4v1v2w2−2δ1δ2v
2
2w1,

iv2,t2 = v2,xx−2δ1δ2v
2
1w2 + 4v1v2w1 + 2v22w2,

iw1,t2 =−w1,xx−2v1w
2
1 + 2δ1δ2v1w

2
2−4v2w1w2,

iw2,t2 =−w2,xx−4v1w1w2 + 2δ1δ2v2w
2
1−2v2w

2
2,

(22)
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and the coupled integrable modified Korteweg-de Vries equations:

v1,t3 =−v1,xxx−6v1v1,xw1−6v1v2,xw2 + 6δ1δ2v2v2,xw1−6v1,xv2w2,

v2,t3 =−v2,xxx−6v1v2,xw1 + 6δ1δ2v1v1,xw2−6v1,xv2w1−6v2v2,xw2,

w1,t3 =−w1,xxx−6v1w1w1,x+ 6δ1δ2v1w2w2,x−6v2w1w2,x−6v2w1,xw2,

w2,t3 =−w2,xxx−6v1w1w2,x−6v1w1,xw2 + 6δ1δ2v2w1w1,x−6v2w2w2,x.
(23)

These two models extend the set of coupled integrable nonlinear Schrödinger equa-
tions and modified Korteweg-de Vries equations.

3. BI-HAMILTONIAN STRUCTURE

To furnish a bi-Hamiltonian structure for the integrable hierarchy (21), we ap-
ply the trace identity (6) to the spatial matrix spectral problem (9). Based on the
solution Z defined by (11), one can easily work out

tr
(
Z
∂M
∂λ

)
= 2a, tr

(
Z
∂M
∂u

)
= 4(c1, c2, b1, b2)

T , (24)

and consequently, by the trace identity, one has
δ

δu

∫
λ−(s+1)a[s+1] dx= 2λ−γ

∂

∂λ
λγ(c

[s]
1 , c

[s]
2 , b

[s]
1 , b

[s]
2 )T , s≥ 0. (25)

A check with s= 2 leads to γ = 0, and therefore, one obtains
δ

δu
H[s] = 2(c

[s+1]
1 , c

[s+1]
2 , b

[s+1]
1 , b

[s+1]
2 )T , s≥ 0, (26)

where these Hamiltonian functionals are determined by

H[s] =−
∫
a[s+2]

s+ 1
dx, s≥ 0. (27)

This allows us to present a Hamiltonian structure for the integrable hierarchy
(21):

utr =X [r] = J
δH[r]

δu
, J =

 0
1
2 i 0
0 1

2 i

−1
2 i 0
0 −1

2 i
0

 , r ≥ 0, (28)

where J is the Hamiltonian and H[r] are the functionals given by (27). This Hamil-
tonian structure also tells a relation S = J δHδu from a conserved functional H to a
symmetry S of the same model. These vector fields satisfy a characteristic property:

[[X [s1],X [s2]]] =X [s1]′(u)[X [s2]]−X [s2]′(u)[X [s1]] = 0, s1,s2 ≥ 0, (29)
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which can bee seen from a Lax operator algebra:

[[N [s1],N [s2]]] =N [s1]′(u)[X [s2]]−N [s2]′(u)[X [s1]]+ [N [s1],N [s2]] = 0, s1,s2 ≥ 0.
(30)

This is a direct consequence of the isospectral zero curvature equations (see [20] for
details).

On the other hand, from the recursion relationX [r+1] = ΦX [r], we can compute
a hereditary recursion operator Φ = (Φjk)4×4 for the hierarchy (21):{

Φ11 = i(−∂x−2v1∂
−1w1−2v2∂

−1w2), Φ12 = i(−2v1∂
−1w2 + 2δ1δ2v2∂

−1w1),

Φ13 = i(−2v1∂
−1v1 + 2δ1δ2v2∂

−1w2), Φ14 = i(−2v1∂
−1v2−2v2∂

−1v1);

(31){
Φ21 = i(−2v2∂

−1w1 + 2δ1δ2v1∂
−1w2), Φ22 = i(−∂x−2v2∂

−1w2−2v1∂
−1w1),

Φ23 = i(−2v2∂
−1v1−2v1∂

−1v2), Φ24 = i(2v2∂
−1v2 + 2δ1δ2v1∂

−1v1);

(32){
Φ31 = i(2w1∂

−1w1−2δ1δ2w2∂
−1w2), Φ32 = i(2w1∂

−1w2 + 2w2∂
−1w1),

Φ33 = i(∂x+ 2w1∂
−1v1 + 2w2∂

−1v2), Φ34 = i(2w1∂
−1v2−2δ1δ2w2∂

−1v1);

(33){
Φ41 = i(2w2∂

−1w1 + 2w1∂
−1w2), Φ42 = i(2w2∂

−1w2−2δ1δ2w1∂
−1w1),

Φ43 = i(2w2∂
−1v1−2δ1δ2w1∂

−1v2), Φ44 = i(∂x+ 2w2∂
−1v2 + 2w1∂

−1v1).

(34)

It is easy to see that the operator M = ΦJ is skew-symmetric, and thus, the Hamil-
tonian functionals commute under the corresponding Poisson bracket [3]:

{H[s1],H[s2]}J =

∫ (δH[s1]

δu

)T
J
δH[s2]

δu
dx= 0, s1,s2 ≥ 0. (35)

Therefore, all models in the hierarchy (21) possess infinitely many commuting sym-
metries {X [s]}∞s=0 and conserved functionals {H[s]}∞s=0.

Finally, for the hierarchy (21), combing J with the hereditary recursion opera-
tor Φ [21] yields a bi-Hamiltonian structure:

utr =X [r] = J
δH[r]

δu
=M

δH[r−1]

δu
, r ≥ 1, (36)

where J and M = ΦJ constitute a Hamiltonian pair [15]. Consequently, each model
in the hierarchy (21) is Liouville integrable and has two Abelian algebras of symme-
tries and conserved functionals, (29) and (35). Particularly, (22) and (23) present two
specific examples of nonlinear Liouville integrable Hamiltonian models.
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4. CONCLUDING REMARKS

A Liouville integrable hierarchy of Hamiltonian equations with four potentials
has been generated from a specific special matrix spectral problem within the zero
curvature formulation. It was crucial to determine a Laurent series solution to the
corresponding stationary zero curvature equation. The resulting integrable models
possess a bi-Hamiltonian structure, explored by an application of the trace identity to
the underlying matrix spectral problem.

It is possible to generalize the considered spatial matrix spectral problem by
taking more copies of v1 and v2. Another way is to introduce more potentials in a
spatial spectral matrix to generate bigger integrable models (see, e.g., [22]). Higher-
order integrable models and local integrable reductions of the resulting hierarchy
could be worked out as well (see, [23–25] for the case of the matrix Ablowitz-Kaup-
Newell-Segur spectral problem).

It should be particularly interesting to explore structures of solitons to the re-
sulting integrable equations by powerful approaches in soliton theory, such as the
Riemann-Hilbert technique [26], the Zakharov-Shabat dressing method [27], the Dar-
boux transformation [28, 29] and the determinant approach [30]. Other types of im-
portant solutions can be computed from wave number reductions of solitons (see,
e.g., [31–34]), and there are also many recent works on the dynamics of different
types of localized waveforms in a variety of physical systems (see, e.g., [35–43]).
Moreover, nonlocal reduced integrable equations can be generated by conducting
nonlocal group reductions of matrix spectral problems (see, e.g., [44, 45]). Under-
standing the structures of integrable models can lead to the discovery of new types
of solitons and other localized waveforms that are spatially confined and exhibit a
well-defined shape, and can advance our understanding of the fundamental laws of
physics.

Acknowledgements. The work was supported in part by NSFC under the grants 12271488,
11975145, and 11972291, the Ministry of Science and Technology of China (G2021016032L), and the
Natural Science Foundation for Colleges and Universities in Jiangsu Province (17 KJB 110020).
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