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This paper aims to introduce a Kaup—Newell type matrix eigenvalue problem with four
potentials, based on a specific matrix Lie algebra, and construct its associated Liouville
integrable Hamiltonian hierarchy, through the zero curvature formulation. The Liouville
integrability of the resulting hierarchy is shown by determining its recursion operator and
bi-Hamiltonian formulation. An illustrative example of combined derivative nonlinear
Schrédinger equations with two arbitrary constants is explicitly presented.
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1. Introduction

Integrable models comes in hierarchies with hereditary recursion operators [1] and
they are associated with Lax pairs of matrix eigenvalue problems [2]. Matrix eigen-
value problems can also be used to establish inverse scattering transforms, which
solve Cauchy problems, and Hamiltonian structures, which connect symmetries
with conserved quantities. Integrable models have diverse applications in physical
sciences and engineering, such as fluid dynamics, nonlinear optics and quantum
mechanics.
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Among well-known examples of integrable hierarchies are the Ablowitz—Kaup—
Newell-Segur hierarchy [3] and its various hierarchies of integrable couplings [5].
Matrix Lie algebras provide a strong basis for studying integrable models through
the zero curvature formulation [446]. It is always intriguing to see what kind of Lax
pairs will engender integrable models. In this paper, we would like to propose a novel
4 x 4 matrix eigenvalue problem and compute an associated integrable hierarchy,
on the basis of a specific matrix Lie algebra.

The zero curvature formulation paves the way for constructing integrable
models (see [6, 7] for details). As usual, we denote a column potential vector by
u = (ug,... ,uq)T and the spectral parameter by A\. A matrix Fy in a given loop
matrix algebra ¢ with the loop parameter A is called to be pseudo-regular, if it
satisfies

Imadp, @ Keradp, =g, [Keradg,,Keradg] =0, (1.1)

where adp, denotes the adjoint action of Fy on g. We take one pseudo-regular
matrix £y and ¢ linear independent matrices F1,..., Fy in g to formulate a spatial
spectral matrix:

M = M(u, \) = Fo(A) +ur F1(A) + - - +ugFy(N). (1.2)

Then try to determine a Laurent series solution Y =% . A=Y to the station-
ary zero curvature equation

Y, =[M,Y], (1.3)
in the underlying loop algebra g.

The next step is to determine an infinite sequence of temporal spectral matrices

N = (AmY) 4+ Ay =Y A Y LA, m>o, (1.4)

n=0

where A,, € g, m > 0, which provide the other parts of Lax pairs, such that the
zero curvature equations:

My = NI M N =0, m >0, (1.5)
produce a hierarchy of integrable models:
uy, = XM = X)), m>o. (1.6)

The equations in (1.5 actually represent the solvability conditions of the spatial
and temporal matrix eigenvalue problems:

0r=Mep, ¢, =NMp  m>o0. (1.7)

During this process, one often needs the trial and error strategy.
The last step is to find a bi-Hamiltonian formulation for the resulting hier-
archy (1.6]), via computing a recursion operator and applying the so-called trace
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identity:

5 IM D (M

where 5% is the variational derivative with respect to u, and & is a constant, which is
independent of the spectral parameter A. It then follows that every equation in the
hierarchy has a bi-Hamiltonian formulation and thus Liouville integrability (see,
e.g., [6])-

There exist various hierarchies of Liouville integrable models, studied in the
literature [3H18]. One-component integrable hierarchies include the Korteg—de Vries
hierarchy, the nonlinear Schriodinger hierarchy and the modified Korteg—de Vries
hierarchy [1]. The case of two components is very popular and the well-known
examples include the Ablowitz—Kaup—Newell-Segur integrable hierarchy [3], the
Heisenberg hintegrable hierarchy [19], the Kaup—Newell integrable hierarchy [20]
and the Wadati-Konno—Ichikawa integrable hierarchy [21]. All those hierarchies are
associated with 2 x 2 spectral matrices. The case of higher-order spectral matrices
has a high degree of difficulty.

In this paper, we aim to propose a specific 4 x 4 spectral matrix and construct a
hierarchy of four-component Liouville integrable models through the zero curvature
formulation, on the basis of a special matrix Lie algebra. A recursion operator and
a bi-Hamiltonian formulation are determined to show the Liouville integrability for
the resulting hierarchy. An illustrative example, consisting of generalized combined
integrable nonlinear Schrédinger equations, is presented. A conclusion and a few
concluding remarks are given in the final section.

2. A Four-Component Integrable Hierarchy

Let 0 be an arbitrary real number, and T be a square matrix of order r € N such
that

7% =1,, (2.1)
where I,. denotes the identity matrix of order . We define a set g of block matrices
to be

A A
g=< A= Ay =TAT™ Y, Ay =6TAT 15, (2.2)
A3 A4 2rX2r

Obviously, this forms a matrix Lie algebra under the matrix commutator [A, B] =
AB — BA. We will use this Lie algebra with »r =2, § =1 and

0 1 0 -1 .
1 0] [—1 0]’ 23

to formulate a specific spectral matrix below.

T =
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Let a1 and az be two arbitrary real numbers, and u = u(x,t) = (uy,uz, uz, ug)’,
a column vector with four potentials. Assume that
a=a; —ay #0. (2.4)

Based on recent studies on matrix eigenvalue problems involving four potentials
(see, e.g., [22126] for examples of matrix eigenvalue problems of both fourth-order
and higher-order), we would like to introduce a matrix eigenvalue problem of the
form:

P = Mo = M(u, Mg,
A dup Aus 0
Aus  a? 0 Ay (2.5)
Ay 0 asA?  ug
0 Mg Aup a2

M:

where A is again the spectral parameter. This spectral matrix M is built from the
matrix Lie algebra g, mentioned previously, and it is a generalization of the Kaup—
Newell eigenvalue problem [20]. Interestingly, starting from this eigenvalue problem,
an associated integrable hierarchy of bi-Hamiltonian equations can be generated.
All equations in the hierarchy possess particular combined structures.

To construct an associated integrable hierarchy, we usually start out on solving
the corresponding stationary zero curvature equation . Let us take

a b e f
c —a —f g
Y = =y Ayl (2.6)
g —f —a c n>0
f e b a

The reason to take this form is that with M in (2.5)), an arbitrary matrix in § will
lead to a commutator matrix of the above mentioned form. At this moment, the
corresponding stationary zero curvature equation (1.3)) leads equivalently to

ag = Acug + Agug — Abug — Aeuy,
by = aX?b — 2Xau; — 2 fus, (2.7)
cx = —aX2c+ 2Xaus + 2\ fug,

er = aX?e — 2Xfuy — 2\ fu; — 2 aus,
e = —aA2g + 2\ fus + 2 auy, (2.8)

fz = Aguq + Acug — Aeus — Abuy.
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Based on these equations, the basic objects of Y are assumed to be given as follows:

a= Z )\—Qna[n]’ b= Z )\_2”_119[”], c= Z )\—2”—10[71]7

n>0 n>0 n>0
D e R e L R S S i) (2.9)
n>0 n>0 n>0
Obviously, we can have two important equations:
{a)\az = ugb, + uicy + ugey + u2gy, (2.10)
—aAfy = usby + u2cy + uzey + u1Gs,

which enable us to get the recursion relations for determining the solution Y. There-
fore, we can see that the above equations in (2.7)) and (2.8) yield the two initial
equations

Al = w1l 4 aup gl — 4ygpl0 — el0], 1)
A = w1 gl 4 el — el — 4 pl0) .
and the recursion relations which determine the Laurent series solution:
n 1
agc +1] _ _a(u3b[$n] + ulcgan] + u4e£:n] + UQQJ[:L])’
(2.12)
n 1
P = =2 bl el + el + i gf?)
plntl] — é(bg"] + 2ual T 4 2y, fin ),
(2.13)
clnt1l = é(—c&"} + 2uzal" ™t 4 2y, )
el 1 = é(e&"] + 2uy f I 20paln ),
(2.14)
1
g[n—i-l] — a(_ggn] + 2u3f[n+1] + 2,[]/40,[71-‘,-1])7

where n > 0. To achieve the uniqueness of the Laurent series solution, we just need
to fix the initial data,

b[O] = ﬁul + yuz, C[O] = ﬁU3 + Yua4,
el = Buy + yuy, g% = Bug + yus, (2.15)
al"l = const., flO = const.,

where § and ~ are two arbitrary constants, and select the constants of integration
to be zero,

a[n]|u:O =0, f[n]|u:0 =0, n>1L (2.16)
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The initial values for al” and f° don’t affect all other coefficients in the Laurent
series solution, but the two constants § and - bring the diversity of associated
integrable models. One can now work out that

alll = _é[(gug +yug)uy + (yus + Bug)us],
f[l] = —é[("yu?) + Bug)us + (Bus + yuq)uz,

1 2
bl = o {Bul,x T U2,z — a[(ﬂus + yug)ur + (yus + Bug)us]u;
2
*a[(vuzs + Bug)ur + (Bus + 7U4)u2]u2},

1 2
cl = o {—ﬁus,x — YU4,z — a[(ﬁu?) + yug)ur + (yus + Pug)us)us

<2l + B + (B + sl .

1 2
el = = {VULz + Bug o — —[(yus + Bua)ur + (Bus + yua)uslug

=2 (B 4wy + (s + B .

1 2
gt = o {’YUB,x — B, — a[(’w?} + Bug)ur + (Bug + yuq)us)us

_2[(5% + yuq)uy + (yus + 6U4)UQ]U4}.

Upon observing the above recursion relations, one can introduce the temporal
matrix eigenvalue problems:

oo =N = NI (0, N, NI =XN"HY),. m>0, (2.17)

where the subscript + denotes the polynomial part of A\. The solvability conditions
of the spatial and temporal matrix eigenvalue problems in and are
the zero curvature equations in . All those equations engender a hierarchy of
integrable models with four potentials:

up, = X = XU ) = @], el o gl )T, m > 0, (2.18)
or more concretely,
[m]

uLtm = bL?m]7 u27tm = ew ) u37t7n = C[Im]’ u47t7n = ga: ? m Z 0' (2'19)
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The first nonlinear example in this hierarchy is the model of combined integrable
nonlinear Schrédinger equations:

s = % (Bt e+ Yiz) = 5 (B + yua)us + (s + fusualus o
- ltyus + Bus)us + (Bus + ua)ualuzl.,

Uz = é(’ym,m + Bug,ze) — %{[(Wza + Bua)uy + (Bus + yua)uglur o
= I(Bus + qus)ur + (s + BugJusluzl..

sty = = (Busra + .00) — 5 {[(Bus + e + (s + Bugualus}
2 {lyus + Bua)us + (Buss + s uslua)e,

1 2
Ug ity = — a(’Yu:s,m + Bua pz) — ?{[(’y% + Bug)ur + (Bus + yug)uzus}y

- %{[(ﬁus +yug)ur + (yus + Bug)uslus s
(2.20)

This system provides a combined coupled integrable model with four components,
which enlarges the category of coupled integrable models of nonlinear Schrodinger
equations (see, e.g., |24} [27, |28]). One character is that each equation contains a
linear combination of two derivative terms of the second order, and thus, we call
them combined models.
Two special subcases, 5 = 0 or v = 0, in the resulting hierarchy are interesting.
They produce reduced hierarchies of uncombined integrable models.
If one takes @« = f = 1 and v = 0 in the model (2.20), one gets a coupled
integrable nonlinear Schrodinger model:
Uty = Ulge — 2[(uius + ugua)ur + (urug + uguz)uzls.,
Uty = U2 go — 2[(urus + uguz)ur + (uruz + ugua)usle, (2.21)
Uzt = —Uz 2z — 2[(U1u3 + ugug)uz + (Urug + Uu3) U]z, '
Ugpy, = —Usze — 2[(urug + uguz)uz + (uruz + uaus)uyl,.

If one takes « =y =1 and 8 = 0 in the model , one obtains another coupled
integrable nonlinear Schrodinger model:
Ul = Uzge — 2[(Ura + uguz)ur + (U1ug + ugta) U]y,
Uty = Ulge — 2[(Urus + ugta)u1 + (UrUsg + Ugug ) U]y, (2.22)
Ugt, = —Ud zg — 2[(U1Us + Uoug)us + (U1u3 + Uota)Us)y,

Usp, = —U3 20 — 2[(u1us + usua)ug + (Uit + UsUs)Ualy.
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There is an interesting character that the resulting two models just exchange the
first component with the second component and the third component with the
fourth component in the vector fields on the right-hand sides.

3. Recursion Operator and Bi-Hamiltonian Formulation

To propose a Hamiltonian formulation to exhibit the Liouville integrability for the
soliton hierarchy , we can make use of the trace identity in the case of
the spatial matrix eigenvalue problem . Noting the expression of the Laurent
series solution Y by , we can readily work out

0
tr (YX) = 2(2a)a + buz + cuy + euy + gus),

(3.1)

oMY\ T
tr (Y8u> = 2(Ac, A\g, Ab, Ae)

and consequently, an application of the trace identity yields

J
Su / A2 200l bl e 4oy e) g™ da

= )\7'{%/\'{72”(6[”'],‘(][”], bl efhT > 0. (3.2)

Checking with n =1 tells k = 0, and accordingly, one obtains

O qyln) (el glnl plm olnl)T s (3.3)

ou
where the Hamiltonian functionals are determined by
1
HO = [ Slur(Bua + ) + ualBua -+ ) + (B + yu2)
+ ug(Buz +yur)]dz, (3.4)
2n

1
H = — / — (20a™ U 4 ugbl™ 4wy el 4 uge™ 4 upg™yde, n>1.

This enables us to produce a Hamiltonian formulation for the hierarchy (2.19)):

SHI™]
=xm = >0 3.5
utrn 1 5u ) m — b ( )
where the Hamiltonian operator J; is given by
g 0
0 0 0
J = 3.6
1= |5 (36)
0
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and the functionals H["™ are defined by . As a consequence, we have an inter-
relation S = Jl% between a symmetry S and a conserved functional H of each
model in the hierarchy.

The characteristic commutative property for the vector fields X"

[[X[m],X[m]]] _ X[nl]/(u)[X[nz]] _ X[m]/(u)[X[m]] =0, ny,ns >0, (37)
follows from an algebra of Lax operators:
[[N[m],j\/[nz]]] = J\/[m]/(u)[x[nz]] —N[”Z‘]’(u)[X[”l]]
+ [N[nl],N[nQ]] — O’ N1, N2 > 0. (38)

This can directly be verified by analyzing the relation between the isospectral zero
curvature equations (see [31] for details).

On the other hand, from the recursion relation X"+ = ® X"l we can com-
pute a hereditary recursion operator ® = (®;)axa [29] for the hierarchy ,
which reads as follows:

1 2

P = an - g(aula_lug + Ouzd " uy),

2 —1 —1
by = —g(aula Ug + Oua0™ "ug),

; (3.9)
O3 = —g(auu?*lm + Ou20 ™ 'ua),

2 -1 -1
by = 7?(81“8 Uz + Ouz0™ "uy);

2 -1 -1
o1 = =5 (0urd™ g + Jupd " lug),

1 2 -1 -1

oo = —0r — 5 (0ur0 Mz + Ound ),

) (3.10)
Doy = —ﬁ(aula_llm + 8U28_1U1>7

2 _1 —1
Doy = _?((‘ml@ uy + Oua0™ " ug);

2 _1 —1
sy = —ﬁ(auy’) uz + 0ugd~ ug),

2 1 —1
L _E(auga ug + Oug0~ "ug),

X ) (3.11)
Dy3 = —581, — ?(8%871”1 + Oug0 ™ uy),

2 -1 —1
Dps = 5 (D0 s - Oa0 )

2450049-9
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2
(I)41 = —ﬁ(au;ﬁ*lm + aU4871U3),

2
<I)42 = —5(81138_1163 + 8U48_1U4),

) (3.12)
by3 = —?(81138_%2 + 8u48_1u1),

1 2
by =——0, — —2(8u38_1u1 + 811,48_1UQ).
« [0

With some direct analysis, we can see that J; and Jo = ®J; constitute a Hamilto-

nian pair. Namely, an arbitrary linear combination of J; and J; is again Hamilto-

nian. Accordingly, the hierarchy (2.19)) possesses a bi-Hamiltonian structure |30]:
oMM M1l

e, = XM =y Su J2 ou

It then follows that the associated Hamiltonian functionals commute with each

, om>1. (3.13)

other under the corresponding two Poisson brackets [6]:

sHImINT  s2yna]
{Hlm) ylnaly /( 7§u > J1 7§u dr =0, mni,ng>0 (3.14)

and

[\ T 5 [n2]
{H[n1]7H[n2]}J2 :/(67:;]3 ) Jo Zlu dr =0, mni,ng>0. (3.15)

The bi-Hamiltonian formulation also implies the hereditary property of the recur-
sion operator ® and thus ® is a common recursion operator for the integrable
hierarchy .

To conclude, each model in the hierarchy is Liouville integrable and pos-
sesses infinitely many commuting symmetries {X [”]}SLO:O and conserved functionals
{’H[”]};’fzo. One particular illustrative integrable model is the system in ,
which adds to the existing category of nonlinear combined Liouville integrable
Hamiltonian models with four components.

4. Concluding Remarks

From a specific special 4 x 4 matrix eigenvalue problem, a hierarchy of four-
component Liouville integrable models has been generated through the zero cur-
vature formulation. The crucial step is to determine a particular Laurent series
solution of the corresponding stationary zero curvature equation. The resulting inte-
grable hierarchy has been shown to be bi-Hamiltonian by determining a hereditary
recursion operator and applying the trace identity in the case the underlying matrix
eigenvalue problem.

We are curious to know what kind of mathematical structures of soliton solu-
tions there exist for the obtained integrable models. Various powerful and effective
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approaches are available for use, which include the Riemann—Hilbert technique [32],
the Zakharov—Shabat dressing method [33], the Darboux transformation [34H36],
and the determinant approach [37]. In addition to solitons, lump, kink, breather
and rogue wave solutions, particularly their interaction solutions (see, e.g., [38-45]),
are also interesting, and it is possible to compute them from soliton solutions by
taking wave number reductions. Another important aspect of the study of inte-
grable models is to get nonlocal reduced integrable models by conducting nonlocal
group reductions or similarity transformations of matrix eigenvalue problems, and
to explore their solitons, which are significant in mathematics as well as physics (see,
e.g., [46/448]). Nonlocality reveals a diverse array of novel phenomena and solutions
(see, e.g., [49,50]).

Integrable models are of great interest, and they are built around connections
of all kinds that bridge mathematics with the real world problems. The study of
integrable models offers insights into universal behaviors across different physical
system scenarios, and underpins the fundamental understanding of complex non-
linear mathematical and physical phenomena.
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