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1. Introduction

Integrable models comes in hierarchies with hereditary recursion operators [1] and

they are associated with Lax pairs of matrix eigenvalue problems [2]. Matrix eigen-

value problems can also be used to establish inverse scattering transforms, which

solve Cauchy problems, and Hamiltonian structures, which connect symmetries

with conserved quantities. Integrable models have diverse applications in physical

sciences and engineering, such as fluid dynamics, nonlinear optics and quantum

mechanics.
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Among well-known examples of integrable hierarchies are the Ablowitz–Kaup–

Newell–Segur hierarchy [3] and its various hierarchies of integrable couplings [5].

Matrix Lie algebras provide a strong basis for studying integrable models through

the zero curvature formulation [4–6]. It is always intriguing to see what kind of Lax

pairs will engender integrable models. In this paper, we would like to propose a novel

4 × 4 matrix eigenvalue problem and compute an associated integrable hierarchy,

on the basis of a specific matrix Lie algebra.

The zero curvature formulation paves the way for constructing integrable

models (see [6, 7] for details). As usual, we denote a column potential vector by

u = (u1, . . . , uq)
T and the spectral parameter by λ. A matrix F0 in a given loop

matrix algebra g̃ with the loop parameter λ is called to be pseudo-regular, if it

satisfies

Im adF0
⊕Ker adF0

= g̃, [Ker adF0
,Ker adF0

] = 0, (1.1)

where adF0
denotes the adjoint action of F0 on g̃. We take one pseudo-regular

matrix F0 and q linear independent matrices F1, . . . , Fq in g̃ to formulate a spatial

spectral matrix:

M =M(u, λ) = F0(λ) + u1F1(λ) + · · ·+ uqFq(λ). (1.2)

Then try to determine a Laurent series solution Y =
∑
n≥0 λ

−nY [n] to the station-

ary zero curvature equation

Yx = [M, Y ], (1.3)

in the underlying loop algebra g̃.

The next step is to determine an infinite sequence of temporal spectral matrices

N [m] = (λmY )+ + ∆m =

m∑
n=0

λm−nY [n] + ∆m, m ≥ 0, (1.4)

where ∆m ∈ g̃, m ≥ 0, which provide the other parts of Lax pairs, such that the

zero curvature equations:

Mtm −N [m]
x + [M,N [m]] = 0, m ≥ 0, (1.5)

produce a hierarchy of integrable models:

utm = X [m] = X [m](u), m ≥ 0. (1.6)

The equations in (1.5) actually represent the solvability conditions of the spatial

and temporal matrix eigenvalue problems:

ϕx =Mϕ, ϕtm = N [m]ϕ, m ≥ 0. (1.7)

During this process, one often needs the trial and error strategy.

The last step is to find a bi-Hamiltonian formulation for the resulting hier-

archy (1.6), via computing a recursion operator and applying the so-called trace
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identity:

δ

δu

∫
tr

(
Y
∂M
∂λ

)
dx = λ−κ

∂

∂λ
λκtr

(
Y
∂M
∂u

)
, (1.8)

where δ
δu is the variational derivative with respect to u, and κ is a constant, which is

independent of the spectral parameter λ. It then follows that every equation in the

hierarchy has a bi-Hamiltonian formulation and thus Liouville integrability (see,

e.g., [6]).

There exist various hierarchies of Liouville integrable models, studied in the

literature [3–18]. One-component integrable hierarchies include the Korteg–de Vries

hierarchy, the nonlinear Schrödinger hierarchy and the modified Korteg–de Vries

hierarchy [1]. The case of two components is very popular and the well-known

examples include the Ablowitz–Kaup–Newell–Segur integrable hierarchy [3], the

Heisenberg hintegrable hierarchy [19], the Kaup–Newell integrable hierarchy [20]

and the Wadati–Konno–Ichikawa integrable hierarchy [21]. All those hierarchies are

associated with 2× 2 spectral matrices. The case of higher-order spectral matrices

has a high degree of difficulty.

In this paper, we aim to propose a specific 4×4 spectral matrix and construct a

hierarchy of four-component Liouville integrable models through the zero curvature

formulation, on the basis of a special matrix Lie algebra. A recursion operator and

a bi-Hamiltonian formulation are determined to show the Liouville integrability for

the resulting hierarchy. An illustrative example, consisting of generalized combined

integrable nonlinear Schrödinger equations, is presented. A conclusion and a few

concluding remarks are given in the final section.

2. A Four-Component Integrable Hierarchy

Let δ be an arbitrary real number, and T be a square matrix of order r ∈ N such

that

T 2 = Ir, (2.1)

where Ir denotes the identity matrix of order r. We define a set g̃ of block matrices

to be

g̃ =

{
A =

[
A1 A2

A3 A4

]
2r×2r

∣∣∣∣∣A4 = TA1T
−1, A3 = δTA2T

−1

}
. (2.2)

Obviously, this forms a matrix Lie algebra under the matrix commutator [A,B] =

AB −BA. We will use this Lie algebra with r = 2, δ = 1 and

T =

[
0 1

1 0

]
or

[
0 −1

−1 0

]
, (2.3)

to formulate a specific spectral matrix below.
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Let α1 and α2 be two arbitrary real numbers, and u = u(x, t) = (u1, u2, u3, u4)T ,

a column vector with four potentials. Assume that

α = α1 − α2 6= 0. (2.4)

Based on recent studies on matrix eigenvalue problems involving four potentials

(see, e.g., [22–26] for examples of matrix eigenvalue problems of both fourth-order

and higher-order), we would like to introduce a matrix eigenvalue problem of the

form:

ϕx =Mϕ =M(u, λ)ϕ,

M =


α1λ

2 λu1 λu2 0

λu3 α2λ
2 0 λu4

λu4 0 α2λ
2 λu3

0 λu2 λu1 α1λ
2

,
(2.5)

where λ is again the spectral parameter. This spectral matrix M is built from the

matrix Lie algebra g̃, mentioned previously, and it is a generalization of the Kaup–

Newell eigenvalue problem [20]. Interestingly, starting from this eigenvalue problem,

an associated integrable hierarchy of bi-Hamiltonian equations can be generated.

All equations in the hierarchy possess particular combined structures.

To construct an associated integrable hierarchy, we usually start out on solving

the corresponding stationary zero curvature equation (1.3). Let us take

Y =


a b e f

c −a −f g

g −f −a c

f e b a

 =
∑
n≥0

λ−nY [n]. (2.6)

The reason to take this form is that with M in (2.5), an arbitrary matrix in g̃ will

lead to a commutator matrix of the above mentioned form. At this moment, the

corresponding stationary zero curvature equation (1.3) leads equivalently to
ax = λcu1 + λgu2 − λbu3 − λeu4,

bx = αλ2b− 2λau1 − 2λfu2,

cx = −αλ2c+ 2λau3 + 2λfu4,

(2.7)


ex = αλ2e− 2λfu1 − 2λfu1 − 2λau2,

gx = −αλ2g + 2λfu3 + 2λau4,

fx = λgu1 + λcu2 − λeu3 − λbu4.

(2.8)
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Based on these equations, the basic objects of Y are assumed to be given as follows:
a =

∑
n≥0

λ−2na[n], b =
∑
n≥0

λ−2n−1b[n], c =
∑
n≥0

λ−2n−1c[n],

e =
∑
n≥0

λ−2n−1e[n], f =
∑
n≥0

λ−2nf [n], g =
∑
n≥0

λ−2n−1g[n].
(2.9)

Obviously, we can have two important equations:{
−αλax = u3bx + u1cx + u4ex + u2gx,

−αλfx = u4bx + u2cx + u3ex + u1gx,
(2.10)

which enable us to get the recursion relations for determining the solution Y . There-

fore, we can see that the above equations in (2.7) and (2.8) yield the two initial

equations {
a
[0]
x = u1c

[0] + u2g
[0] − u3b[0] − u4e[0],

f
[0]
x = u1g

[0] + u2c
[0] − u3e[0] − u4b[0]

(2.11)

and the recursion relations which determine the Laurent series solution:
a
[n+1]
x = − 1

α
(u3b

[n]
x + u1c

[n]
x + u4e

[n]
x + u2g

[n]
x ),

f
[n+1]
x = − 1

α
(u4b

[n]
x + u2c

[n]
x + u3e

[n]
x + u1g

[n]
x ),

(2.12)


b[n+1] =

1

α
(b[n]x + 2u1a

[n+1] + 2u2f
[n+1]),

c[n+1] =
1

α
(−c[n]x + 2u3a

[n+1] + 2u4f
[n+1]),

(2.13)


e[n+1] =

1

α
(e[n]x + 2u1f

[n+1] + 2u2a
[n+1]),

g[n+1] =
1

α
(−g[n]x + 2u3f

[n+1] + 2u4a
[n+1]),

(2.14)

where n ≥ 0. To achieve the uniqueness of the Laurent series solution, we just need

to fix the initial data,
b[0] = βu1 + γu2, c[0] = βu3 + γu4,

e[0] = βu2 + γu1, g[0] = βu4 + γu3,

a[0] = const., f [0] = const.,

(2.15)

where β and γ are two arbitrary constants, and select the constants of integration

to be zero,

a[n]|u=0 = 0, f [n]|u=0 = 0, n ≥ 1. (2.16)
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The initial values for a[0] and f [0] don’t affect all other coefficients in the Laurent

series solution, but the two constants β and γ bring the diversity of associated

integrable models. One can now work out that
a[1] = − 1

α
[(βu3 + γu4)u1 + (γu3 + βu4)u2],

f [1] = − 1

α
[(γu3 + βu4)u1 + (βu3 + γu4)u2],

b[1] =
1

α

{
βu1,x + γu2,x −

2

α
[(βu3 + γu4)u1 + (γu3 + βu4)u2]u1

− 2

α
[(γu3 + βu4)u1 + (βu3 + γu4)u2]u2

}
,

c[1] =
1

α

{
−βu3,x − γu4,x −

2

α
[(βu3 + γu4)u1 + (γu3 + βu4)u2]u3

− 2

α
[(γu3 + βu4)u1 + (βu3 + γu4)u2]u4

}
,



e[1] =
1

α

{
γu1,x + βu2,x −

2

α
[(γu3 + βu4)u1 + (βu3 + γu4)u2]u1

− 2

α
[(βu3 + γu4)u1 + (γu3 + βu4)u2]u2

}
,

g[1] =
1

α

{
−γu3,x − βu4,x −

2

α
[(γu3 + βu4)u1 + (βu3 + γu4)u2]u3

− 2

α
[(βu3 + γu4)u1 + (γu3 + βu4)u2]u4

}
.

Upon observing the above recursion relations, one can introduce the temporal

matrix eigenvalue problems:

ϕtm = N [m]ϕ = N [m](u, λ)ϕ, N [m] = λ(λ2m+1Y )+, m ≥ 0, (2.17)

where the subscript + denotes the polynomial part of λ. The solvability conditions

of the spatial and temporal matrix eigenvalue problems in (2.5) and (2.17) are

the zero curvature equations in (1.5). All those equations engender a hierarchy of

integrable models with four potentials:

utm = X [m] = X [m](u) = (b[m]
x , e[m]

x , c[m]
x , g[m]

x )T , m ≥ 0, (2.18)

or more concretely,

u1,tm = b[m]
x , u2,tm = e[m]

x , u3,tm = c[m]
x , u4,tm = g[m]

x , m ≥ 0. (2.19)
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The first nonlinear example in this hierarchy is the model of combined integrable

nonlinear Schrödinger equations:

u1,t1 =
1

α
(βu1,xx + γu2,xx)− 2

α2
{[(βu3 + γu4)u1 + (γu3 + βu4)u2]u1}x

− 2

α2
{[(γu3 + βu4)u1 + (βu3 + γu4)u2]u2}x,

u2,t1 =
1

α
(γu1,xx + βu2,xx)− 2

α2
{[(γu3 + βu4)u1 + (βu3 + γu4)u2]u1}x

− 2

α2
{[(βu3 + γu4)u1 + (γu3 + βu4)u2]u2}x,

u3,t1 = − 1

α
(βu3,xx + γu4,xx)− 2

α2
{[(βu3 + γu4)u1 + (γu3 + βu4)u2]u3}x

− 2

α2
{[(γu3 + βu4)u1 + (βu3 + γu4)u2]u4}x,

u4,t2 = − 1

α
(γu3,xx + βu4,xx)− 2

α2
{[(γu3 + βu4)u1 + (βu3 + γu4)u2]u3}x

− 2

α2
{[(βu3 + γu4)u1 + (γu3 + βu4)u2]u4}x.

(2.20)

This system provides a combined coupled integrable model with four components,

which enlarges the category of coupled integrable models of nonlinear Schrödinger

equations (see, e.g., [24, 27, 28]). One character is that each equation contains a

linear combination of two derivative terms of the second order, and thus, we call

them combined models.

Two special subcases, β = 0 or γ = 0, in the resulting hierarchy are interesting.

They produce reduced hierarchies of uncombined integrable models.

If one takes α = β = 1 and γ = 0 in the model (2.20), one gets a coupled

integrable nonlinear Schrödinger model:
u1,t1 = u1,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,

u2,t1 = u2,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,

u3,t1 = −u3,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x,

u4,t1 = −u4,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x.

(2.21)

If one takes α = γ = 1 and β = 0 in the model (2.20), one obtains another coupled

integrable nonlinear Schrödinger model:
u1,t1 = u2,xx − 2[(u1u4 + u2u3)u1 + (u1u3 + u2u4)u2]x,

u2,t1 = u1,xx − 2[(u1u3 + u2u4)u1 + (u1u4 + u2u3)u2]x,

u3,t1 = −u4,xx − 2[(u1u4 + u2u3)u3 + (u1u3 + u2u4)u4]x,

u4,t1 = −u3,xx − 2[(u1u3 + u2u4)u3 + (u1u4 + u2u3)u4]x.

(2.22)
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There is an interesting character that the resulting two models just exchange the

first component with the second component and the third component with the

fourth component in the vector fields on the right-hand sides.

3. Recursion Operator and Bi-Hamiltonian Formulation

To propose a Hamiltonian formulation to exhibit the Liouville integrability for the

soliton hierarchy (2.19), we can make use of the trace identity (1.8) in the case of

the spatial matrix eigenvalue problem (2.5). Noting the expression of the Laurent

series solution Y by (2.6), we can readily work out
tr

(
Y
∂M
∂λ

)
= 2(2αλa+ bu3 + cu1 + eu4 + gu2),

tr

(
Y
∂M
∂u

)
= 2(λc, λg, λb, λe)T

(3.1)

and consequently, an application of the trace identity yields

δ

δu

∫
λ−2n−1(2αa[n+1] + u3b

[n] + u4e
[n] + u1c

[n] + u2g
[n])dx

= λ−κ
∂

∂λ
λκ−2n(c[n], g[n], b[n], e[n])T , n ≥ 0. (3.2)

Checking with n = 1 tells κ = 0, and accordingly, one obtains

δ

δu
H[n] = (c[n], g[n], b[n], e[n])T , n ≥ 0, (3.3)

where the Hamiltonian functionals are determined by

H[0] =

∫
1

2
[u1(βu3 + γu4) + u2(βu4 + γu3) + u3(βu1 + γu2)

+ u4(βu2 + γu1)]dx,

H[n] = −
∫

1

2n
(2αa[n+1] + u3b

[n] + u1c
[n] + u4e

[n] + u2g
[n])dx, n ≥ 1.

(3.4)

This enables us to produce a Hamiltonian formulation for the hierarchy (2.19):

utm = X [m] = J1
δH[m]

δu
, m ≥ 0, (3.5)

where the Hamiltonian operator J1 is given by

J1 =


0

∂ 0

0 ∂

∂ 0

0 ∂
0

 (3.6)
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and the functionals H[m] are defined by (3.4). As a consequence, we have an inter-

relation S = J1
δH
δu between a symmetry S and a conserved functional H of each

model in the hierarchy.

The characteristic commutative property for the vector fields X [n]

[[X [n1], X [n2]]] = X [n1]′(u)[X [n2]]−X [n2]′(u)[X [n1]] = 0, n1, n2 ≥ 0, (3.7)

follows from an algebra of Lax operators:

[[N [n1],N [n2]]] = N [n1]′(u)[X [n2]]−N [n2]′(u)[X [n1]]

+ [N [n1],N [n2]] = 0, n1, n2 ≥ 0. (3.8)

This can directly be verified by analyzing the relation between the isospectral zero

curvature equations (see [31] for details).

On the other hand, from the recursion relation X [m+1] = ΦX [m], we can com-

pute a hereditary recursion operator Φ = (Φjk)4×4 [29] for the hierarchy (2.19),

which reads as follows:

Φ11 =
1

α
∂x −

2

α2
(∂u1∂

−1u3 + ∂u2∂
−1u4),

Φ12 = − 2

α2
(∂u1∂

−1u4 + ∂u2∂
−1u3),

Φ13 = − 2

α2
(∂u1∂

−1u1 + ∂u2∂
−1u2),

Φ14 = − 2

α2
(∂u1∂

−1u2 + ∂u2∂
−1u1);

(3.9)



Φ21 = − 2

α2
(∂u1∂

−1u4 + ∂u2∂
−1u3),

Φ22 =
1

α
∂x −

2

α2
(∂u1∂

−1u3 + ∂u2∂
−1u4),

Φ23 = − 2

α2
(∂u1∂

−1u2 + ∂u2∂
−1u1),

Φ24 = − 2

α2
(∂u1∂

−1u1 + ∂u2∂
−1u2);

(3.10)



Φ31 = − 2

α2
(∂u3∂

−1u3 + ∂u4∂
−1u4),

Φ32 = − 2

α2
(∂u3∂

−1u4 + ∂u4∂
−1u3),

Φ33 = − 1

α
∂x −

2

α2
(∂u3∂

−1u1 + ∂u4∂
−1u2),

Φ34 = − 2

α2
(∂u3∂

−1u2 + ∂u4∂
−1u1);

(3.11)
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Φ41 = − 2

α2
(∂u3∂

−1u4 + ∂u4∂
−1u3),

Φ42 = − 2

α2
(∂u3∂

−1u3 + ∂u4∂
−1u4),

Φ43 = − 2

α2
(∂u3∂

−1u2 + ∂u4∂
−1u1),

Φ44 = − 1

α
∂x −

2

α2
(∂u3∂

−1u1 + ∂u4∂
−1u2).

(3.12)

With some direct analysis, we can see that J1 and J2 = ΦJ1 constitute a Hamilto-

nian pair. Namely, an arbitrary linear combination of J1 and J2 is again Hamilto-

nian. Accordingly, the hierarchy (2.19) possesses a bi-Hamiltonian structure [30]:

utm = X [m] = J1
δH[m]

δu
= J2

δH[m−1]

δu
, m ≥ 1. (3.13)

It then follows that the associated Hamiltonian functionals commute with each

other under the corresponding two Poisson brackets [6]:

{H[n1],H[n2]}J1 =

∫ (
δH[n1]

δu

)T
J1
δH[n2]

δu
dx = 0, n1, n2 ≥ 0 (3.14)

and

{H[n1],H[n2]}J2 =

∫ (
δH[n1]

δp

)T
J2
δH[n2]

δu
dx = 0, n1, n2 ≥ 0. (3.15)

The bi-Hamiltonian formulation also implies the hereditary property of the recur-

sion operator Φ and thus Φ is a common recursion operator for the integrable

hierarchy (2.19).

To conclude, each model in the hierarchy (2.19) is Liouville integrable and pos-

sesses infinitely many commuting symmetries {X [n]}∞n=0 and conserved functionals

{H[n]}∞n=0. One particular illustrative integrable model is the system in (2.20),

which adds to the existing category of nonlinear combined Liouville integrable

Hamiltonian models with four components.

4. Concluding Remarks

From a specific special 4 × 4 matrix eigenvalue problem, a hierarchy of four-

component Liouville integrable models has been generated through the zero cur-

vature formulation. The crucial step is to determine a particular Laurent series

solution of the corresponding stationary zero curvature equation. The resulting inte-

grable hierarchy has been shown to be bi-Hamiltonian by determining a hereditary

recursion operator and applying the trace identity in the case the underlying matrix

eigenvalue problem.

We are curious to know what kind of mathematical structures of soliton solu-

tions there exist for the obtained integrable models. Various powerful and effective

2450049-10
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approaches are available for use, which include the Riemann–Hilbert technique [32],

the Zakharov–Shabat dressing method [33], the Darboux transformation [34–36],

and the determinant approach [37]. In addition to solitons, lump, kink, breather

and rogue wave solutions, particularly their interaction solutions (see, e.g., [38–45]),

are also interesting, and it is possible to compute them from soliton solutions by

taking wave number reductions. Another important aspect of the study of inte-

grable models is to get nonlocal reduced integrable models by conducting nonlocal

group reductions or similarity transformations of matrix eigenvalue problems, and

to explore their solitons, which are significant in mathematics as well as physics (see,

e.g., [46–48]). Nonlocality reveals a diverse array of novel phenomena and solutions

(see, e.g., [49, 50]).

Integrable models are of great interest, and they are built around connections

of all kinds that bridge mathematics with the real world problems. The study of

integrable models offers insights into universal behaviors across different physical

system scenarios, and underpins the fundamental understanding of complex non-

linear mathematical and physical phenomena.
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Anal. Math. Phys. 9 (2019) 1741–1752.

[39] T. A. Sulaiman, A. Yusuf, A. Abdeljabbar and M. Alquran, Dynamics of lump col-
lision phenomena to the (3 + 1)-dimensional nonlinear evolution equation, J. Geom.
Phys. 169 (2021) 104347.

[40] A. Yusuf, T. A. Sulaiman, A. Abdeljabbam and M. Alquran, Breathem waves, ana-
lytical solutions and conservation lawn using LieBäcklund symmetries to the (2 + 1)-
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