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Abstract. This paper aims to reduce Lax pairs of AKNS matrix spectral problems
using pairs of group reductions or similarity transformations. The corresponding mo-
dified Korteweg-de Vries matrix integrable hierarchies are obtained from the reduced
Lax pairs, amending the standard AKNS integrable hierarchies. A few exemplary cases
are analyzed and computed to demonstrate the diversity of modified Korteweg-de Vries
matrix integrable equations.
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1. INTRODUCTION

Integrable hierarchies arise from Lax pairs of matrix spectral problems [1],
with the key being the selection of a matrix spatial spectral problem. The inverse
scattering transform offers a powerful method for solving initial value problems of
integrable models [2, 3]. The nonlinear Schrödinger (NLS) equation and the modified
Korteweg-de Vries (mKdV) equation are reduced from the Ablowitz-Kaup-Newell-
Segur (AKNS) matrix integrable hierarchies through a single group reduction or
similarity transformation [4]. Furthermore, a pair of group reductions or similarity
transformations can generate a variety of integrable models [5]. The main challenge
lies in achieving a balance between the two reductions of the potentials generated by
these transformations, which often introduces additional requirements to maintain the
invariance of the corresponding zero-curvature equations [6].

Recently, group reductions or similarity transformations have been employed
to construct nonlocal integrable models involving reflection points [7]. All lower-
order integrable models associated with the AKNS matrix spectral problems have
been classified into three types of nonlocal nonlinear Schrödinger equations and
two types of nonlocal modified Korteweg-de Vries equations [8]. Furthermore, the
inverse scattering transform has been successfully applied to initial value problems
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of nonlocal integrable models (see, e.g. [9, 10]). Various other powerful approaches
have been developed for reduced integrable models, particularly in formulating soliton
solutions. Methods such as the Hirota bilinear approach, Darboux transformation,
Bäcklund transforms, and the Riemann-Hilbert technique have proven to be efficient
tools, and numerous mathematical theories have been developed for nonlocal reduced
integrable models (see, e.g. [8, 11–14]).

In this paper, we introduce a pair of group reductions or similarity transforma-
tions for the AKNS matrix spectral problems, generating the corresponding reduced
integrable models. The novel contribution lies in the formulation of two distinct
types of similarity transformations: one involving diagonal block matrices and the
other involving off-diagonal block matrices. In Section 2, we revisit the matrix
AKNS spectral problems and their associated integrable models to set the stage for
the subsequent analysis. We also propose two group reductions or similarity trans-
formations for the AKNS matrix spectral problems, which lead to reduced matrix
mKdV integrable hierarchies. In Section 3, we illustrate the theory with four concrete
examples, demonstrating the diversity of reduced AKNS matrix spectral problems
and the corresponding integrable models. The final section summarizes our results.

2. REDUCED MATRIX MKDV INTEGRABLE HIERARCHIES

2.1. THE AKNS INTEGRABLE HIERARCHIES REVISITED

Let m,n be two arbitrarily given natural numbers. We introduce two submatrix
potentials p and q:

p= p(x,t) = (pjk)m×n, q = q(x,t) = (qkj)n×m, (1)

and denote the dependent variable consisting of p and q by u= u(p,q). Then, for all
r ≥ 0, the standard matrix AKNS spectral problems are given as follows:

−iϕx = Uϕ, −iϕt = V [r]ϕ, (2)

where the Lax pairs are defined by

U = U(u,λ) = λΛ+P, Λ =

[
α1Im 0

0 α2In

]
, P =

[
0 p

q 0

]
,

V [r] = V [r](u,λ) = λrΩ+Q[r], Ω=

[
β1Im 0

0 β2In

]
,

Q[r] =
∑r−1

s=0λ
s

[
a[r−s] b[r−s]

c[r−s] d[r−s]

]
.

(3)

In the Lax pairs defined above, λ is the spectral parameter, α1,α2 and β1,β2 are two
pairs of arbitrarily given distinct constants, Ik is the identity matrix of size k, Q[0] is
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the (m+n)-th-order zero matrix, and

W =
∑
s≥0

λ−sW [s] =
∑
s≥0

λ−s

[
a[s] b[s]

c[s] d[s]

]
(4)

solves the stationary zero-curvature equation

Wx = i[U,W ], (5)

with the initial data W [0]=Ω. This formal series solution plays a key role in generating
integrable hierarchies (see, e.g. [15, 16]).

It is now clear that the compatibility conditions of the two matrix spectral
problems in (2) lead to the following zero-curvature equations:

Ut−V [r]
x + i[U,V [r]] = 0, r ≥ 0, (6)

which describe a matrix AKNS integrable hierarchy:

pt = iαb[r+1], qt =−iαc[r+1], r ≥ 0, (7)

where α = α1−α2. This generalizes the AKNS integrable hierarchy with scalar
potentials [17]. Each system within the matrix AKNS integrable hierarchy possesses
a bi-Hamiltonian structure, along with infinitely many symmetries and conserved
quantities (see, e.g. [18–20]).

When r= 2s+1, with s≥ 0, the matrix AKNS integrable hierarchy (7) reduces
to the matrix mKdV integrable hierarchy. The first nonlinear (when s= 1) integrable
model in the resulted matrix mKdV integrable hierarchy gives the matrix mKdV
equations: 

pt =− β

α3
(pxxx+3pqpx+3pxqp),

qt =− β

α3
(qxxx+3qxpq+3qpqx),

(8)

where β = β1−β2. The corresponding Lax matrix V [3] is given by

V [3] = λ3Ω+
β

α
λ2P − β

α2
λIm,n(P

2+ iPx)−
β

α3
(i[P,Px]+Pxx+2P 3), (9)

where Im,n = diag(Im,−In). Other interesting examples of higher-order matrix
AKNS integrable models can also be computed (see, e.g. [21]).

In what follows, we focus on a specific class of AKNS matrix spectral problems
with

α1 =−α2 = 1, β1 =−β2 =−4, m= n, (10)
where n is an arbitrary natural number. In other words, we will consider integrable
reductions of the matrix mKdV hierarchies associated with this particular class of
AKNS spectral problems involving two square matrix potentials.
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2.2. REDUCTIONS OF THE AKNS MATRIX SPECTRAL PROBLEMS

By taking two constant invertible symmetric square matrices of order n, Σ1,Σ2,
along with two constant invertible square matrices of order n, ∆1,∆2, we define two
invertible constant square matrices of order 2n as follows:

Σ=

[
Σ1 0
0 Σ2

]
, ∆=

[
0 ∆1

∆2 0

]
. (11)

Here, Σ is a block diagonal matrix, while ∆ is a block off-diagonal matrix. It is clear
that both Λ and ∆ satisfy the important similarity properties

ΣΛΣ−1 =−∆Λ∆−1 = Λ, ΣΩΣ−1 =−∆Ω∆−1 =Ω. (12)

Based on the previous analyses, we introduce the following two group reductions
or similarity transformations:

ΣU(λ)Σ−1 =−UT (−λ) =−(U(−λ))T , ∆U(λ)∆−1 =−UT (λ) =−(U(λ))T ,
(13)

where AT represents the matrix transpose of a matrix A. The first group reduction
has been used to present reduced local integrable models (see, e.g. [4]). We will
demonstrate that these group reductions or similarity transformations will preserve
the invariance of the original zero-curvature equations. Following the specific form of
the spectral matrix U , we can observe that these two group reductions or similarity
transformations lead to the following relations for the potential matrix P :

ΣPΣ−1 =−P T , ∆P∆−1 =−P T . (14)

These reductions give rise to the following pairs of constraints for the submatrix
potentials p and q:

pT =−Σ2qΣ
−1
1 , qT =−Σ1pΣ

−1
2 , (15)

and
pT =−∆2p∆

−1
1 , qT =−∆1q∆

−1
2 . (16)

Clearly, the two constraints in (15) are compatible because Σ is Hermitian.
To ensure the compatibility of the two constraints in (16), we introduce a sufficient
condition

Σ2∆
−1
1 Σ1 = η∆2, (17)

where η ∈ C and η ̸= 0.
To summarize, with the condition (17) on the constant matrices Σ and ∆, the

two group reductions or similarity transformations in (13) generate a class of reduced
AKNS matrix spectral problems:

−iϕx = Uϕ, U =

[
λIn p

−Σ−1
2 pTΣ1 −λIn

]
, (18)
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where p must satisfy pT = −∆2p∆
−1
1 . Alternatively, we can express the class of

reduced AKNS matrix spectral problems as

−iϕx = Uϕ, U =

[
λIn −Σ−1

1 qTΣ2

q −λIn

]
, (19)

where q must satisfy qT =−∆1q∆
−1
2 .

2.3. REDUCED MATRIX MKDV INTEGRABLE HIERARCHIES

Let us consider the effects of the solution W determined by (4), with the initial
data W [0] =Ω, under the two group reductions or similarity transformations in (13).
First, we can easily check

ΣW (λ)Σ−1|λ=∞ = (W (−λ))T |λ=∞, ∆W (λ)∆−1|λ=∞ =−(W (λ))T |λ=∞. (20)

Then, it follows from the uniqueness of solutions to the stationary zero-curvature
equation that

ΣW (λ)Σ−1 = (W (−λ))T , ∆W (λ)∆−1 =−(W (λ))T . (21)

Furthermore, for all r,s≥ 0, we can show that

ΣV [2s+1](λ)Σ−1 =−(V [2s+1](−λ))T , ∆V [r](λ)∆−1 =−(V [r](λ))T .

As a result, under the two group reductions or similarity transformations in (13), we
observe thatΣ(Ut−V

[2s+1]
x + i[U,V [2s+1]])(λ)Σ−1=−((Ut−V

[2s+1]
x + i[U,V [2s+1]])(−λ))T ,

∆(Ut−V
[r]
x + i[U,V [r]])(λ)∆−1 =−((Ut−V

[r]
x + i[U,V [r]])(λ))T ,

and thus, the matrix mKdV integrable models in (7) become a reduced hierarchy of
integrable models:

pt = 2ib[2s+2]|q=−Σ−1
2 pTΣ1

, s≥ 0, (22)

where the matrix potential p satisfies pT = −∆2p∆
−1
1 , or equivalently, a reduced

hierarchy of integrable models:

qt =−2ic[2s+2]|p=−Σ−1
1 qTΣ2

, s≥ 0, (23)

where the matrix potential q satisfies qT =−∆1q∆
−1
2 . The matrix spectral problems,

consisting of (18) and

−iϕt = V [2s+1]|q=−Σ−1
2 pTΣ1

ϕ, s≥ 0, (24)

present a Lax pair for every member in the reduced integrable hierarchy (22), or
equivalently, the matrix spectral problems, consisting of (19) and

−iϕt = V [2s+1]|p=−Σ−1
1 qTΣ2

ϕ, s≥ 0, (25)
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present a Lax pair for each member in the reduced integrable hierarchy (23).
Note that Σ1,Σ2 are arbitrary invertible symmetric matrices, and ∆1,∆2 are

arbitrary invertible square matrices. There is a single condition, given by (17), that we
need to check for Σ and ∆. Once the matrices Σ1,Σ2 and ∆1,∆2 are appropriately
chosen, we can generate a variety of integrable hierarchies corresponding to reduced
matrix mKdV models.

3. APPLICATIONS TO FOUR SPECIAL CASES

In this section, we apply the general framework to four specific cases, offering
illustrative examples of reduced matrix AKNS spectral problems and integrable mKdV
equations. We consider four distinct combinations of the parameters by assuming
that:

σ =±1, δ =±1, (26)

which leads to four possible scenarios to explore.
Example 3.1: Let us begin by considering the case where n= 2. We choose

the following specific values for the matrices:

Σ1 = I2, Σ2 =−σI2, ∆1 =

[
0 1
δ 0

]
, ∆2 =−δ∆1. (27)

Then, the two group reductions or similarity transformations in (13) lead to

U = U(u,λ) =

[
λI2 p
σpT −λI2

]
, p=

[
p2 p1
p3 δp2

]
, (28)

where u = (p1,p2,p3)
T , and the corresponding reduced matrix integrable mKdV

equations are expressed as
p1,t = p1,xxx+6σ[(p21+p22)p1,x+p2(p1+ δp3)p2,x],
p2,t = p2,xxx+3σ[p2(p1+ δp3)p1,x+(p21+2p22+p23)p2,x+p2(δp1+p3)p3,x]
p3,t = p3,xxx+6σ[p2(δp1+p3)p2,x+(p22+p23)p3,x].

(29)
Example 3.2: Next, let us consider n= 2 and take the following specific values

for the matrices:

Σ1 = I2, Σ2 =−σI2, ∆1 =

[
−δ 1
1 0

]
, ∆2 =−∆1. (30)

Then, the two group reductions or similarity transformations in (13) yield

U = U(u,λ) =

[
λI2 p
σpT −λI2

]
, p=

[
p2 p1
p3 δp1+p2

]
, (31)
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where u = (p1,p2,p3)
T , and the corresponding reduced matrix integrable mKdV

equations are given by

p1,t = p1,xxx+3σ
[(4p21+2p22+3δp1p2+ δp2p3)p1,x(δp

2
1+2p1p2+ δp1p3+2p2p3)p2,x],

p2,t = p2,xxx+3σ[(p1p2+ δp1p3+p2p3)p1,x+(p21+2p22+p23)p2,x
+(δp21+p1p2+p2p3)p3,x],

p3,t = p3,xxx+3σ[(δp1p2+p1p3+ δp2p3)p1,x+(δp1+2p2)(p1+p3)p2,x
+(p21+2δp1p2+2p22+2p23)p3,x].

(32)
Example 3.3: For n= 3, we take the following set of matrix choices

Σ1 = I3, Σ2 =−σI3, ∆1 =∆2 =

 1 0 δ
0 δ 0
δ 0 0

 . (33)

Now, the two group reductions or similarity transformations in (13) generate

U = U(u,λ) =

[
λI3 p
σpT −λI3

]
, p=

 p2 p1 0
p3 0 −p1

−δp2 −δp1−p3 −p2

 , (34)

where u= (p1,p2,p3)
T . The resulting system of equations for n= 3 involves com-

plex interactions between the three components of the potential matrix, exhibiting
nonlinear interactions and differential terms. These interactions reflect the structure
of the reduced AKNS matrix spectral problems and the associated integrable mKdV
equations. In this case, the associated reduced matrix integrable mKdV equations are
given as follows:

p1,t = p1,xxx+3σ[(4p21+3δp1p3+2p22+p23)p1,x
+p2(2p1+ δp3)p2,x+(δp21+p1p3+ δp22)p3,x],

p2,t = p2,xxx+3σ[p2(2p1+ δp3)p1,x
+(2p21+ δp1p3+4p22+p23)p2,x+p2p3p3,x],

p3,t = p3,xxx+3σ[(p1p3− δp22)p1,x
−p2(δp1−2p3)p2,x+(p21+2p22+2p23)p3,x].

(35)

Example 3.4: For n= 3, let us consider another set of matrix choices:

Σ1 = I3, Σ2 =−σI3, ∆1 =∆2 =

 −δ 0 δ
0 −1 0
δ 0 δ

 . (36)
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In this case, the two group reductions or similarity transformations in (13) engender

U = U(u,λ) =

[
λI3 p
σpT −λI3

]
, p=

 p2 p1 p2
p3 0 2δp1+p3
p2 p1+ δp3 −p2

 , (37)

where u= (p1,p2,p3)
T . This shows that by choosing a different set of matrices, we

obtain a distinct set of interactions in the corresponding reduced AKNS spectral matrix
and mKdV equations. The structure of the equations remains similar to Example 3.3,
but with important differences in the nonlinear interaction terms due to the variations in
the matrices Σ1,Σ2,∆1,∆2. The corresponding associated reduced matrix integrable
mKdV equations are expressed as follows:

p1,t = p1,xxx+3σ[(4p21+3δp1p3+2p22+p23)p1,x
+2p1p2p2,x+p1(δp1+p3)p3,x],

p2,t = p2,xxx+3σ[p2(2p1+ δp3)p1,x
+(2p21+3δp1p3+4p22+2p23)p2,x+2p2(δp1+p3)p3,x],

p3,t = p3,xxx+6σ[(2p1+ δp3)p3p1,x
+p2p3p2,x+(2p21+3δp1p3+p22+2p23)p3,x].

(38)

In these examples, the integration of the spectral matrix into the system of
equations reveals deep nonlinear interactions that form the structure of the integrable
mKdV equations. The varying parameters σ and δ play a crucial role in shaping
the dynamics of the system, influencing the nature of the interactions between the
components.

These examples highlight the flexibility and richness of the Lax pair formula-
tion for constructing integrable models. The ability to perform different similarity
transformations on the zero-curvature equations provides a pathway to generate a
wide range of specific integrable reductions (see, e.g. [22–25]). Such transformations
allow for the exploration of various types of nonlinear wave behaviors, with potential
applications across different fields of study. These examples further supplement
integrable models associated with the 4×4 matrix spectral problems, as explored in
[26, 27].

4. CONCLUDING REMARKS

This paper introduces and analyzes a pair of local similarity transformations
applied to a specific class of AKNS matrix spectral problems, resulting in reduced
matrix mKdV integrable hierarchies. Several concrete examples of reduced AKNS
matrix spectral problems and corresponding integrable mKdV hierarchies have been
presented. A novel aspect of this work is the proposal of a pair of group reductions
or similarity transformations, one involving a diagonal block matrix and the other an
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off-diagonal block matrix. These transformations offer a distinct approach compared
to previous studies [6, 28], where the similarity matrices were exclusively of the
diagonal block matrix type.

Our examples highlight the versatility of the Lax pair formulation in construct-
ing integrable models, demonstrating how various reductions and transformations
can produce a wide range of integrable mKdV equations with different nonlinear
interactions. The selection of parameters such as σ and δ plays a crucial role in shap-
ing the structure of these systems. The inherent flexibility of the Lax pair approach
enables the creation of customized models, making it a valuable tool for capturing and
analyzing diverse phenomena in both theoretical research and practical applications.

By delving deeper into this approach and examining various forms of similarity
transformations for the zero-curvature equations, we can uncover more intricate
structures and special cases of integrable models, revealing fascinating phenomena
such as rogue waves, lump waves, and soliton waves (see, e.g. [29–32]). This process
paves the way for a broader class of integrable models, which could be applied to
diverse fields such as water waves, fluid dynamics, and nonlinear optics.
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