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1. Introduction
Integrable models are associated with matrix eigenvalue problems [1] and the

underlying matrix Lie algebra is the basis [2, 3]. Matrix eigenvalue problems can
also be used to establish inverse scattering transforms solving Cauchy problems, and
to explore integrable properties, such as infinitely many symmetries and conservation
laws [2]. Hamiltonian structures connecting symmetries with conservation laws can
be furnished by the so-called trace identity [4]. Integrable models have various
applications in physical sciences and engineering, including nonlinear optics, fluid
dynamics and quantum mechanics [3].

There are abundant examples of integrable hierarchies, which include the Ablowitz-
Kaup-Newell-Segur hierarchy [5] and its diverse hierarchies of integrable couplings [7].
Matrix Lie algebras provide a solid basis for constructing integrable models through
the zero curvature formulation [4, 6, 7]. The key step is to find a spectral matrix
which can successfully yield an integrable hierarchy. In this paper, we would like
to propose a novel 4 × 4 Kaup-Newell type spectral matrix involving nonzero anti-
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diagonal entries and minus signs, and compute an associated integrable hierarchy,
within the zero curvature formulation.

The zero curvature formulation can be formulated as follows (see [4, 8] for
details). As usual, let us denote a column potential vector by 𝑢 = (𝑢1, · · · , 𝑢𝑞)𝑇 and
the spectral parameter by 𝜆. We take a pseudo-regular element 𝐹0 in a given loop
matrix algebra 𝑔̃ with the loop parameter 𝜆. The pseudo-regular property here is

Im ad𝐹0 ⊕ Ker ad𝐹0 = 𝑔̃, [Ker ad𝐹0 ,Ker ad𝐹0] = 0, (1.1)
where ad𝐹0 denotes the adjoint action of 𝐹0 on 𝑔̃. With 𝑞 linear independent matrices
𝐹1, · · · , 𝐹𝑞 in 𝑔̃, we formulate a spatial spectral matrix,

M = M(𝑢, 𝜆) = 𝐹0(𝜆) + 𝑢1𝐹1(𝜆) + · · · + 𝑢𝑞𝐹𝑞 (𝜆), (1.2)

and determine a Laurent series solution 𝑌 =
∑

𝑛≥0 𝜆
−𝑛𝑌 [𝑛] to the stationary zero

curvature equation
𝑌𝑥 = [M, 𝑌 ] (1.3)

in the underlying loop algebra 𝑔̃.
Next, we introduce an infinite sequence of temporal spectral matrices

N [𝑚] = (𝜆𝑚𝑌 )+ + Δ𝑚 =

𝑚∑︁
𝑛=0

𝜆𝑚−𝑛𝑌 [𝑛] + Δ𝑚, 𝑚 ≥ 0, (1.4)

where Δ𝑚 ∈ 𝑔̃, 𝑚 ≥ 0, which provide the other parts of Lax pairs, such that the
zero curvature equations:

M𝑡𝑚 − N [𝑚]
𝑥 + [M,N [𝑚]] = 0, 𝑚 ≥ 0, (1.5)

generate an integrable hierarchy:

𝑢𝑡𝑚 = 𝑋 [𝑚] = 𝑋 [𝑚] (𝑢), 𝑚 ≥ 0, (1.6)
which commutes pairwise. The equations in (1.5) are the solvability conditions of
the spatial and temporal matrix eigenvalue problems:

𝜑𝑥 = M𝜑, 𝜑𝑡𝑚 = N [𝑚]𝜑, 𝑚 ≥ 0. (1.7)
One often needs the trial and error strategy while transforming the zero curvature
equations into an integrable hierarchy.

To show the Liouville integrability, we furnish a bi-Hamiltonian formulation for
the resulting hierarchy (1.6), via computing a hereditary recursion operator and
applying the trace identity

𝛿

𝛿𝑢

∫
tr
(
𝑌
𝜕M
𝜕𝜆

)
𝑑𝑥 = 𝜆−𝜅 𝜕

𝜕𝜆
𝜆𝜅 tr

(
𝑌
𝜕M
𝜕𝑢

)
, (1.8)

where 𝛿
𝛿𝑢

is the variational derivative with respect to 𝑢, and 𝜅 is a constant,
determined by

𝜅 = −𝜆
2

𝜕

𝜕𝜆
ln |tr(𝑌 2) |. (1.9)
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The bi-Hamiltonian formulation implies the Liouville integrability of the resulting
hierarchy (see, e.g., [4, 9]).

There exist various applications of the zero curvature formulation to hierarchies of
Liouville integrable models in the literature [5–19]. One-component integrable hier-
archies contain the Korteweg-de Vries hierarchy, the nonlinear Schrödinger hierarchy
and the modified Korteweg-de Vries hierarchy [2, 3]. The well-known examples with
two components include the Ablowitz-Kaup-Newell-Segur integrable hierarchy [5],
the Heisenberg integrable hierarchy [20], the Kaup-Newell integrable hierarchy [21]
and the Wadati-Konno-Ichikawa integrable hierarchy [22]. All those hierarchies are
generated from 2 × 2 spectral matrices. The case of higher-order spectral matrices
involves a high degree of difficulty.

The aim of this paper is to propose a specific 4 × 4 spectral matrix involving
nonzero anti-diagonal entries and minus signs, and construct an associated hierarchy
of four-component Liouville integrable models through the zero curvature formulation.
A hereditary recursion operator and a bi-Hamiltonian formulation are determined to
show the Liouville integrability for the resulting hierarchy. An illustrative example,
consisting of generalized combined integrable derivative nonlinear Schrödinger equa-
tions, is explicitly presented. The last section are a conclusion and some concluding
remarks.

2. An integrable hierarchy with four potentials

The starting point is a special matrix Lie algebra. Let 𝛿 be an arbitrary number
and 𝑇 , a square matrix of order 𝑟 ∈ N such that

𝑇−1 = −𝑇. (2.1)

We introduce a set 𝑔̃ of block matrices by

𝑔̃ =

{
𝐴 =

[
𝐴1 𝐴2

𝐴3 𝐴4

]
2𝑟×2𝑟

���� 𝐴4 = 𝑇𝐴1𝑇
−1, 𝐴3 = 𝛿𝑇 𝐴2𝑇

−1
}
. (2.2)

Obviously, this forms a matrix Lie algebra under the matrix commutator [𝐴, 𝐵] =
𝐴𝐵 − 𝐵𝐴. We point out that the inclusion of an arbitrary constant in the first
condition does not work, i.e. the reduction 𝐴4 = 𝜎𝑇𝐴1𝑇

−1, where 𝜎 is an arbitrary
constant, does not guarantee a matrix Lie algebra. We will use this Lie algebra
with 𝑟 = 2, 𝛿 = 1 and

𝑇 =

[
0 1
−1 0

]
or

[
0 −1
1 0

]
(2.3)

to formulate a specific spectral matrix to generate an integrable hierarchy.
Let 𝑢 = 𝑢(𝑥, 𝑡) = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 be a column vector with four potentials, and

𝛼1 and 𝛼2, two arbitrary real numbers satisfying

𝛼 = 𝛼1 + 𝛼2 ≠ 0. (2.4)
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Motivated by recent studies on matrix eigenvalue problems involving four potentials
(see, e.g., [23–25] and [26, 27] for examples of matrix eigenvalue problems of
arbitrary-order and fourth-order, respectively), we would like to consider a matrix
eigenvalue problem of the form

𝜑𝑥 = M𝜑 = M(𝑢, 𝜆)𝜑, M =


0 𝜆𝑢1 𝜆𝑢2 𝛼1𝜆

2

𝜆𝑢3 0 𝛼2𝜆
2 𝜆𝑢4

𝜆𝑢4 −𝛼2𝜆
2 0 −𝜆𝑢3

−𝛼1𝜆
2 𝜆𝑢2 −𝜆𝑢1 0


, (2.5)

where, as usual, 𝜆 stands for the spectral parameter. This spectral matrix M belongs
to the above matrix Lie algebra 𝑔̃, and it is a kind of 4×4 matrix generalization of
the Kaup-Newell eigenvalue problem [21]. In this spectral matrix, the constant terms
appear in the antidiagonal, all diagonal entries are zero, and there are four minus
signs. Interestingly, beginning with this eigenvalue problem, an associated hierarchy
of bi-Hamiltonian integrable models can be generated. All models in the hierarchy
possess a particular combined structure.

To generate an associated integrable hierarchy, we first solve the corresponding
stationary zero curvature equation (1.3). Let us take

𝑌 =


𝑎 𝑏 𝑒 𝑓

𝑐 −𝑎 𝑓 𝑔

𝑔 − 𝑓 −𝑎 −𝑐
− 𝑓 𝑒 −𝑏 𝑎


=
∑︁
𝑛≥0

𝜆−𝑛𝑌 [𝑛] . (2.6)

The reason to take this form is that with the spectral matrix M in (2.5), an arbitrary
matrix in 𝑔̃ will yield a commutator matrix of the above form in (2.6). In doing
so, the corresponding stationary zero curvature equation (1.3) equivalently engenders

𝑎𝑥 = 𝜆𝑐𝑢1 + 𝜆𝑔𝑢2 − 𝜆𝑏𝑢3 − 𝜆𝑒𝑢4,

𝑏𝑥 = 𝛼𝜆2𝑒 − 2𝜆𝑎𝑢1 − 2𝜆 𝑓 𝑢2,

𝑐𝑥 = 𝛼𝜆2𝑔 + 2𝜆𝑎𝑢3 − 2𝜆 𝑓 𝑢4,

(2.7)


𝑒𝑥 = −𝛼𝜆2𝑏 + 2𝜆 𝑓 𝑢1 − 2𝜆𝑎𝑢2,

𝑔𝑥 = −𝛼𝜆2𝑐 + 2𝜆 𝑓 𝑢3 + 2𝜆𝑎𝑢4,

𝑓𝑥 = 𝜆𝑔𝑢1 − 𝜆𝑐𝑢2 + 𝜆𝑒𝑢3 − 𝜆𝑏𝑢4.

(2.8)

In order to get a solution 𝑌 recursively, we assume that the basic objects of 𝑌 are
taken as follows:{

𝑎 =
∑

𝑛≥0 𝜆
−2𝑛𝑎 [𝑛] , 𝑏 =

∑
𝑛≥0 𝜆

−2𝑛−1𝑏 [𝑛] , 𝑐 =
∑

𝑛≥0 𝜆
−2𝑛−1𝑐 [𝑛] ,

𝑒 =
∑

𝑛≥0 𝜆
−2𝑛−1𝑒 [𝑛] , 𝑓 =

∑
𝑛≥0 𝜆

−2𝑛 𝑓 [𝑛] , 𝑔 =
∑

𝑛≥0 𝜆
−2𝑛−1𝑔 [𝑛] .

(2.9)
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The two obvious relations{
−𝛼𝜆𝑎𝑥 = 𝑢4𝑏𝑥 − 𝑢2𝑐𝑥 − 𝑢3𝑒𝑥 + 𝑢1𝑔𝑥 ,

𝛼𝜆 𝑓𝑥 = 𝑢3𝑏𝑥 + 𝑢1𝑐𝑥 + 𝑢4𝑒𝑥 + 𝑢2𝑔𝑥 ,
(2.10)

help us get the required recursion relations. Now by a careful check, we can see
that the above equations in (2.7) and (2.8) generate the two initial equations{

𝑎
[0]
𝑥 = 𝑢1𝑐

[0] + 𝑢2𝑔
[0] − 𝑢3𝑏

[0] − 𝑢4𝑒
[0] ,

𝑓
[0]
𝑥 = 𝑢1𝑔

[0] − 𝑢2𝑐
[0] + 𝑢3𝑒

[0] − 𝑢4𝑏
[0] ,

(2.11)

and the recursion relations which determine a Laurent series solution:
𝑎
[𝑛+1]
𝑥 = − 1

𝛼
(𝑢4𝑏

[𝑛]
𝑥 − 𝑢2𝑐

[𝑛]
𝑥 − 𝑢3𝑒

[𝑛]
𝑥 + 𝑢1𝑔

[𝑛]
𝑥 ),

𝑓
[𝑛+1]
𝑥 = 1

𝛼
(𝑢3𝑏

[𝑛]
𝑥 + 𝑢1𝑐

[𝑛]
𝑥 + 𝑢4𝑒

[𝑛]
𝑥 + 𝑢2𝑔

[𝑛]
𝑥 ),

𝑏 [𝑛+1] = 1
𝛼
(−𝑒 [𝑛]𝑥 + 2𝑢1 𝑓

[𝑛+1] − 2𝑢2𝑎
[𝑛+1]),

𝑐 [𝑛+1] = 1
𝛼
(−𝑔 [𝑛]

𝑥 + 2𝑢3 𝑓
[𝑛+1] + 2𝑢4𝑎

[𝑛+1]),{
𝑒 [𝑛+1] = 1

𝛼
(𝑏 [𝑛]

𝑥 + 2𝑢1𝑎
[𝑛+1] + 2𝑢2 𝑓

[𝑛+1]),

𝑔 [𝑛+1] = 1
𝛼
(𝑐 [𝑛]𝑥 − 2𝑢3𝑎

[𝑛+1] + 2𝑢4 𝑓
[𝑛+1]),

where 𝑛 ≥ 0. A simple solution to the initial equations in (2.11) is given by
𝑏 [0] = 𝛽𝑢1 + 𝛾𝑢2, 𝑐 [0] = 𝛽𝑢3 − 𝛾𝑢4,

𝑒 [0] = 𝛽𝑢2 − 𝛾𝑢1, 𝑔 [0] = 𝛽𝑢4 + 𝛾𝑢3,

𝑎 [0] = const, 𝑓 [0] = const,

(2.12)

where 𝛽 and 𝛾 are two arbitrary constants. For brevity, we choose the zero constants
of integration,

𝑎 [𝑛] |𝑢=0 = 0, 𝑓 [𝑛] |𝑢=0 = 0, 𝑛 ≥ 1. (2.13)

The initial values for 𝑎 [0] and 𝑓 [0] do not create any effect on all other coefficients
in the Laurent series solution, but the two constants 𝛽 and 𝛾 bring the diversity
of associated integrable models, particularly a combined structure. Now, based on
(2.12) and (2.13), one can work out that{

𝑎 [1] = − 1
𝛼
[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2],

𝑓 [1] = 1
𝛼
[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2],
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𝑏 [1] = 1
𝛼
{𝛾𝑢1,𝑥 − 𝛽𝑢2,𝑥 + 2

𝛼
[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢1

+ 2
𝛼
[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢2},

𝑐 [1] = 1
𝛼
{−𝛾𝑢3,𝑥 − 𝛽𝑢4,𝑥 + 2

𝛼
[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢3

− 2
𝛼
[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢4},

𝑒 [1] = 1
𝛼
{𝛽𝑢1,𝑥 + 𝛾𝑢2,𝑥 − 2

𝛼
[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢1

+ 2
𝛼
[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢2},

𝑔 [1] = 1
𝛼
{𝛽𝑢3,𝑥 − 𝛾𝑢4,𝑥 + 2

𝛼
[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢3

+ 2
𝛼
[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢4}.

By a further inspection on the above recursion relations, one can introduce the
temporal matrix eigenvalue problems:

𝜑𝑡𝑚 = N [𝑚]𝜑 = N [𝑚] (𝑢, 𝜆)𝜑, N [𝑚] = 𝜆(𝜆2𝑚+1𝑌 )+, 𝑚 ≥ 0, (2.14)

where the subscript + stands for the polynomial part of 𝜆. The solvability conditions
of the spatial and temporal matrix eigenvalue problems in (2.5) and (2.14), i.e. the
zero curvature equations in (1.5), engender a hierarchy of integrable models with
four potentials:

𝑢𝑡𝑚 = 𝑋 [𝑚] = 𝑋 [𝑚] (𝑢) =
(
𝑏
[𝑚]
𝑥 , 𝑒

[𝑚]
𝑥 , 𝑐

[𝑚]
𝑥 , 𝑔

[𝑚]
𝑥

)𝑇
, 𝑚 ≥ 0, (2.15)

or more concretely,

𝑢1,𝑡𝑚 = 𝑏
[𝑚]
𝑥 , 𝑢2,𝑡𝑚 = 𝑒

[𝑚]
𝑥 , 𝑢3,𝑡𝑚 = 𝑐

[𝑚]
𝑥 , 𝑢4,𝑡𝑚 = 𝑔

[𝑚]
𝑥 , 𝑚 ≥ 0. (2.16)

The first nonlinear example in this hierarchy is the model of combined integrable
derivative nonlinear Schrödinger equations:

𝑢1,𝑡1 = 1
𝛼
(𝛾𝑢1,𝑥𝑥 − 𝛽𝑢2,𝑥𝑥) + 2

𝛼2 {[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢1}𝑥

+ 2
𝛼2 {(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢2}𝑥 ,

𝑢2,𝑡1 = 1
𝛼
(𝛽𝑢1,𝑥𝑥 + 𝛾𝑢2,𝑥𝑥) − 2

𝛼2 {[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢1}𝑥

+ 2
𝛼2 {(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢2}𝑥 ,

𝑢3,𝑡1 = − 1
𝛼
(𝛾𝑢3,𝑥𝑥 + 𝛽𝑢4,𝑥𝑥) + 2

𝛼2 {[(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢3}𝑥

− 2
𝛼2 {(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢4}𝑥 ,

𝑢4,𝑡2 = 1
𝛼
(𝛽𝑢3,𝑥𝑥 − 𝛾𝑢4,𝑥𝑥) + 2

𝛼2 {[(𝛾𝑢3 + 𝛽𝑢4)𝑢1 − (𝛽𝑢3 − 𝛾𝑢4)𝑢2]𝑢3}𝑥

+ 2
𝛼2 {(𝛽𝑢3 − 𝛾𝑢4)𝑢1 + (𝛾𝑢3 + 𝛽𝑢4)𝑢2]𝑢4}𝑥 .

(2.17)
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This system provides a coupled integrable model with four components, enlarging
the category of coupled integrable models of nonlinear Schrödinger type equations
(see, e.g., [24, 28, 29]). One characteristic property is that each equation contains
a linear combination of two derivative terms of the second order, and thus, we call
it a combined model.

Two special cases with 𝛽 = 0 and 𝛾 = 0 in the resulting hierarchy are particularly
interesting. They produce two reduced hierarchies of uncombined integrable models.

If one first takes 𝛼 = 𝛽 = 1 and 𝛾 = 0 in the model (2.17), one obtains a coupled
integrable nonlinear Schrödinger model:

𝑢1,𝑡1 = −𝑢2,𝑥𝑥 + 2[(𝑢1𝑢3 + 𝑢2𝑢4)𝑢1 + (𝑢1𝑢4 − 𝑢2𝑢3)𝑢2]𝑥 ,

𝑢2,𝑡1 = 𝑢1,𝑥𝑥 − 2[(𝑢1𝑢4 − 𝑢2𝑢3)𝑢1 − (𝑢1𝑢3 + 𝑢2𝑢4)𝑢2]𝑥 ,

𝑢3,𝑡1 = −𝑢4,𝑥𝑥 + 2[(𝑢1𝑢3 + 𝑢2𝑢4)𝑢3 − (𝑢1𝑢4 − 𝑢2𝑢3)𝑢4]𝑥 ,

𝑢4,𝑡1 = 𝑢3,𝑥𝑥 + 2[(𝑢1𝑢4 − 𝑢2𝑢3)𝑢3 + (𝑢1𝑢3 + 𝑢2𝑢4)𝑢4]𝑥 .

(2.18)

If one second takes 𝛼 = 𝛾 = 1 and 𝛽 = 0 in the model (2.17), one gets another
coupled integrable derivative nonlinear Schrödinger model:

𝑢1,𝑡1 = 𝑢1,𝑥𝑥 − 2[(𝑢1𝑢4 − 𝑢2𝑢3)𝑢1 − (𝑢1𝑢3 + 𝑢2𝑢4)𝑢2]𝑥 ,

𝑢2,𝑡1 = 𝑢2,𝑥𝑥 − 2[(𝑢1𝑢3 + 𝑢2𝑢4)𝑢1 + (𝑢1𝑢4 − 𝑢2𝑢3)𝑢2]𝑥 ,

𝑢3,𝑡1 = −𝑢3,𝑥𝑥 − 2[(𝑢1𝑢4 − 𝑢2𝑢3)𝑢3 + (𝑢1𝑢3 + 𝑢2𝑢4)𝑢4]𝑥 ,

𝑢4,𝑡1 = −𝑢4,𝑥𝑥 + 2[(𝑢1𝑢3 + 𝑢2𝑢4)𝑢3 − (𝑢1𝑢4 − 𝑢2𝑢3)𝑢4]𝑥 .

(2.19)

Checking the vector fields on the right-hand sides, we see an interesting phe-
nomenon that the resulting two reduced models just exchange the first component
with the second component and the third component with the fourth component.
Surprisingly, those two reduced models still commute with each other.

3. Recursion operator and bi-Hamiltonian formulation

To explore the Liouville integrability of the resulting hierarchy (2.16), we furnish
a Hamiltonian formulation by using the trace identity (1.8) in the case of the spatial
matrix eigenvalue problem (2.5).

By the expression of the Laurent series solution 𝑌 by (2.6), we can readily work
out 

tr
(
𝑌
𝜕M
𝜕𝜆

)
= 2(−2𝛼𝜆 𝑓 + 𝑏𝑢3 + 𝑐𝑢1 + 𝑒𝑢4 + 𝑔𝑢2),

tr
(
𝑌
𝜕M
𝜕𝑢

)
= 2(𝜆𝑐, 𝜆𝑔, 𝜆𝑏, 𝜆𝑒)𝑇 ,

(3.1)
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and then, an application of the trace identity leads to

𝛿

𝛿𝑢

∫
𝜆−2𝑛−1(−2𝛼 𝑓 [𝑛+1] + 𝑢3𝑏

[𝑛] + 𝑢4𝑒
[𝑛] + 𝑢1𝑐

[𝑛] + 𝑢2𝑔
[𝑛]) 𝑑𝑥

= 𝜆−𝜅 𝜕

𝜕𝜆
𝜆𝜅−2𝑛 (𝑐 [𝑛] , 𝑔 [𝑛] , 𝑏 [𝑛] , 𝑒 [𝑛])𝑇 , 𝑛 ≥ 0. (3.2)

Checking with 𝑛 = 1 yields 𝜅 = 0, and consequently, one arrives at
𝛿

𝛿𝑢
H [𝑛] = (𝑐 [𝑛] , 𝑔 [𝑛] , 𝑏 [𝑛] , 𝑒 [𝑛])𝑇 , 𝑛 ≥ 0, (3.3)

where the Hamiltonian functionals are determined by
H [0] =

∫
1
2
[𝑢1(𝛽𝑢3 − 𝛾𝑢4) + 𝑢2(𝛽𝑢4 + 𝛾𝑢3) + 𝑢3(𝛽𝑢1 + 𝛾𝑢2) + 𝑢4(𝛽𝑢2 − 𝛾𝑢1)] 𝑑𝑥,

H [𝑛] =

∫
1

2𝑛
(2𝛼 𝑓 [𝑛+1] − 𝑢3𝑏

[𝑛] − 𝑢1𝑐
[𝑛] − 𝑢4𝑒

[𝑛] − 𝑢2𝑔
[𝑛]) 𝑑𝑥, 𝑛 ≥ 1.

(3.4)
The first Hamiltonian functional above was computed directly. This enables us to
establish a Hamiltonian formulation for the hierarchy (2.16),

𝑢𝑡𝑚 = 𝑋 [𝑚] = 𝐽1
𝛿H [𝑚]

𝛿𝑢
, 𝑚 ≥ 0, (3.5)

where the Hamiltonian operator 𝐽1 is given by

𝐽1 =


0 𝜕 0

0 𝜕

𝜕 0
0 𝜕

0


, (3.6)

and the functionals H [𝑚] are defined by (3.4). As a consequence of this Hamiltonian
formulation, we have an interrelation 𝑍 = 𝐽1

𝛿H
𝛿𝑢

between a symmetry 𝑍 and
a conserved functional H of each model in the hierarchy.

The characteristic commutative property for the vector fields 𝑋 [𝑛] ,

[[𝑋 [𝑛1 ] , 𝑋 [𝑛2 ]]] = 𝑋 [𝑛1 ] ′(𝑢) [𝑋 [𝑛2 ]] − 𝑋 [𝑛2 ] ′(𝑢) [𝑋 [𝑛1 ]] = 0, 𝑛1, 𝑛2 ≥ 0, (3.7)

follows from an algebra of Lax operators:

[[N [𝑛1 ] ,N [𝑛2 ]]] = N [𝑛1 ] ′(𝑢) [𝑋 [𝑛2 ]] − N [𝑛2 ] ′(𝑢) [𝑋 [𝑛1 ]] + [N [𝑛1 ] ,N [𝑛2 ]]
= 0, 𝑛1, 𝑛2 ≥ 0. (3.8)

This can directly be derived from the relation between the isospectral zero curvature
equations (see [34, 35] for details).

Furthermore, based on the recursion relation 𝑋 [𝑚+1] = Φ𝑋 [𝑚] , we can compute
a hereditary recursion operator Φ = (Φ 𝑗𝑘)4×4 [30] for the hierarchy (2.16), and the
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recursion operator Φ is determined by{
Φ11 = 2

𝛼2 (𝜕𝑢1𝜕
−1𝑢3 + 𝜕𝑢2𝜕

−1𝑢4), Φ12 = − 1
𝛼
𝜕𝑥 + 2

𝛼2 (𝜕𝑢1𝜕
−1𝑢4 − 𝜕𝑢2𝜕

−1𝑢3),

Φ13 = 2
𝛼2 (𝜕𝑢1𝜕

−1𝑢1 − 𝜕𝑢2𝜕
−1𝑢2), Φ14 = 2

𝛼2 (𝜕𝑢1𝜕
−1𝑢2 + 𝜕𝑢2𝜕

−1𝑢1);
(3.9){

Φ21 = 1
𝛼
𝜕𝑥 − 2

𝛼2 (𝜕𝑢1𝜕
−1𝑢4 − 𝜕𝑢2𝜕

−1𝑢3), Φ22 = 2
𝛼2 (𝜕𝑢1𝜕

−1𝑢3 + 𝜕𝑢2𝜕
−1𝑢4),

Φ23 = 2
𝛼2 (𝜕𝑢1𝜕

−1𝑢2 + 𝜕𝑢2𝜕
−1𝑢1), Φ24 = − 2

𝛼2 (𝜕𝑢1𝜕
−1𝑢1 − 𝜕𝑢2𝜕

−1𝑢2);
(3.10){

Φ31 = 2
𝛼2 (𝜕𝑢3𝜕

−1𝑢3 − 𝜕𝑢4𝜕
−1𝑢4), Φ32 = 2

𝛼2 (𝜕𝑢3𝜕
−1𝑢4 + 𝜕𝑢4𝜕

−1𝑢3),

Φ33 = 2
𝛼2 (𝜕𝑢3𝜕

−1𝑢1 + 𝜕𝑢4𝜕
−1𝑢2), Φ34 = − 1

𝛼
𝜕𝑥 + 2

𝛼2 (𝜕𝑢3𝜕
−1𝑢2 − 𝜕𝑢4𝜕

−1𝑢1);
(3.11){

Φ41 = 2
𝛼2 (𝜕𝑢3𝜕

−1𝑢4 + 𝜕𝑢4𝜕
−1𝑢3), Φ42 = − 2

𝛼2 (𝜕𝑢3𝜕
−1𝑢3 − 𝜕𝑢4𝜕

−1𝑢4),

Φ43 = 1
𝛼
𝜕𝑥 − 2

𝛼2 (𝜕𝑢3𝜕
−1𝑢2 − 𝜕𝑢4𝜕

−1𝑢1), Φ44 = 2
𝛼2 (𝜕𝑢3𝜕

−1𝑢1 + 𝜕𝑢4𝜕
−1𝑢2).

(3.12)
The hereditary property of Φ means [31] that it satisfies

𝐿Φ𝑋Φ = Φ𝐿𝑋Φ, (3.13)
where 𝑋 is an arbitrary vector field and the Lie derivative 𝐿𝑋Φ is defined via

(𝐿𝑋Φ)𝑍 = Φ[[𝑋, 𝑍]] − [[𝑋,Φ𝑍]], (3.14)
in which 𝑍 is an arbitrary vector field. Observe that an operator Ψ = Ψ(𝑥, 𝑡, 𝑢, 𝑢𝑥 , · · · )
is a recursion operator of an evolution equation 𝑢𝑡 = 𝑋 (𝑢) if and only if the operator
Ψ needs to satisfy

𝜕Ψ

𝜕𝑡
+ 𝐿𝑋Ψ = 0. (3.15)

We can readily prove that the autonomous operator Φ is a recursion operator of
𝑢𝑡0 = 𝑋 [0] , i.e. we have 𝐿𝑋[0]Φ = 0. In view of this, we can compute that

𝐿𝑋[𝑚]Φ = 𝐿Φ𝑋[𝑚−1]Φ = Φ𝐿𝑋[𝑚−1]Φ = · · · = Φ𝑚𝐿𝑋[0]Φ = 0, 𝑚 ≥ 1. (3.16)
Consequently, we see that Φ is a common recursion operator for all models in
the hierarchy (2.16). Symbolic algorithms are also available for computing recursion
operators of nonlinear partial differential equations by computer algebra systems (see,
e.g., [32]).

With some direct analysis, we can further show that 𝐽1 and 𝐽2 = Φ𝐽1 constitute
a Hamiltonian pair. Namely, an arbitrary linear combination 𝐽 of 𝐽1 and 𝐽2 is again
Hamiltonian, since it satisfies∫

(𝑍 [1])𝑇𝐽′(𝑢) [𝐽𝑍 [2]]𝑍 [3] 𝑑𝑥 + cycle(𝑍 [1] , 𝑍 [2] , 𝑍 [3]) = 0, (3.17)
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where 𝑍 [𝑖 ]’s are arbitrary vector fields. Accordingly, the hierarchy (2.16) possesses
a bi-Hamiltonian formulation [33],

𝑢𝑡𝑚 = 𝑋 [𝑚] = 𝐽1
𝛿H [𝑚]

𝛿𝑢
= 𝐽2

𝛿H [𝑚−1]

𝛿𝑢
, 𝑚 ≥ 1. (3.18)

It then follows that the associated Hamiltonian functionals commute with each other
under the corresponding two Poisson brackets [4]:

{H [𝑛1 ] ,H [𝑛2 ]}𝐽1 =

∫ (
𝛿H [𝑛1 ]

𝛿𝑢

)𝑇
𝐽1
𝛿H [𝑛2 ]

𝛿𝑢
𝑑𝑥 = 0, 𝑛1, 𝑛2 ≥ 0, (3.19)

and

{H [𝑛1 ] ,H [𝑛2 ]}𝐽2 =

∫ (
𝛿H [𝑛1 ]

𝛿𝑢

)𝑇
𝐽2
𝛿H [𝑛2 ]

𝛿𝑢
𝑑𝑥 = 0, 𝑛1, 𝑛2 ≥ 0. (3.20)

The bi-Hamiltonian formulation also implies the hereditariness of the recursion
operator Φ.

To conclude, each model in the hierarchy (2.16) is Liouville integrable and
possesses infinitely many commuting symmetries {𝑋 [𝑛]}∞

𝑛=0 and conserved functionals
{H [𝑛]}∞

𝑛=0. One particular illustrative integrable model is the system (2.17) of
derivative nonlinear Schrödinger equations, which adds to the existing category of
coupled nonlinear Liouville integrable Hamiltonian models with four components.

4. Concluding remarks
From a special matrix Lie algebra, a specific 4×4 matrix eigenvalue problem was

proposed and an associated hierarchy of four-component Liouville integrable models
was generated through the zero curvature formulation. The key is to determine
a particular Laurent series solution of the corresponding stationary zero curvature
equation. The resulting integrable hierarchy has been shown to possess a hereditary
recursion operator and a bi-Hamiltonian formulation, and thus, all members in the
hierarchy are Liouville integrable.

We are curious to know about mathematical structures of soliton solutions to
the obtained integrable models. Abundant powerful and effective approaches are
available for use, which include the Riemann-Hilbert technique [36], the Darboux
transformation [37–39], the Zakharov-Shabat dressing method [40] and the determinant
approach [41]. In addition to solitons, lump, kink, breather and rogue wave solutions,
particularly their interaction solutions (see, e.g., [42–49)], are also greatly significant,
and many of them can often be generated from soliton solutions by conducting wave
number reductions. Another important aspect of the study of integrable models is
to look for nonlocal reduced integrable models, and nonlocal group reductions and
similarity transformations of matrix eigenvalue problems are helpful. Solitons in the
nonlocal case are significantly important in mathematics as well as physics (see,
e.g., [50–53]).
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In summary, integrable models are of great importance, due to their role in
understanding nonlinear phenomena and their impact on diverse scientific disciplines.
Their study continues to contribute valuable insights that shape our understanding
of complex physical systems and advance our knowledge in various fields.

Acknowledgments
The work was supported in part by NSFC under the grants 12271488, 11975145
and 11972291, and the Ministry of Science and Technology of China under the
grants G2021016032L and G2023016011L.

REFERENCES

[1] P. D. Lax: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math.
21, 467–490 (1968).

[2] M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.
[3] M. B laszak: Multi-Hamiltonian Theory of Dynamical Systems, Springer, Berlin, Heidelberg, 1998.
[4] G. Z. Tu: On Liouville integrability of zero curvature equations and the Yang hierarchy, J. Phys. A Math.

Gen. 22, 2375–2392 (1989).
[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur: The inverse scattering transform-Fourier Analysis

for nonlinear problems, Stud. Appl. Math. 53, 249–315 (1974).
[6] V. Drinfel’d and V. V. Sokolov, Lie algebras and equations of Korteweg–de Vries type, Sov. J. Math. 30,

1975–2036 (1985).
[7] W. X. Ma: Integrable couplings and matrix loop algebras, in: Nonlinear and Modern Mathematical

Physics, pp.105-122, edited by W. X. Ma and D. Kaup, AIP Conference Proceedings, Vol.1562, American
Institute of Physics, Melville, NY, 2013.

[8] W. X. Ma,: A new hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction,
Chin. Ann. Math. Ser. A 13, 115–123 (1992).

[9] C. S. Liu: How many first integrals imply integrability in infinite-dimensional Hamilton system, Rep.
Math. Phys. 67, 109–123 (2011).

[10] M. Antonowicz and A. P. Fordy, Coupled KdV equations with multi-Hamiltonian structures, Phys. D 28,
345–357 (1987).

[11] T. C. Xia, F. J. Yu and Y. Zhang: The multi-component coupled Burgers hierarchy of soliton equations
and its multi-component integrable couplings system with two arbitrary functions, Phys. A 343, 238–246
(2004).

[12] W. X. Ma: Multi-component bi-Hamiltonian Dirac integrable equations, Chaos Solitons Fractals 39,
282–287 (2009).

[13] W. X. Ma: A soliton hierarchy associated with so(3,R), Appl. Math. Comput. 220, 117–122 (2013).
[14] S. Manukure: Finite-dimensional Liouville integrable Hamiltonian systems generated from Lax pairs of

a bi-Hamiltonian soliton hierarchy by symmetry constraints, Commun. Nonlinear Sci. Numer. Simul. 57,
125–135 (2018).

[15] T. S. Liu and T. C. Xia: Multi-component generalized Gerdjikov-Ivanov integrable hierarchy and its
Riemann-Hilbert problem, Nonlinear Anal. Real World Appl. 68, 103667 (2022).

[16] H. F. Wang and Y. F. Zhang: Application of Riemann-Hilbert method to an extended coupled nonlinear
Schrödinger equations, J. Comput. Appl. Math. 420, 114812 (2023).

[17] V. S. Gerdjikov: Nonlinear evolution equations related to Kac-Moody algebras 𝐴
(1)
𝑟 : spectral aspects,

Turkish J. Math. 46, 1828–1844 (2022).
[18] W. X. Ma: AKNS type reduced integrable bi-Hamiltonian hierarchies with four potentials, Appl. Math.

Lett. 145, 108775 (2023).
[19] W. X. Ma: AKNS type reduced integrable hierarchies with Hamiltonian formulations, Rom. J. Phys. 68,

116 (2023).



324 W.-X. MA

[20] L. A. Takhtajan: Integration of the continuous Heisenberg spin chain through the inverse scattering method,
Phys. Lett. A 64, 235–237 (1977).

[21] D. J. Kaup and A. C. Newell: An exact solution for a derivative nonlinear Schrödinger equation, J. Math.
Phys. 19, 798–801 (1978).

[22] M. Wadati, K. Konno and Y. H. Ichikawa: New integrable nonlinear evolution equations, J. Phys. Soc.
Jpn. 47, 1698–1700 (1979).

[23] W. X. Ma: A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure, Rom.
Rep. Phys. 75, 115 (2023).

[24] W. X. Ma: Four-component integrable hierarchies of Hamiltonian equations with (𝑚 + 𝑛 + 2)th-order Lax
pairs, Theoret. Math. Phys. 216 (2023), 1180–1188.

[25] W. X. Ma: Four-component integrable hierarchies and their Hamiltonian structures, Commun. Nonlinear
Sci. Numer. Simul. 126, 107460 (2023).

[26] Y. F. Zhang: A few expanding integrable models, Hamiltonian structures and constrained flows, Commun.
Theor. Phys. 55, 273–290 (2011).

[27] Zhaqilao: A generalized AKNS hierarchy, bi-Hamiltonian structure, and Darboux transformation, Commun.
Nonlinear Sci. Numer. Simul. 17, 2319–2332 (2012).

[28] W. X. Ma: A six-component integrable hierarchy and its Hamiltonian formulation, Mod. Phys. Lett. B
37, 2350143 (2023).

[29] W. X. Ma: Novel Liouville integrable Hamiltonian models with six components and three signs, Chin. J.
Phys. 86, 292–299 (2023).

[30] B. Fuchssteiner and A. S. Fokas: Symplectic structures, their Bäcklund transformations and hereditary
symmetries, Phys. D 4, 47–66 (1981).

[31] B. Fuchssteiner: Application of hereditary symmetries to nonlinear evolution equations, Nonlinear Anal.
Theory, Methods Appl. 3, 849–862 (1979).

[32] D. E. Baldwin and W. Hereman: A symbolic algorithm for computing recursion operators of nonlinear
partial differential equations, Int. J. Comput. Math. 87, 1094–1119 (2010).

[33] F. Magri: A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19, 1156–1162 (1978).
[34] W. X. Ma: The algebraic structures of isospectral Lax operatorn and applicationn to integrable equations,

J. Phys. A: Math. Gen. 25, 5329–5343 (1992).
[35] W. X. Ma: The algebraic structure of zero curvature representationn and application to coupled KdV

systems, J. Phys. A Math. Gen. 26, 2573–2582 (1993).
[36] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov: Consultantn Bureau, New York, 1984.
[37] V. B. Matveev and M. A. Salle: Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991.
[38] X. G. Geng, R. M. Li and B. Xue: A vector general nonlinear Schrödinger equation with (𝑚 + 𝑛)

components, J. Nonlinear Sci. 30, 991–1013 (2020).
[39] R. S. Ye and Y. Zhang: A vectorial Darboux transformation for the Fokas-Lenells system, Chaos Solitons

Fractals 169, 113233 (2023).
[40] E. V. Doktorov and S. B. Leble: A Dressing Method in Mathematical Physics, Springer, Dordrecht, 2007.
[41] T. Aktosun, T. Busse, F. Demontis and C. van der Mee: Symmetries for exact solutions to the nonlinear

Schrödinger equation, J. Phys. A: Math. Theoret. 43, 025202 (2010).
[42] L. Cheng, Y. Zhang and M. J. Lin: Lax pair and lump solutions for the (2+1)-dimensional DJKM equation
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