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This paper aims to study a Kaup-Newell type matrix eigenvalue problem with four potentials,
based on a specific matrix Lie algebra, and construct an associated soliton hierarchy of combined
derivative nonlinear Schrodinger (NLS) equations, within the zero curvature formulation. The
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1. Introduction

Integrable models are associated with matrix eigenvalue problems [1] and the
underlying matrix Lie algebra is the basis [2, 3]. Matrix eigenvalue problems can
also be used to establish inverse scattering transforms solving Cauchy problems, and
to explore integrable properties, such as infinitely many symmetries and conservation
laws [2]. Hamiltonian structures connecting symmetries with conservation laws can
be furnished by the so-called trace identity [4]. Integrable models have various
applications in physical sciences and engineering, including nonlinear optics, fluid
dynamics and quantum mechanics [3].

There are abundant examples of integrable hierarchies, which include the Ablowitz-
Kaup-Newell-Segur hierarchy [5] and its diverse hierarchies of integrable couplings [7].
Matrix Lie algebras provide a solid basis for constructing integrable models through
the zero curvature formulation [4, 6, 7]. The key step is to find a spectral matrix
which can successfully yield an integrable hierarchy. In this paper, we would like
to propose a novel 4 x4 Kaup-Newell type spectral matrix involving nonzero anti-
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diagonal entries and minus signs, and compute an associated integrable hierarchy,
within the zero curvature formulation.

The zero curvature formulation can be formulated as follows (see [4, 8] for
details). As usual, let us denote a column potential vector by u = (uy,--- ,uq)T and
the spectral parameter by A. We take a pseudo-regular element Fj in a given loop
matrix algebra ¢ with the loop parameter A. The pseudo-regular property here is

Imadp, ® Keradp, = g, [Keradp,, Keradp,] =0, (1.1)
where adfg, denotes the adjoint action of Fy on g. With g linear independent matrices
Fy,---,F, in g, we formulate a spatial spectral matrix,

M= M(u, ) = Fo(A) +ui Fi(A) +-- - +ugFg (), (1.2)

and determine a Laurent series solution ¥ = Y,.,A7"Y!" to the stationary zero
curvature equation

Y= [M.Y] (1.3)
in the underlying loop algebra g.
Next, we introduce an infinite sequence of temporal spectral matrices

NI = () Ay = ) Y Ay 2 0, (14)
n=0

where A, € §, m >0, which provide the other parts of Lax pairs, such that the
zero curvature equations:

M, —NM L IM N =0, m>o0, (1.5)

m

generate an integrable hierarchy:
g, = X" = xtml@w),  m>o0, (1.6)

which commutes pairwise. The equations in (1.5) are the solvability conditions of
the spatial and temporal matrix eigenvalue problems:

ox=Mo, ¢, =N"™¢o —m>0. (1.7)

One often needs the trial and error strategy while transforming the zero curvature
equations into an integrable hierarchy.

To show the Liouville integrability, we furnish a bi-Hamiltonian formulation for
the resulting hierarchy (1.6), via computing a hereditary recursion operator and
applying the trace identity

9 oM 0 oM

— | u|Y—|dx =2 =Atr|Y —|, 1.8

Su r( 8/1)x aa r( 614) (1.8
where % is the variational derivative with respect to u, and k is a constant,

determined by

10 5
k== Infu(r?)]. (1.9)



A COMBINED DERIVATIVE NONLINEAR SCHRODINGER SOLITON HIERARCHY 315

The bi-Hamiltonian formulation implies the Liouville integrability of the resulting
hierarchy (see, e.g., [4, 9]).

There exist various applications of the zero curvature formulation to hierarchies of
Liouville integrable models in the literature [5—19]. One-component integrable hier-
archies contain the Korteweg-de Vries hierarchy, the nonlinear Schrédinger hierarchy
and the modified Korteweg-de Vries hierarchy [2, 3]. The well-known examples with
two components include the Ablowitz-Kaup-Newell-Segur integrable hierarchy [5],
the Heisenberg integrable hierarchy [20], the Kaup-Newell integrable hierarchy [21]
and the Wadati-Konno-Ichikawa integrable hierarchy [22]. All those hierarchies are
generated from 2 X 2 spectral matrices. The case of higher-order spectral matrices
involves a high degree of difficulty.

The aim of this paper is to propose a specific 4 X 4 spectral matrix involving
nonzero anti-diagonal entries and minus signs, and construct an associated hierarchy
of four-component Liouville integrable models through the zero curvature formulation.
A hereditary recursion operator and a bi-Hamiltonian formulation are determined to
show the Liouville integrability for the resulting hierarchy. An illustrative example,
consisting of generalized combined integrable derivative nonlinear Schrodinger equa-
tions, is explicitly presented. The last section are a conclusion and some concluding
remarks.

2.  An integrable hierarchy with four potentials

The starting point is a special matrix Lie algebra. Let 6 be an arbitrary number
and T, a square matrix of order r € N such that

T7'=-T. (2.1)
We introduce a set § of block matrices by

s=fo- (3 2
A3 A4 2rx2r

Obviously, this forms a matrix Lie algebra under the matrix commutator [A, B] =
AB — BA. We point out that the inclusion of an arbitrary constant in the first
condition does not work, i.e. the reduction Ay = cTA;T~!, where o is an arbitrary
constant, does not guarantee a matrix Lie algebra. We will use this Lie algebra

with r =2, 6 =1 and
0 1 0 -1
T = [_1 0} or [1 0 } (2.3)

Ay =TAT™', As= 5TA2T—1}. (2.2)

to formulate a specific spectral matrix to generate an integrable hierarchy.

Let u = u(x,t) = (uy,uz,u3,us)’ be a column vector with four potentials, and
a; and ap, two arbitrary real numbers satisfying

a=a+ar #0. 2.4)
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Motivated by recent studies on matrix eigenvalue problems involving four potentials
(see, e.g., [23-25] and [26, 27] for examples of matrix eigenvalue problems of
arbitrary-order and fourth-order, respectively), we would like to consider a matrix
eigenvalue problem of the form

0 /ll/tl /lu2 0’1/12
Au3 0 @l Au
/lu4 —a’z/l2 0 —/lbl3

— /12 /luz —/ll/tl 0

ox=Mo=Mu,e, M= , (2.5)

where, as usual, A stands for the spectral parameter. This spectral matrix M belongs
to the above matrix Lie algebra g, and it is a kind of 4 X4 matrix generalization of
the Kaup-Newell eigenvalue problem [21]. In this spectral matrix, the constant terms
appear in the antidiagonal, all diagonal entries are zero, and there are four minus
signs. Interestingly, beginning with this eigenvalue problem, an associated hierarchy
of bi-Hamiltonian integrable models can be generated. All models in the hierarchy
possess a particular combined structure.

To generate an associated integrable hierarchy, we first solve the corresponding
stationary zero curvature equation (1.3). Let us take

a b e f

¢ —a f 8 -ny[n]

Y= = § Ayl (2.6)
8 _f —a - n>0
-f e -b a

The reason to take this form is that with the spectral matrix M in (2.5), an arbitrary
matrix in g will yield a commutator matrix of the above form in (2.6). In doing
so, the corresponding stationary zero curvature equation (1.3) equivalently engenders

ay = Acuy + Aguy — Abusz — deuy,

by = al’e —2au; — 2Afus, .7)
cx = ad’g +2daus — 24 fuy,

ey = —al’b + 2Afu; — 2dauy,

gx = —aA’c + 21 fus + 2lauy, (2.8)

fx = /lgu1 — Acuy + deus — Abuy.

In order to get a solution Y recursively, we assume that the basic objects of Y are
taken as follows:

{a — an() /I—Zna[n]’ b= ano /I—Zn—lb[n]’ c = ano/l—Zn—lc[n],

(2.9)
e = Z}’LZO /1_2”—16[”1]’ f = 2}120 /l_znf[n]’ g = 21’[20 /l_2n_1g[n]'
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The two obvious relations

—aday = usby —urcyx —Uzex + U1 gx,
(2.10)

A fy =usby +uicx + ugex + urgy,

help us get the required recursion relations. Now by a careful check, we can see
that the above equations in (2.7) and (2.8) generate the two initial equations

{a?]=LHCm]+Mzgw]_”3bm]_u4dm’ @.11)

x[o] = ulg[o] — upc! + uzel® —uy b1,

and the recursion relations which determine a Laurent series solution:
alh = —é(lmb)[cn —upel —uzel v glth,
A = Laab? +un M uael™ - unglM),
plntl] — %(_e)[cn] +2u1f[n+l] _ 2u2a[n+1])’
cln+ll = 1( g[n] +2u3f[n+l] + 2ugalm*1ly,
e+l = :_,(b)[cnj + 2@l 4 2, FleD)
{g[n+1] _ é(c)[("] _ 2u3a[n+1] +2u4f[n+1])’

where n > 0. A simple solution to the initial equations in (2.11) is given by

b = Buy +yus, ! = Bus — yuy,
el = Buy —yuy, g% = Bus + yus, (2.12)

al®l = const, f[o] = const,

where 8 and y are two arbitrary constants. For brevity, we choose the zero constants
of integration,

Mo =0, fM0=0, n>1. (2.13)

The initial values for a!® and fI° do not create any effect on all other coefficients
in the Laurent series solution, but the two constants S and y bring the diversity
of associated integrable models, particularly a combined structure. Now, based on
(2.12) and (2.13), one can work out that

{a[ll = —L[(yus + Bus)uy — (Bus — yus)us],
S = L{(Buz — yug)uy + (yus + Bug)us],
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b = Loyuy = Bus  + 2[(Bus — yua)uy + (yusz + Bug)uz]uy
+2 [(yus + Bus)uy — (Buz — yus)usJus},
M = L{yus « — Bug x + 2[(Bus — yus)uy + (yuz + Bug)uz|us
—2[(yus + Bua)uy — (Buz — yus)uzlus},
e = L{Buy  +yus « — 2[(yus + Bug)uy — (Buz — yua)usJu,
+2 [(Bus — yus)uy + (yuz + Bus)uz)us},
= L{Busy — yusx + 2[(yus + Pus)uy — (Busz — yus)usJus
+2 [(Bus — yua)uy + (yuz + Bus)uz)us}.

By a further inspection on the above recursion relations, one can introduce the
temporal matrix eigenvalue problems:

@, = NM™Me = N, 1), N = 2221y, m >0, (2.14)

where the subscript + stands for the polynomial part of A. The solvability conditions
of the spatial and temporal matrix eigenvalue problems in (2.5) and (2.14), i.e. the
zero curvature equations in (1.5), engender a hierarchy of integrable models with
four potentials:

T
= XU = X ) = (b, e, gtz 0, (2.15)
or more concretely,
Ml,tm = b)[cm]7 uz,l‘m = e)[cm]’ u3,tm = Cgcm]y u4,tm = g)[cm]’ m Z 0 (216)

The first nonlinear example in this hierarchy is the model of combined integrable
derivative nonlinear Schrodinger equations:

Uiy = 5 (vt = Buz,xx) + 25 {[(Bus = yua)ur + (yus + Bua)uz]u }«

+2{(yus + Bua)ur — (Buz — yua)usluz}x,
Uz = 5 (Bt xx +yu2,0x) = 5 {[(yus + Bug)uy — (Bus — yug)uslu} «

+2{(Bus — yua)uy + (yus + Bus)ur]uz} «, o
U3,y = =g (Yt x + Buta xx) + 5 {[(Bus — yua)uy + (yus + Bus)us]us} .

— 2 (yus + Bua)uy = (Buz = yus)us]us} «,

s, = = (Buz cx — Yllaxx) + %{[(7’”3 + Bug)uy — (Buz — yus)usuz}y

+2{(Bus = yua)uy + (yus + Bus)uz]us} .
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This system provides a coupled integrable model with four components, enlarging
the category of coupled integrable models of nonlinear Schrodinger type equations
(see, e.g., [24, 28, 29]). One characteristic property is that each equation contains
a linear combination of two derivative terms of the second order, and thus, we call
it a combined model.

Two special cases with =0 and y =0 in the resulting hierarchy are particularly
interesting. They produce two reduced hierarchies of uncombined integrable models.

If one first takes @ = =1 and y =0 in the model (2.17), one obtains a coupled
integrable nonlinear Schrodinger model:

Uty = —Uz xx +2[ (s + usug)uy + (uyug — usuz)uz] .,

Uz = Ul xx — 2[ (g — uouz)uy — (uuz + usug)uz] «,
(2.18)
U3 = —Ug xx + 2[(uyuz + usug)uz — (uyg — upuz)ug)«,

Ugpy = Uz xx + 2[(urug — upuz)us + (uyus + ugttg)us] .

If one second takes @ =y =1 and 8 =0 in the model (2.17), one gets another
coupled integrable derivative nonlinear Schrodinger model:

Uty = utex = 2[ (g — uousz)uy — (uyus + upug)us] ,

Uz = Uz xx — 2[(uruz + upug)uy + (uug — usuz)us],,
(2.19)
U3y = —U3 xx — 2[(uug — upuz)uz + (uyuz + usug)ug) .,

Ugp = —Ugxx + 2[(uru3 + usug)usz — (g — upuz)ug] x.

Checking the vector fields on the right-hand sides, we see an interesting phe-
nomenon that the resulting two reduced models just exchange the first component
with the second component and the third component with the fourth component.
Surprisingly, those two reduced models still commute with each other.

3. Recursion operator and bi-Hamiltonian formulation

To explore the Liouville integrability of the resulting hierarchy (2.16), we furnish
a Hamiltonian formulation by using the trace identity (1.8) in the case of the spatial
matrix eigenvalue problem (2.5).

By the expression of the Laurent series solution Y by (2.6), we can readily work
out

tr(Y%) =2(=2aAf + bus + cuy + euq + guy),
IM 3.1
tr(Ya—) =2(Ac, g, Ab, Ae)T,
u
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and then, an application of the trace identity leads to

5
5 / 72N (2 Iy b el 4wy el 4wy g™y dx
u

d
= /l”(a—/lﬂ“z"(c["],g["], M el"hT  p>0. (3.2)

Checking with n =1 yields x =0, and consequently, one arrives at
O ginl = (oI gInl plnl a5 (3.3)
6” b b b b - E .

where the Hamiltonian functionals are determined by

1
HIO = / 3 [u1(Buz — yus) + us(Bus + yus) + uz(Buy + yuz) + us(Busz — yuy)] dx,

1
7{[}1] — / 2_(2C¥f[n+l] _ M3b[n] _ M]C[n] _ M4e[n] _ ugg["])dx, n> 1
n

(3.4)
The first Hamiltonian functional above was computed directly. This enables us to
establish a Hamiltonian formulation for the hierarchy (2.16),

STH ™l
g, = X" =g, H , m>0, (3.5)
ou
where the Hamiltonian operator J; is given by
0 o 5
Ji = ; (3.6)
0 0 0
0 o

and the functionals 4™ are defined by (3.4). As a consequence of this Hamiltonian
formulation, we have an interrelation Z = Jl%’ between a symmetry Z and
a conserved functional H of each model in the hierarchy.

The characteristic commutative property for the vector fields X!,

[[X["l],X["Z]]] — X["l]’(u) [X[nzl] _ X["Z]'(u) [X["l]] =0, ny,n >0, (3.7)
follows from an algebra of Lax operators:
[[N["l]’N["Z]]] — N["l]'(u) [X[nz]] _ N[nzll(u) [X["]]] + [N[nl],N["Z]]
=0, np,n2>0. (3.8)

This can directly be derived from the relation between the isospectral zero curvature
equations (see [34, 35] for details).

Furthermore, based on the recursion relation X"+l = @ X"l we can compute
a hereditary recursion operator ® = (®;x)4xs [30] for the hierarchy (2.16), and the
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recursion operator @ is determined by
{(I)]] = %(éml(?“m + 6u26‘1u4), b = —(—11(9)( + %(c’)ula"m — 8u28“u3),

D3 = %(aula‘lul - 8u28‘1u2), Dy = %(3”16_11/!2 + (91426_11/!1);
3.9

b, = ! ax - ﬁ(@ula‘lm - (31/!2(9_1113), b, = i(aula_lln + (91/{2(3_11/!4),

D)3 = 2(6u16‘1u2+6u26‘1u1), @24———(61416 Uy — 0ur0~'uy);
(3.10)

Dy3 = = ((91436_11/!1 + (91446_]1/!2), D3y = —éax + ﬁ(auga_luz — 8u46‘1u1);
G.11)

{ 31 = —2(5M33_1M3 — Ousd 'uy), @3 = §(5u35_lu4 + 0us0™uz),
{ —2(8u36‘1u4 + 8u46“u3), Dy = —%(c’)ma“m - (')u4(9‘1u4),

iax - %(6u33‘1u2 - 8u48‘1u1), Dy = %(8%36_11/{1 + 8144(3_11/{2).
(3.12)

The hereditary property of © means [31] that it satisfies
Lox® = ®LxD, (3.13)
where X is an arbitrary vector field and the Lie derivative Lx® is defined via
(Lx®)Z = ®[[X, Z]] - [[X, DZ], (3.14)

in which Z is an arbitrary vector field. Observe that an operator ¥ = W(x, f, u, ttx, )
is a recursion operator of an evolution equation u, = X(u) if and only if the operator

Y needs to satisfy

oY
— +Lx¥Y=0. 3.15
ey + Ly ( )

We can readily prove that the autonomous operator @ is a recursion operator of
Uy = X101 je. we have Lyo)® =0. In view of this, we can compute that

Lyim® = Lyyim1)® = ®Lyjm1j®@ =+ = ®"Lyjq®=0, m>1. (3.16)

Consequently, we see that @ is a common recursion operator for all models in
the hierarchy (2.16). Symbolic algorithms are also available for computing recursion
operators of nonlinear partial differential equations by computer algebra systems (see,
e.g., [32].

With some direct analysis, we can further show that J; and J, = ®J; constitute
a Hamiltonian pair. Namely, an arbitrary linear combination J of J; and J, is again
Hamiltonian, since it satisfies

/(z[”)TJ’(u) (722N 7BV ax + cycle(z!, 2121, zB1y = 0, (3.17)
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where Zl'l’s are arbitrary vector fields. Accordingly, the hierarchy (2.16) possesses
a bi-Hamiltonian formulation [33],
SHm SHIm=11
u,, = X" =g, =J ., om>1. (3.18)
ou ou
It then follows that the associated Hamiltonian functionals commute with each other
under the corresponding two Poisson brackets [4]:

SHImI T SH 2]
{7{["1],(}{["2]}11 — / H Ji H dx=0, np,ny >0, (3.19)
ou ou
and
SH ™! T SH 2]
{7-{["1]’7_{“12]}12 :/ ( 76{ ) Jr 76{ dx=0, ny,ny>0. (3.20)
u u

The bi-Hamiltonian formulation also implies the hereditariness of the recursion
operator @.

To conclude, each model in the hierarchy (2.16) is Liouville integrable and
possesses infinitely many commuting symmetries {X [”]}f’zo and conserved functionals

{H ["]}:’:0. One particular illustrative integrable model is the system (2.17) of
derivative nonlinear Schrodinger equations, which adds to the existing category of
coupled nonlinear Liouville integrable Hamiltonian models with four components.

4. Concluding remarks

From a special matrix Lie algebra, a specific 4x4 matrix eigenvalue problem was
proposed and an associated hierarchy of four-component Liouville integrable models
was generated through the zero curvature formulation. The key is to determine
a particular Laurent series solution of the corresponding stationary zero curvature
equation. The resulting integrable hierarchy has been shown to possess a hereditary
recursion operator and a bi-Hamiltonian formulation, and thus, all members in the
hierarchy are Liouville integrable.

We are curious to know about mathematical structures of soliton solutions to
the obtained integrable models. Abundant powerful and effective approaches are
available for use, which include the Riemann-Hilbert technique [36], the Darboux
transformation [37-39], the Zakharov-Shabat dressing method [40] and the determinant
approach [41]. In addition to solitons, lump, kink, breather and rogue wave solutions,
particularly their interaction solutions (see, e.g., [42—49)], are also greatly significant,
and many of them can often be generated from soliton solutions by conducting wave
number reductions. Another important aspect of the study of integrable models is
to look for nonlocal reduced integrable models, and nonlocal group reductions and
similarity transformations of matrix eigenvalue problems are helpful. Solitons in the
nonlocal case are significantly important in mathematics as well as physics (see,
e.g., [50-53)).
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In summary, integrable models are of great importance, due to their role in

understanding nonlinear phenomena and their impact on diverse scientific disciplines.
Their study continues to contribute valuable insights that shape our understanding
of complex physical systems and advance our knowledge in various fields.
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